1
|
Madrid E, Pino JA, Muñoz S, Cardemil F, Martinez F, Berasaluce M, San Martín S, Reyes J, González-Miranda I. Oxidative damage associated with exposure to heavy metals present in topsoils in central Chile. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9891-9901. [PMID: 37882916 DOI: 10.1007/s10653-023-01771-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
Exposure to heavy metals may cause the overproduction of reactive oxygen species, generating oxidative stress and consequently, various harms to human health. The soil surrounding the Ventanas Industrial Complex, in Puchuncaví and Quintero municipal districts on the central Chilean coast, contains heavy metal concentrations (As, Cu, Pb, Zn, among others) that far exceed the maximum permissible levels established by Italian soil standards (used as a reference). This study aimed to investigate the potential association between heavy metal exposure in humans and the levels of oxidative stress biomarkers in inhabitants of these locations. We took blood samples from 140 adults living in sites with high concentrations of heavy metals in the soil and compared them with blood samples from 140 adults living in areas with normal heavy metal concentrations. We assessed lipid peroxidation, damage to genetic material, and Total Antioxidant Capacity in these blood samples. Our results indicate an association between oxidative damage and heavy metal exposure, where the inhabitants living in exposed areas have a higher level of DNA damage compared with those living in control areas. Given that DNA damage is one of the main factors in carcinogenesis, these results are of interest, both for public health and for public policies aimed at limiting human exposure to environmental pollution.
Collapse
Affiliation(s)
- Eva Madrid
- Interdisciplinary Center for Health Studies (CIESAL), Escuela de Medicina, Universidad de Valparaíso, Viña del Mar, Chile
| | - José A Pino
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
- Departamento de Medicina, Facultad de Medicina, Universidad de Atacama, Copiapó, Chile
| | - Sergio Muñoz
- Department of Public Health-CIGES, Universidad de La Frontera, Temuco, Chile
| | - Felipe Cardemil
- Department of Basic and Clinical Oncology, School of Medicine, Universidad de Chile, Santiago, Chile
| | - Felipe Martinez
- Facultad de Medicina, Escuela de Medicina, Universidad Andrés Bello, Viña del Mar, Chile
| | - Maite Berasaluce
- Interdisciplinary Center for Health Studies (CIESAL), Escuela de Medicina, Universidad de Valparaíso, Viña del Mar, Chile
| | - Sebastián San Martín
- Biomedical Research Center (CIB), Escuela de Medicina, Universidad de Valparaíso, Viña del Mar, Chile
| | - Juan Reyes
- Instituto de Química, Facultad de de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Isabel González-Miranda
- Centro Regional de Investigación e Innovación para la Sostenibilidad de la Agricultura y los Territorios Rurales (Ceres), Quillota, Chile.
- Vicerrectoría de Investigación y Estudios Avanzados, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
2
|
Kapwata T, Wright CY, Reddy T, Street R, Kunene Z, Mathee A. Relations between personal exposure to elevated concentrations of arsenic in water and soil and blood arsenic levels amongst people living in rural areas in Limpopo, South Africa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:65204-65216. [PMID: 37079235 PMCID: PMC10116462 DOI: 10.1007/s11356-023-26813-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
Exposure to arsenic even at low levels can lead to adverse health outcomes, however, there is a paucity of research from South Africa in relation to human exposure to arsenic. We investigated long-term exposure of residents in Limpopo province, South Africa, in a cross-sectional study by analysing water, soil and blood arsenic concentrations from two arsenic-exposed (high and medium-low exposure) villages and one non-exposed (control) village. There were statistically significant differences in the distribution of arsenic in water, soil and blood amongst the three sites. The median drinking water arsenic concentration in the high-exposure village was 1.75 µg/L (range = 0.02 to 81.30 µg/L), 0.45 µg/L (range = 0.100 to 6.00 µg/L) in the medium- / low-exposure village and 0.15 µg/L (range = < limit of detection (LOD) to 29.30 µg/L) in the control site. The median soil arsenic concentration in the high-exposure village was 23.91 mg/kg (range = < LOD to 92.10 mg/kg) whilst arsenic concentrations were below the limit of detection in all soil samples collected from the medium-/low-exposure and control villages. In the high-exposure village, the median blood arsenic concentration was 1.6 µg/L (range = 0.7 to 4.2 µg/L); 0.90 µg/L (range = < LOD to 2.5 µg/L) in the medium-/low-exposure village and 0.6 µg/L (range = < LOD to 3.3 µg/L) in the control village. Significant percentages of drinking water, soil and blood samples from the exposed sites were above the internationally recommended guidelines (namely, 10 µg/L, 20 mg/kg and 1 µg/L, respectively). Majority of participants (86%) relied on borehole water for drinking and there was a significant positive correlation between arsenic in blood and borehole water (p-value = 0.031). There was also a statistically significant correlation between arsenic concentrations in participants' blood and soil samples collected from gardens (p-value = 0.051). Univariate quantile regression found that blood arsenic concentrations increased by 0.034 µg/L (95% CI = 0.02-0.05) for each one unit increase in water arsenic concentrations (p < 0.001). After adjusting for age, water source and homegrown vegetable consumption in multivariate quantile regression, participants from the high-exposure site had significantly higher blood concentrations than those in the control site (coefficient: 1.00; 95% CI = 0.25-1.74; p-value = 0.009) demonstrating that blood arsenic is a good biomarker of arsenic exposure. Our findings also provide new evidence for South Africa on the association between drinking water and arsenic exposure, emphasising the need for the provision of potable water for human consumption in areas with high environmental arsenic concentrations.
Collapse
Affiliation(s)
- Thandi Kapwata
- Environment and Health Research Unit, South African Medical Research Council, Johannesburg, 2028, South Africa.
- Environmental Health Department, Faculty of Health Sciences, University of Johannesburg, Johannesburg, 2028, South Africa.
| | - Caradee Y Wright
- Environment and Health Research Unit, South African Medical Research Council, Pretoria, 0084, South Africa
- Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria, 0001, South Africa
| | - Tarylee Reddy
- Biostatistics Research Unit, South African Medical Research Council, Durban, 4001, South Africa
- School of Mathematics, Statistics and Computer Science, University of KwaZulu Natal, Pietermaritzburg, 3201, South Africa
| | - Renee Street
- Environmental Health Department, Faculty of Health Sciences, University of Johannesburg, Johannesburg, 2028, South Africa
- Environment and Health Research Unit, South African Medical Research Council, Durban, 4001, South Africa
| | - Zamantimande Kunene
- Environment and Health Research Unit, South African Medical Research Council, Johannesburg, 2028, South Africa
- Environmental Health Department, Faculty of Health Sciences, University of Johannesburg, Johannesburg, 2028, South Africa
| | - Angela Mathee
- Environment and Health Research Unit, South African Medical Research Council, Johannesburg, 2028, South Africa
- Environmental Health Department, Faculty of Health Sciences, University of Johannesburg, Johannesburg, 2028, South Africa
- School of Public Health, University of the Witwatersrand, Johannesburg, 2028, South Africa
| |
Collapse
|
3
|
Zanetta-Colombo NC, Fleming ZL, Gayo EM, Manzano CA, Panagi M, Valdés J, Siegmund A. Impact of mining on the metal content of dust in indigenous villages of northern Chile. ENVIRONMENT INTERNATIONAL 2022; 169:107490. [PMID: 36116364 DOI: 10.1016/j.envint.2022.107490] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/29/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Indigenous communities from northern Chile have historically been exposed to the impacts of massive copper industrial activities conducted in the region. Some of the communities belonging to the Alto El Loa Indigenous Development Area are located less than 10 km from the "Talabre'' tailings dam, which contains residues from copper production and other metals that can be toxic to human health (e.g., As, Sb, Cd, Mo, Pb). Given the increasing demand of copper production to achieve net-zero emission scenarios and concomitant expansions of the tailings, the exposure to toxic metals is a latent risk to local communities. Despite the impact that copper production could generate on ancestral communities from northern Chile, studies and monitoring are limited and the results are often not made accessible for local communities. Here, we evaluate such risks by characterizing metal concentrations in dust collected from roofs and windows of houses from the Alto El Loa area. Our results showed that As, Sb, Cd, Cu, Mo, Ag, S, and Pb concentrations in these matrices can be connected to local copper mining activities. Additionally, air transport models indicate that high concentrations of toxic elements (As, Sb, and Cd) can be explained by the atmospheric transport of particles from the tailings in a NE direction up to 50 km away. Pollution indices and Health Risk Assessment suggested a highly contaminated region with a health risk for its inhabitants. Our analysis on a local scale seeks to make visible the case of northern Chile as a critical territory where actions should be taken to mitigate the effects of mining in the face of this new scenario of international demand for the raw materials necessary for the transition to a net-zero carbon global society.
Collapse
Affiliation(s)
- Nicolás C Zanetta-Colombo
- Heidelberg Center for the Environment (HCE), Heidelberg University, Heidelberg, Germany; Department of Geography - Research Group for Earth Observation (rgeo), Heidelberg University of Education, Heidelberg, Germany; Department of Geography, SAI, Heidelberg University, Heidelberg, Germany.
| | - Zoë L Fleming
- Envirohealth Dynamics Lab, C+ Research Center in Technologies for Society, School of Engineering, Universidad Del Desarrollo, Santiago, Chile; Center for Climate and Resilience Research (CR)2, Chile
| | - Eugenia M Gayo
- Center for Climate and Resilience Research (CR)2, Chile; ANID - Millennium Science Initiative Program- Nucleo Milenio UPWELL, Chile
| | - Carlos A Manzano
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; School of Public Health, San Diego State University, San Diego, CA, USA.
| | - Marios Panagi
- School of Physics and Astronomy, University of Leicester, Leicester, UK
| | - Jorge Valdés
- Laboratorio de Sedimentología y Paleoambientes (LASPAL), Instituto de Ciencias Naturales Alexander von Humboldt, Facultad de Ciencias del Mar y de Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Alexander Siegmund
- Heidelberg Center for the Environment (HCE), Heidelberg University, Heidelberg, Germany; Department of Geography - Research Group for Earth Observation (rgeo), Heidelberg University of Education, Heidelberg, Germany
| |
Collapse
|
4
|
George S, Cassidy RN, Saintilnord WN, Fondufe-Mittendorf Y. Epigenomic reprogramming in iAs-mediated carcinogenesis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 96:319-365. [PMID: 36858778 DOI: 10.1016/bs.apha.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Arsenic is a naturally occurring metal carcinogen found in the Earth's crust. Millions of people worldwide are chronically exposed to arsenic through drinking water and food. Exposure to inorganic arsenic has been implicated in many diseases ranging from acute toxicities to malignant transformations. Despite the well-known deleterious health effects of arsenic exposure, the molecular mechanisms in arsenic-mediated carcinogenesis are not fully understood. Since arsenic is non-mutagenic, the mechanism by which arsenic causes carcinogenesis is via alterations in epigenetic-regulated gene expression. There are two possible ways by which arsenic may modify the epigenome-indirectly through an arsenic-induced generation of reactive oxygen species which then impacts chromatin remodelers, or directly through interaction and modulation of chromatin remodelers. Whether directly or indirectly, arsenic modulates epigenetic gene regulation and our understanding of the direct effect of this modulation on chromatin structure is limited. In this chapter we will discuss the various ways by which inorganic arsenic affects the epigenome with consequences in health and disease.
Collapse
Affiliation(s)
- Smitha George
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, United States
| | - Richard N Cassidy
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, United States
| | - Wesley N Saintilnord
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, United States; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | | |
Collapse
|