1
|
Mohiuddin I, Singh R, Kaur V. Blending polydopamine-derived imprinted polymers with rice straw-based fluorescent carbon dots for selective detection and adsorptive removal of ibuprofen. Int J Biol Macromol 2024; 269:131765. [PMID: 38677686 DOI: 10.1016/j.ijbiomac.2024.131765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/05/2024] [Accepted: 04/20/2024] [Indexed: 04/29/2024]
Abstract
Dual-functioning probes capable of detecting and removing hazardous substances have recently received increased attention compared to exclusive sensory probes. Herein, a new composite is synthesized by blending polydopamine imprinted polymers with fluorescent carbon dots (PIP-FCDs) for the selective recognition and adsorption of Ibuprofen (IBF). IBF is a nonsteroidal anti-inflammatory drug and is excessively released in the pharmaceutical wastes. The PIP-FCDs consist of confined pockets for encasing IBF and quenches fluorescence signal when contact with the molecule. PIP-FCDs show high sensitivity (limit of detection = 1.58 × 10-5 μM) and selectivity towards IBF in the presence of other pharmaceutical drugs i.e., aspirin, ketoprofen, norfloxacin, and levofloxacin. The adsorption studies show an adsorption capacity of 209.8 mg g-1 with an extraction efficiency of around 99.9 %. Furthermore, PIP-FCDs are utilized to determine IBF levels in various aqueous pharmaceutical samples. This development provides a simple and dual-functioning probe for the detection and adsorption of IBF from various matrices.
Collapse
Affiliation(s)
- Irshad Mohiuddin
- Department of Chemistry, Panjab University, Sector-14, Chandigarh 160014, India.
| | - Raghubir Singh
- Department of Chemistry, DAV College, Sector, 10, Chandigarh, -160011, India
| | - Varinder Kaur
- Department of Chemistry, Panjab University, Sector-14, Chandigarh 160014, India.
| |
Collapse
|
2
|
Galván-Romero V, Gonzalez-Salazar F, Vargas-Berrones K, Alcantara-Quintana LE, Martinez-Gutierrez F, Zarazua-Guzman S, Flores-Ramírez R. Development and evaluation of ciprofloxacin local controlled release materials based on molecularly imprinted polymers. Eur J Pharm Biopharm 2024; 195:114178. [PMID: 38195049 DOI: 10.1016/j.ejpb.2024.114178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/07/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
The aim of this study was the molecular imprinting polymers (MIPs) assessment as a controlled release system of ciprofloxacin. The MIPs synthesis was performed by three different methods: emulsion, bulk, and co-precipitation. Lactic acid (LA) and methacrylic acid (MA) were used as functional monomers and ethylene glycol dimethacrylate as crosslinker. Also, nonimprinted polymers (NIPs) were synthesized. MIPs and NIPs were characterized by scanning electron microscopy, Fourier Transform Infrared Reflection, specific surface area, pore size, and release kinetics. Their efficiency against Staphylococcus aureus and Escherichia coli, and their cytotoxicity in dermal fibroblast cells were proven. Results show that MIPs are mesoporous materials with a pore size between 10 and 20 nm. A higher adsorption with the co-precipitation MIP with MA as a monomer was found. The release kinetics proved that a non-Fickian process occurred and that the co-precipitation MIP with LA presented the highest release rate (90.51 mg/L) in 8 h. The minimum inhibitory concentration was found between 0.031 and 0.016 mg/L for Staphylococcus aureus and between 0.004 and 0.031 mg/L for the Escherichia coli. No cytotoxicity in cellular cultures was found; also, cellular growth was favored. This study demonstrated that MIPs present promising properties for drug administration and their application in clinical practice.
Collapse
Affiliation(s)
- Vanessa Galván-Romero
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección CP 78210, San Luis Potosí, SLP, Mexico
| | - Fernando Gonzalez-Salazar
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección CP 78210, San Luis Potosí, SLP, Mexico
| | - Karla Vargas-Berrones
- Instituto Tecnológico Superior de Rioverde, Carretera Rioverde-San Ciro Km 4.5, Rioverde CP. 79610, San Luis Potosi, Mexico
| | - Luz Eugenia Alcantara-Quintana
- Unidad de Innovación en Diagnostico Celular y Molecular, Coordinación para la Innovación y la Aplicación de la Ciencia y Tecnología, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2a sección 78120, San Luis Potosí, Mexico
| | - Fidel Martinez-Gutierrez
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona Universitaria, San Luis Potosí, SLP 78210, Mexico; Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Sierra Leona No. 550, Lomas CP 28210, San Luis Potosí, SLP, Mexico
| | - Sergio Zarazua-Guzman
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona Universitaria, San Luis Potosí, SLP 78210, Mexico
| | - Rogelio Flores-Ramírez
- CONACYT Research Fellow, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección CP 78210, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
3
|
Aguilar-Aguilar A, de León-Martínez LD, Forgionny A, Acelas Soto NY, Mendoza SR, Zárate-Guzmán AI. A systematic review on the current situation of emerging pollutants in Mexico: A perspective on policies, regulation, detection, and elimination in water and wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167426. [PMID: 37774864 DOI: 10.1016/j.scitotenv.2023.167426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Emerging pollutants (EPs) emerged as a group of new compounds whose presence in the environment has been widely detected in Mexico. In this country, different concentrations of pharmaceutical compounds, pesticides, dyes, and microplastics have been reported, which vary depending on the region and the analyzed matrix (i.e., wastewater, surface water, groundwater). The evidence of the EPs' presence focuses on the detection of them, but there is a gap in information regarding is biomonitoring and their effects in health in Mexico. The presence of these pollutants in the country associated with lack of proper regulations in the discharge and disposal of EPs. Therefore, this review aims to provide a comprehensive view of the current environmental status, policies, and frameworks regarding Mexico's situation. The review also highlights the lack of information about biomonitoring since EPs are present in water even after their treatment, leading to a critical situation, which is high exposure to humans and animals. Although, technologies to efficiently eliminate EPs are available, their application has been reported only at a laboratory scale thus far. Here, an overview of health and environmental impacts and a summary of the research works reported in Mexico from 2014 to 2023 were presented. This review concludes with a concrete point of view and perspective on the status of the EPs' research in Mexico as an alert for government entities about the necessity of measures to control the EPs disposal and treatment.
Collapse
Affiliation(s)
- Angélica Aguilar-Aguilar
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
| | | | - Angélica Forgionny
- Grupo de Materiales con Impacto, Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín 55450, Colombia
| | - Nancy Y Acelas Soto
- Grupo de Materiales con Impacto, Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín 55450, Colombia
| | - Sergio Rosales Mendoza
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava No. 201, San Luis Potosí 78210, Mexico
| | - Ana I Zárate-Guzmán
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico.
| |
Collapse
|
4
|
Xie Z, Zhang Y, Zhang Y, Li Z, Sun L, Zhang S, Du C, Zhong C. Preparation of N-doped porous biochar with high specific surface area and its efficient adsorption for mercury ion from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122121-122135. [PMID: 37966640 DOI: 10.1007/s11356-023-31026-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
Abstract
Herein, a new type of super active nitrogen-doped biochar sheet (SNBC) was prepared by two-step pyrolysis and KOH chemical activation with melamine and cherry kernel powder as precursors of nitrogen and carbon source for removing Hg2+ from wastewater. The N2 adsorption/desorption and scanning electron microscope characterization revealed that the resulted SNBC under 600 °C calcination owned huge specific surface area of 2828 m2/g and plenty of well-developed micropores, and X-ray photoelectron spectroscopy and Fourier transform-infrared spectroscopy analysis testified the existence of functional groups containing N and O, which could provide adsorption sites for Hg2+. The SNBC-600 showed high adsorption capacity for Hg2+ even at low pH, and interfering cations had little effect on the adsorption. The adsorption process was rapid and dynamic data fit the pseudo-second-order dynamic model well. The maximum adsorption capacity of Hg2+ on SNBC-600 calculated by Langmuir model was 230 mg/g. After six times of reuse, the adsorption capacity still exceeded 200 mg/g, exhibiting good reusability. The designed microfiltration membrane device base on SNBC-600 could remove low concentration of Hg2+ effectively from solution. This study provided a simple and environment-friendly method for manufacturing nitrogen-doped biochar sheet, which was of great significance in the practical application of Hg2+ pollution treatment.
Collapse
Affiliation(s)
- Zengrun Xie
- School of Chemistry and Materials Science, Institute of Environmental Science, Ludong University, Yantai, 264025, Shandong Province, China
| | - Yuanyuan Zhang
- Environmental Monitor Station of Yantai, No. 118, Qingnian South Road, Yantai, 264000, Shandong Province, China
| | - Yinghong Zhang
- Environmental Monitor Station of Yantai, No. 118, Qingnian South Road, Yantai, 264000, Shandong Province, China
| | - Zhiling Li
- Division of Science and Technology, Ludong University, Yantai, 264025, Shandong Province, China
| | - Lixiang Sun
- School of Chemistry and Materials Science, Institute of Environmental Science, Ludong University, Yantai, 264025, Shandong Province, China
| | - Shengxiao Zhang
- School of Chemistry and Materials Science, Institute of Environmental Science, Ludong University, Yantai, 264025, Shandong Province, China.
| | - Chenyu Du
- School of Chemistry and Materials Science, Institute of Environmental Science, Ludong University, Yantai, 264025, Shandong Province, China
| | - Caijuan Zhong
- School of Chemistry and Materials Science, Institute of Environmental Science, Ludong University, Yantai, 264025, Shandong Province, China
| |
Collapse
|
5
|
Huynh NC, Nguyen TTT, Nguyen DTC, Tran TV. Occurrence, toxicity, impact and removal of selected non-steroidal anti-inflammatory drugs (NSAIDs): A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165317. [PMID: 37419350 DOI: 10.1016/j.scitotenv.2023.165317] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/09/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most frequently used pharmaceuticals for human therapy, pet therapeutics, and veterinary feeds, enabling them to enter into water sources such as wastewater, soil and sediment, and seawater. The control of NSAIDs has led to the advent of the novel materials for treatment techniques. Herein, we review the occurrence, impact and toxicity of NSAIDs against aquatic microorganisms, plants and humans. Typical NSAIDs, e.g., ibuprofen, ketoprofen, diclofenac, naproxen and aspirin were detected at high concentrations in wastewater up to 2,747,000 ng L-1. NSAIDs in water could cause genotoxicity, endocrine disruption, locomotive disorders, body deformations, organs damage, and photosynthetic corruption. Considering treatment methods, among adsorbents for removal of NSAIDs from water, metal-organic frameworks (10.7-638 mg g-1) and advanced porous carbons (7.4-400 mg g-1) were the most robust. Therefore, these carbon-based adsorbents showed promise in efficiency for the treatment of NSAIDs.
Collapse
Affiliation(s)
- Nguyen Chi Huynh
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.
| |
Collapse
|
6
|
Stachowiak M, Cegłowski M, Kurczewska J. Hybrid chitosan/molecularly imprinted polymer hydrogel beads doped with iron for selective ibuprofen adsorption. Int J Biol Macromol 2023; 251:126356. [PMID: 37595706 DOI: 10.1016/j.ijbiomac.2023.126356] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Pharmaceutical pollutants are a group of emerging contaminants frequently found in water streams. In this study, the composite chitosan beads with incorporated molecularly imprinted polymers (monoliths or microparticles) and iron(III) hydroxide were fabricated to remove ibuprofen from aqueous solutions. The adsorptive properties were investigated in different conditions to evaluate the influence of solution pH, adsorbent dose, ibuprofen initial concentration, adsorption time, and temperature. The highest adsorption capacity (79.41 mg g-1), about twice as large as that for the chitosan beads without polymers (39.42 mg g-1), was obtained for the ones containing monoliths imprinted with ibuprofen. The theoretical maximum adsorption capacity of 103.93 mg g-1 was obtained based on the experiments in optimal pH 5. The adsorption of ibuprofen on the hybrid hydrogel beads followed the Freundlich isotherm and pseudo-second-order kinetic models. The process was found as endothermic and thermodynamically spontaneous. The adsorbent with a molecularly imprinted polymer retained its selectivity in the presence of other molecules. The imprinted cavities, chitosan functional groups, and iron hydroxide were presumably responsible for interactions with ibuprofen molecules. Additionally, the effectiveness of the adsorbent did not change significantly in real water samples and remained at a satisfactory level for up to four desorption-adsorption cycles.
Collapse
Affiliation(s)
- Maria Stachowiak
- Adam Mickiewicz University, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Michał Cegłowski
- Adam Mickiewicz University, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Joanna Kurczewska
- Adam Mickiewicz University, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| |
Collapse
|
7
|
Hsieh YH, Jung WT, Lee HL. Novel vinylene-based covalent organic framework as a promising adsorbent for the rapid extraction of beta-agonists in meat samples. Anal Chim Acta 2023; 1272:341492. [PMID: 37355321 DOI: 10.1016/j.aca.2023.341492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/26/2023]
Abstract
Beta-agonists are potent bronchodilators approved for the treatment of asthma and tocolysis. However, they have been extensively misused as feed additives in the veterinary field to improve feed efficiency. The concern over their potential hazard to health has come to the fore again. In this study, a novel vinylene-based covalent organic framework (V-COF-1) with a two-dimensional structure was developed. The structure shows good tolerance in a variety of mediums, which can be attributed to the low polarity linkage. The high specific surface area and variable interaction with analytes accelerate the extraction time. Furthermore, the swelling resulting from the formation of hydrogen bonds by the protic solvent intercalation with the triazine group also improves the adsorption efficiency. Finally, due to its great reusability, it is economical material in sample preparation application. The V-COF-1 based μ-dSPE approach was coupled with UHPLC-MS/MS to develop a highly sensitive and selective method. The linearity of the method ranged from 0.05 to 20 ng g-1 with a correlation coefficient (R2) higher than 0.9958, and the limits of detection and quantification fell in the ranges of 0.01-0.10 ng g-1 and 0.04-0.32 ng g-1. The proposed method has been successfully applied to determine beta-agonists in meat samples, and the results indicated good recovery of 82.2-116%. The intra-day and inter-day precision were less than 6.61%, indicating the potential for sustainable application in food analysis.
Collapse
Affiliation(s)
- Yi-Hsuan Hsieh
- Department of Chemistry, Fu Jen Catholic University, Xinzhuang District, New Taipei City, 24205, Taiwan
| | - Wei-Ting Jung
- Department of Chemistry, Fu Jen Catholic University, Xinzhuang District, New Taipei City, 24205, Taiwan
| | - Hui-Ling Lee
- Department of Chemistry, Fu Jen Catholic University, Xinzhuang District, New Taipei City, 24205, Taiwan.
| |
Collapse
|
8
|
Vargas-Berrones K, Ocampo-Perez R, Rodríguez-Torres I, Medellín-Castillo NA, Flores-Ramírez R. Molecularly imprinted polymers (MIPs) as efficient catalytic tools for the oxidative degradation of 4-nonylphenol and its by-products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:90741-90756. [PMID: 37462867 DOI: 10.1007/s11356-023-28653-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/02/2023] [Indexed: 08/24/2023]
Abstract
Water pollution is a current global concern caused by emerging pollutants like nonylphenol (NP). This endocrine disruptor cannot be efficiently removed with traditional wastewater treatment plants (WTPs). Therefore, this work aimed to evaluate the adsorption influence of molecularly imprinted polymers (MIPs) on the oxidative degradation (ozone and ultraviolet irradiations) of 4-nonylphenol (4-NP) and its by-products as a coadjuvant in WTPs. MIPs were synthesized and characterized; the effect of the degradation rate under system operating conditions was studied by Box-Behnken response surface design of experiments. The variables evaluated were 4-NP concentration, ozone exposure time, pH, and MIP amount. Results show that the MIPs synthesized by co-precipitation and bulk polymerizations obtained the highest retention rates (> 90%). The maximum adsorption capacities for 4-NP were 201.1 mg L-1 and 500 mg L-1, respectively. The degradation percentages under O3 and UV conditions reached 98-100% at 120 s of exposure at different pHs. The degradation products of 4-NP were compounds with carboxylic and ketonic acids, and the MIP adsorption was between 50 and 60%. Our results present the first application of MIPs in oxidation processes for 4-NP, representing starting points for the use of highly selective materials to identify and remove emerging pollutants and their degradation by-products in environmental matrices.
Collapse
Affiliation(s)
- Karla Vargas-Berrones
- Instituto Tecnológico Superior de Rioverde, Ma del Rosario, San Ciro de Acosta-Rioverde 165, CP 79610, Rioverde, SLP, Mexico
| | - Raul Ocampo-Perez
- Centro de Investigación Y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, 78260, San Luis Potosí, Mexico
| | - Israel Rodríguez-Torres
- Instituto de Metalurgia-Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2a Sección, 78210, San Luis Potosí, San Luis Potosí, Mexico
| | - Nahúm A Medellín-Castillo
- Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava No. 8, 78290, San Luis Potosí, SLP, Mexico
| | - Rogelio Flores-Ramírez
- Coordinación Para La Innovación Y Aplicación de La Ciencia Y La Tecnología (CIACYT), Colonia Lomas Segunda Sección, Avenida Sierra Leona No. 550, CP 78210, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
9
|
Thakur S, Mohiuddin I, Singh R, Kaur V. Selective quantification of diclofenac from groundwater and pharmaceutical samples by magnetic molecularly imprinted polymer-based sorbent coupled with the HPLC-PDA detection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27431-1. [PMID: 37156956 DOI: 10.1007/s11356-023-27431-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
Diclofenac (DCF) is a pharmaceutical contaminant of water bodies and therefore, improvement of analytical techniques for its removal and quantitation is one of the current interests of analysts. Herein, DCF selective magnetic molecularly imprinted polymer (MMIP) has been fabricated and characterized by Fourier transform-infrared spectroscopy, thermogravimetric analysis, vibrating scanning magnetometer, scanning electron microscopy, high-resolution transmission electron microscope, energy-dispersive X-ray spectroscopy, and Brunauer-Emmett-Teller analyzer. Furthermore, the protocol for the quantification of DCF using MMIP-HPLC-PDA combo has been optimized by investigating the effect of the amount of MMIP, type and volume of eluent, and variation of pH. The optimized protocol suggested a method detection limit of 0.042 ng mL-1 and linearity of results in the range 0.1-100 ng mL-1 (R2 = 0.99). The fabricated material offered recovery of DCF up to 96.38-99.46% from groundwater and pharmaceutical samples with a relative standard deviation of <4%. In addition, the material was found selective and sensitive for DCF among its analogous drugs like mefenamic acid, ketoprofen, fenofibrate, aspirin, ibuprofen, and naproxen.
Collapse
Affiliation(s)
- Sahil Thakur
- Department of Chemistry, Panjab University, Sector 14, Chandigarh, 160014, India
- Department of Chemistry, DAV College, Sector 10, Chandigarh, 160011, India
| | - Irshad Mohiuddin
- Department of Chemistry, Panjab University, Sector 14, Chandigarh, 160014, India.
| | - Raghubir Singh
- Department of Chemistry, DAV College, Sector 10, Chandigarh, 160011, India
| | - Varinder Kaur
- Department of Chemistry, Panjab University, Sector 14, Chandigarh, 160014, India
| |
Collapse
|
10
|
Warren-Vega WM, Campos-Rodríguez A, Zárate-Guzmán AI, Romero-Cano LA. A Current Review of Water Pollutants in American Continent: Trends and Perspectives in Detection, Health Risks, and Treatment Technologies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4499. [PMID: 36901509 PMCID: PMC10001968 DOI: 10.3390/ijerph20054499] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Currently, water pollution represents a serious environmental threat, causing an impact not only to fauna and flora but also to human health. Among these pollutants, inorganic and organic pollutants are predominantly important representing high toxicity and persistence and being difficult to treat using current methodologies. For this reason, several research groups are searching for strategies to detect and remedy contaminated water bodies and effluents. Due to the above, a current review of the state of the situation has been carried out. The results obtained show that in the American continent a high diversity of contaminants is present in the water bodies affecting several aspects, in which in some cases, there exists alternatives to realize the remediation of contaminated water. It is concluded that the actual challenge is to establish sanitation measures at the local level based on the specific needs of the geographical area of interest. Therefore, water treatment plants must be designed according to the contaminants present in the water of the region and tailored to the needs of the population of interest.
Collapse
Affiliation(s)
| | | | - Ana I. Zárate-Guzmán
- Grupo de Investigación en Materiales y Fenómenos de Superficie, Facultad de Ciencias Químicas, Universidad Autónoma de Guadalajara, Av. Patria 1201, Zapopan C.P. 45129, Jalisco, Mexico
| | - Luis A. Romero-Cano
- Grupo de Investigación en Materiales y Fenómenos de Superficie, Facultad de Ciencias Químicas, Universidad Autónoma de Guadalajara, Av. Patria 1201, Zapopan C.P. 45129, Jalisco, Mexico
| |
Collapse
|
11
|
Synthesis of Mesoporous Silica Imprinted Salbutamol with Two TEOS/MTES Ratio Compositions through the Direct Incorporation Method for Salbutamol Separation. ScientificWorldJournal 2023; 2023:2871761. [PMID: 36755774 PMCID: PMC9902164 DOI: 10.1155/2023/2871761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Molecularly imprinted mesoporous silica (MIPMS) is one of the methods to improve site accessibility molecule target on molecularly imprinted polymer (MIP) for application in solid-phase extraction (SPE). The MIPMS was prepared using salbutamol sulfate as template molecule, cetyltrimethylammonium bromide as a directing agent, and tetraethyl orthosilicate and methyltriethoxysilane were used as silica precursor and organosilane. In this study, two TEOS : MTES ratios were used. The MIPMS-2 with 3 : 1 ratio of TEOS : MTES has better analytical performance than the MIPMS-1 with 2 : 1 ratio of TEOS : MTES. The adsorption capacity of MIPMS-2 was about 0.0934 mg/g, and it was 0.0407 mg/g for NIPMS-2. The extraction ability of MIPMS-2 was good, with a recovery of about 104.79% ± 1.01% of salbutamol in spiked serum. The imprinting factor (IF) value obtained is 1.2. When serum was spiked with salbutamol and terbutaline, the ability of NIPMS-2 to recognize salbutamol increased. Therefore, optimizing the conditions for the MIPMS synthesis is necessary to produce a sorbent with better selectivity.
Collapse
|
12
|
Removal of Dye from Wastewater Using a Novel Composite Film Incorporating Nanocellulose. ADVANCES IN POLYMER TECHNOLOGY 2023. [DOI: 10.1155/2023/4431941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Research shows that the composite material is used as an adsorbent to remove pollutants from wastewater. This work is aimed at producing a novel composite film comprising chitosan, polyvinyl alcohol, and cornstarch incorporating nanocellulose (CPCN). The composite film was prepared by a blending method wherein nanocellulose was extracted using a chemical method from banana bract. The prepared CPCN was characterized using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) with EDX to understand their molecular interaction and surface morphology, respectively. The effect of parameters including pH, adsorbent dosage, initial dye concentration, and contact time on the adsorption of methylene blue (MB) dye was studied. The maximum adsorption was found to be up to 63.13 mg/g MB with a pH of 10, adsorbent dosage of 2 g, an initial concentration of 150 ppm, and contact time of 120 min at room temperature (25°C) indicating a moderate adsorption capacity of the CPCN. Comparing the Langmuir and Freundlich adsorption isotherm models, the former fitted well with MB dye adsorption data, implying that the models can be applied to uptake MB dye by CPCN. In the kinetic adsorption experiment, the adsorbed dye almost reached equilibrium at about 120 min for the CPCN and followed the pseudo-second-order kinetic model. Therefore, the CPCN can be used as a potential adsorbent in wastewater treatment.
Collapse
|
13
|
Villarreal-Lucio DS, Vargas-Berrones KX, Díaz de León-Martínez L, Flores-Ramíez R. Molecularly imprinted polymers for environmental adsorption applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89923-89942. [PMID: 36370309 DOI: 10.1007/s11356-022-24025-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Molecular imprinting polymers (MIPs) are synthetic materials with pores or cavities to specifically retain a molecule of interest or analyte. Their synthesis consists of the generation of three-dimensional polymers with specific shapes, arrangements, orientations, and bonds to selectively retain a particular molecule called target. After target removal from the binding sites, it leaves empty cavities to be re-occupied by the analyte or a highly related compound. MIPs have been used in areas that require high selectivity (e.g., chromatographic methods, sensors, and contaminant removal). However, the most widely used application is their use as a highly selective extraction material because of its low cost, easy preparation, reversible adsorption and desorption, and thermal, mechanical, and chemical stability. Emerging pollutants are traces of substances recently found in wastewater, river waters, and drinking water samples that represent a special concern for human and ecological health. The low concentration in which these pollutants is found in the environment, and the complexity of their chemical structures makes the current wastewater treatment not efficient for complete degradation. Moreover, these substances are not yet regulated or controlled for their discharge into the environment. According to the literature, MIPs, as a highly selective adsorbent material, are a promising approach for the quantification and monitoring of emerging pollutants in complex matrices. Therefore, the main objective of this work was to give an overview of the actual state-of-art of applications of MIPs in the recovery and concentration of emerging pollutants.
Collapse
Affiliation(s)
- Diana Samantha Villarreal-Lucio
- Centro de Investigación Aplicada en Ambiente Y Salud (CIAAS), Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, S.L.P, México
| | - Karla Ximena Vargas-Berrones
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava No. 6, C.P. 78260, San Luis Potosí, S.L.P, México
| | - Lorena Díaz de León-Martínez
- Centro de Investigación Aplicada en Ambiente Y Salud (CIAAS), Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, S.L.P, México
| | - Rogelio Flores-Ramíez
- Centro de Investigación Aplicada en Ambiente Y Salud (CIAAS), Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, S.L.P, México.
| |
Collapse
|