1
|
Yang Y, Yang X, Dai K, He S, Zhao W, Wang S, Zhou Z, Hu W. Nanoceria-induced variations in leaf anatomy and cell wall composition drive the increase in mesophyll conductance of salt-stressed cotton leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109111. [PMID: 39255612 DOI: 10.1016/j.plaphy.2024.109111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/14/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
Nanomaterials as an emerging tool are being used to improve plant's net photosynthetic rate (AN) when suffering salt stress, but the underlying mechanisms remain unclear. To clarify this, a hydroponic experiment was conducted to study the effects of polyacrylic acid coated nanoceria (PNC) on the AN of salt-stressed cotton and related intrinsic mechanisms. Results showed that the PNC-induced AN enhancement of salt-stressed leaves was strongly facilitated by the mesophyll conductance to CO2 (gm). Further analysis showed that the PNC-induced improvement of gm was related to the increased chloroplast surface area exposed to intercellular airspaces, which was attribute to the increased mesophyll surface area exposed to intercellular airspaces and chloroplast number due to the increased K+ content and decreased reactive oxygen species level in salt-stressed leaves. Interestingly, our results also showed that PNC-induced variations in cell wall composition of salt-stressed cotton leaves strongly influenced gm, especially, hemicellulose and pectin. Moreover, the proportion of pectin in cell wall composition played a more important role in determining gm. Our study demonstrated for the first time that nanoceria, through alterations to anatomical traits and cell wall composition, drove gm enhancement, which ultimately increased AN of salt-stressed leaves.
Collapse
Affiliation(s)
- Yuanli Yang
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China
| | - Xinyi Yang
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China
| | - Kangning Dai
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China
| | - Shuyu He
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China
| | - Wenqing Zhao
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China
| | - Shanshan Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China
| | - Zhiguo Zhou
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China
| | - Wei Hu
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China.
| |
Collapse
|
2
|
Jiang M, Zhao W, Liang Q, Cai M, Fan X, Hu S, Zhu Y, Xie H, Peng C, Liu J. Polystyrene microplastics enhanced the toxicity of cadmium to rice seedlings: Evidence from rice growth, physiology, and element metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173931. [PMID: 38885718 DOI: 10.1016/j.scitotenv.2024.173931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/01/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
Microplastics (MPs) and cadmium (Cd) are toxic to rice; however, the effects and mechanisms of their combined exposure are unclear. The combined exposure effects of polystyrene microplastics (PS-MPs) with different particle sizes (1-10 μm, 50-150 μm) and concentrations (50, 500 mg·L-1) and Cd on rice were explored. PS-MPs combined with Cd amplifies the inhibition of each individual exposure on the height and biomass of rice seedlings, and they showed antagonistic effects. PS-MPs reduced the content of chlorophyll and increased the content of carotenoid rice seedlings significantly. High concentrations of PS-MPs enhanced the inhibition of Cd on chlorophyll content. Cd, PS-MPs single and combined exposures significantly altered the antioxidant enzyme (POD, CAT, SOD) activities in rice seedlings. Under PS-MPs exposure, overall, the MDA content in shoots and roots exhibited opposite trends, with a decrease in the former and an increase in the latter. In comparison with Cd treatment, the combined exposures' shoot and root MDA content was reduced. Cd and PS-MPs showed "low concentration antagonism, high concentration synergism" on the composite physiological indexes of rice seedlings. PS-MPs significantly increased the Cd accumulation in shoots. PS-MPs promoted the root absorption of Cd at 50 mg·L-1 while inhibited at 500 mg·L-1. Cd and PS-MPs treatments interfered with the balance of microelements (Mn, Zn, Fe, Cu, B, Mo) and macroelements (S, P, K, Mg, Ca) in rice seedlings; Mn was significantly inhibited. PS-MPs can enhance of Cd's toxicity to rice seedlings. The combined toxic effects of the two contaminants appear to be antagonistic or synergistic, relying on the particle size and concentration of the PS-MPs. Our findings offer information to help people understanding the combined toxicity of Cd and MPs on crops.
Collapse
Affiliation(s)
- Menglei Jiang
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Wei Zhao
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qiulian Liang
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Meihan Cai
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xinting Fan
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Shiyu Hu
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yunhua Zhu
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Hongyan Xie
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Cuiying Peng
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jun Liu
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
3
|
Imran M, Junaid M, Shafiq S, Liu S, Chen X, Wang J, Tang X. Multiomics analysis reveals a substantial decrease in nanoplastics uptake and associated impacts by nano zinc oxide in fragrant rice (Oryza sativa L.). JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134640. [PMID: 38810581 DOI: 10.1016/j.jhazmat.2024.134640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/28/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
Nanoplastics (NPs) have emerged as global environmental pollutants with concerning implications for sustainable agriculture. Understanding the underlying mechanisms of NPs toxicity and devising strategies to mitigate their impact is crucial for crop growth and development. Here, we investigated the nanoparticles of zinc oxide (nZnO) to mitigate the adverse effects of 80 nm NPs on fragrant rice. Our results showed that optimized nZnO (25 mg L-1) concentration rescued root length and structural deficits by improving oxidative stress response, antioxidant defense mechanism and balanced nutrient levels, compared to seedlings subjected only to NPs stress (50 mg L-1). Consequently, microscopy observations, Zeta potential and Fourier transform infrared (FTIR) results revealed that NPs were mainly accumulated on the initiation joints of secondary roots and between cortical cells that blocks the nutrients uptake, while the supplementation of nZnO led to the formation of aggregates with NPs, which effectively impedes the uptake of NPs by the roots of fragrant rice. Transcriptomic analysis identified a total of 3973, 3513 and 3380 differentially expressed genes (DEGs) in response to NPs, nZnO and NPs+nZnO, respectively, compared to the control. Moreover, DEGs were significantly enriched in multiple pathways including biosynthesis of secondary metabolite, phenylpropanoid biosynthesis, amino sugar and nucleotide sugar metabolism, carotenoid biosynthesis, plant-pathogen interactions, MAPK signaling pathway, starch and sucrose metabolism, and plant hormone signal transduction. These pathways could play a significant role in alleviating NPs toxicity and restoring fragrant rice roots. Furthermore, metabolomic analysis demonstrated that nZnO application restored 2-acetyl-1-pyrroline (2-AP) pathways genes expression, enzymatic activities, and the content of essential precursors related to 2-AP biosynthesis under NPs toxicity, which ultimately led to the restoration of 2-AP content in the leaves. In conclusion, this study shows that optimized nZnO application effectively alleviates NPs toxic effects and restores both root structure and aroma production in fragrant rice leaves. This research offers a sustainable and practical strategy to enhance crop production under NPs toxicity while emphasizing the pivotal role of essential micronutrient nanomaterials in agriculture.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Sarfraz Shafiq
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shulin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyuan Chen
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiangru Tang
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Gao D, Liao H, Junaid M, Chen X, Kong C, Wang Q, Pan T, Chen G, Wang X, Wang J. Polystyrene nanoplastics' accumulation in roots induces adverse physiological and molecular effects in water spinach Ipomoea aquatica Forsk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162278. [PMID: 36801319 DOI: 10.1016/j.scitotenv.2023.162278] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/06/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
The ubiquity of plastic pollution has emerged as a perplexing issue for aquatic and terrestrial plants. To assess the toxic effects of polystyrene NPs (PS-NPs, 80 nm), we conducted a hydroponic experiment in which water spinach (Ipomoea aquatica Forsk) was subjected to low (0.5 mg/L), medium (5 mg/L), and high (10 mg/L) concentrations of fluorescent PS-NPs for 10 days to examine their accumulation and transportation in water spinach and associated impacts on growth, photosynthesis, antioxidant defense systems. Laser confocal scanning microscopy (LCSM) observations at 10 mg/L PS-NPs exposure indicated that PS-NPs only adhered to the root surface of water spinach and were not transported upward, indicating that short-term exposure to high concentrations of PS-NPs (10 mg/L) did not cause the internalization of PS-NPs in the water spinach. However, this high concentration of PS-NPs (10 mg/L) discernibly inhibited the growth parameters (fresh weight, root length and shoot length), albeit failed to induce any significant impact on chlorophyll a and chlorophyll b concentrations. Meanwhile, high concentration of PS-NPs (10 mg/L) significantly decreased the SOD and CAT activities in leaves (p < 0.05). At the molecular level, low and medium concentrations of PS-NPs (0.5, 5 mg/L) significantly promoted the expression of photosynthesis (PsbA and rbcL) and antioxidant-related (SIP) genes in leaves (p < 0.05), and high concentration of PS-NPs (10 mg/L) significantly increased the transcription levels of antioxidant-related (APx) genes (p < 0.01). Our results imply that PS-NPs accumulate in the roots of water spinach, compromising the upward transport of water and nutrients and undermining the antioxidant defense system of the leaves at the physiological and molecular levels. These results provide a fresh perspective to examine the implications of PS-NPs on edible aquatic plants, and future efforts should be focused intensively on the impacts of PS-NPs on agricultural sustainability and food security.
Collapse
Affiliation(s)
- Dandan Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xikun Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chunmiao Kong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiuping Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Ting Pan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Guanglong Chen
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510006, China.
| |
Collapse
|
5
|
Tripathi S, Mahra S, J V, Tiwari K, Rana S, Tripathi DK, Sharma S, Sahi S. Recent Advances and Perspectives of Nanomaterials in Agricultural Management and Associated Environmental Risk: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101604. [PMID: 37242021 DOI: 10.3390/nano13101604] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
The advancement in nanotechnology has enabled a significant expansion in agricultural production. Agri-nanotechnology is an emerging discipline where nanotechnological methods provide diverse nanomaterials (NMs) such as nanopesticides, nanoherbicides, nanofertilizers and different nanoforms of agrochemicals for agricultural management. Applications of nanofabricated products can potentially improve the shelf life, stability, bioavailability, safety and environmental sustainability of active ingredients for sustained release. Nanoscale modification of bulk or surface properties bears tremendous potential for effective enhancement of agricultural productivity. As NMs improve the tolerance mechanisms of the plants under stressful conditions, they are considered as effective and promising tools to overcome the constraints in sustainable agricultural production. For their exceptional qualities and usages, nano-enabled products are developed and enforced, along with agriculture, in diverse sectors. The rampant usage of NMs increases their release into the environment. Once incorporated into the environment, NMs may threaten the stability and function of biological systems. Nanotechnology is a newly emerging technology, so the evaluation of the associated environmental risk is pivotal. This review emphasizes the current approach to NMs synthesis, their application in agriculture, interaction with plant-soil microbes and environmental challenges to address future applications in maintaining a sustainable environment.
Collapse
Affiliation(s)
- Sneha Tripathi
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Shivani Mahra
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Victoria J
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Kavita Tiwari
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Shweta Rana
- Department of Physical and Natural Sciences, FLAME University, Pune 412115, India
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida 201313, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Shivendra Sahi
- Department of Biology, St. Joseph's University, 600 S. 43rd St., Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Zantis LJ, Borchi C, Vijver MG, Peijnenburg W, Di Lonardo S, Bosker T. Nano- and microplastics commonly cause adverse impacts on plants at environmentally relevant levels: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161211. [PMID: 36634785 DOI: 10.1016/j.scitotenv.2022.161211] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Over the last years there has been significant research on the presence and effects of plastics in terrestrial systems. Here we summarize current research findings on the effects of nano- and microplastics (NMPs) on terrestrial plants, with the aim to determine patterns of response and sensitive endpoints. We conducted a systematic review (based on 78 studies) on the effects of NMPs on germination, plant growth and biochemical biomarkers. This review highlights that the majority of studies to date have used pristine polystyrene or polyethylene particles, either in a hydroponic or pot-plant setup. Based on these studies we found that effects on plants are widespread. We noted similar responses between and within monocots and dicots to NMPs, except for consistent lower germination seen in dicots exposed to NMPs. During early development, germination and root growth are more strongly affected compared to shoot growth. NMPs induced similar adverse growth effects on plant biomass and length in the most tested plant species (lettuce, wheat, corn, and rice) irrespective of the polymer type and size used. Moreover, biomarker responses were consistent across species; chlorophyll levels were commonly negatively affected, while stress indicators (e.g., ROS or free radicals) and stress respondents (e.g., antioxidant enzymes) were consistently upregulated. In addition, effects were commonly observed at environmentally relevant levels. These findings provide clear evidence that NMPs have wide-ranging impacts on plant performance. However, as most studies have been conducted under highly controlled conditions and with pristine plastics, there is an urgent need to test under more environmentally realistic conditions to ensure the lab-based studies can be extrapolated to the field.
Collapse
Affiliation(s)
- Laura J Zantis
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands.
| | - Caterina Borchi
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands; Department of Civil and Environmental Engineering, University of Florence, Via di S. Marta 3, 50139 Firenze, Italy.
| | - Martina G Vijver
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands.
| | - Willie Peijnenburg
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, Bilthoven, the Netherlands.
| | - Sara Di Lonardo
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy.
| | - Thijs Bosker
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands; Leiden University College, Leiden University, P.O. Box 13228, 2501 EE The Hague, the Netherlands.
| |
Collapse
|
7
|
Liu Y, Cui W, Li W, Xu S, Sun Y, Xu G, Wang F. Effects of microplastics on cadmium accumulation by rice and arbuscular mycorrhizal fungal communities in cadmium-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130102. [PMID: 36206709 DOI: 10.1016/j.jhazmat.2022.130102] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/18/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Both microplastics (MPs) and cadmium (Cd) are common contaminants in soil-rice systems, but their combined effects remain unknown. Thereby, we explored the effects of three MPs, i.e., polyethylene terephthalate (PET), polylactic acid (PLA), and polyester (PES), on Cd accumulation in rice and the community diversity and structure of arbuscular mycorrhizal fungi (AMF) in soil spiked with or without Cd. Results showed that 2% PLA decreased shoot biomass (-28%), but PET had a weaker inhibitive effect. Overall, Cd alone did not significantly change shoot and root biomass and increased root biomass in combination with 0.2% PES. MPs generally increased soil Cd availability but decreased Cd accumulation in rice tissues. Both MPs and Cd improved the bioavailability and uptake of Fe and Mn in rice roots. MPs altered the diversity and community composition of AMF, depending on their type and dose and co-existing Cd. Overall, 2% PLA caused the most distinct changes in soil properties, plant growth and Cd accumulation, and AMF communities, but showed no synergistic interactions with Cd. In conclusion, MPs can mediate rice performance and Cd accumulation via altering soil properties, nutrient uptake, and root mycorrhizal communities, and biodegradable PLA MPs thought environment-friendly can exhibit higher phytotoxicity than conventional MPs.
Collapse
Affiliation(s)
- Yingying Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Wenzhi Cui
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Wenguang Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Shuang Xu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Yuhuan Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Guangjian Xu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China.
| |
Collapse
|
8
|
Hu L, Zhao Y, Xu H. Trojan horse in the intestine: A review on the biotoxicity of microplastics combined environmental contaminants. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129652. [PMID: 35901632 DOI: 10.1016/j.jhazmat.2022.129652] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 05/14/2023]
Abstract
With the reported ability of microplastics (MPs) to act as "Trojan horses" carrying other environmental contaminants, the focus of researches has shifted from their ubiquitous occurrence to interactive toxicity. In this review, we provided the latest knowledge on the processes and mechanisms of interaction between MPs and co-contaminants (heavy metals, persistent organic pollutants, pathogens, nanomaterials and other contaminants) and discussed the influencing factors (environmental conditions and characteristics of polymer and contaminants) that affect the adsorption/desorption process. In addition, the bio-toxicological outcomes of mixtures are elaborated based on the damaging effects on the intestinal barrier. Our review showed that the interaction processes and toxicological outcomes of mixture are complex and variable, and the intestinal barrier should receive more attention as the first line of defensing against MPs and environmental contaminants invasion. Moreover, we pointed out several knowledge gaps in this new research area and suggested directions for future studies in order to understand the multiple factors involved, such as epidemiological assessment, nanoplastics, mechanisms for toxic alteration and the fate of mixtures after desorption.
Collapse
Affiliation(s)
- Liehai Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|