1
|
Fan ST, Zheng ZJ, Feng Q, Zhu GH. Azadirachtin Induces Fat Body Apoptosis by Suppressing Caspase-8 in the Fall Armyworm, Spodoptera frugiperda. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19323-19332. [PMID: 39174876 DOI: 10.1021/acs.jafc.4c05290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Azadirachtin is a widely used botanical pesticide for agricultural pest control worldwide. However, the molecular mechanisms of azadirachtin in insects are not fully understood. In this study, histological analysis and RNA sequencing were conducted to investigate the impact of azadirachtin on the larval development of Spodoptera frugiperda. Under azadirachtin exposure, the development was completely inhibited, and the major internal tissues, fat body, and midgut were strongly damaged under histological analysis. Differential gene expression analysis demonstrated that nutrient absorption and detoxification metabolism-related genes are differentially expressed. Interestingly, the expression of the apoptosis-related gene, caspase-8, was significantly inhibited under exposure to azadirachtin. In addition, after knocking down the expression of the caspase-8 gene, the fat body displayed a similar apoptotic phenotype as azadirachtin treatment; the distribution of chromatin and lipid droplets was uneven in the fat body cells. Thus, the results in this study demonstrated that exposure to azadirachtin rapidly activates apoptosis, resulting in innate tissue disruption, ultimately arresting larval development in S. frugiperda.
Collapse
Affiliation(s)
- Shu-Ting Fan
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Rd, Guangming District, Shenzhen, Guangdong 518107, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen 518107, China
| | - Zi-Jing Zheng
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Rd, Guangming District, Shenzhen, Guangdong 518107, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen 518107, China
| | - Qing Feng
- Institute of Plant Protection, Hainan Academy of Agricultural Sciences (Research Center of Quality Safety and Standards for Agro-Products, Hainan Academy of Agricultural Sciences), Haikou, Hainan 571100, China
| | - Guan-Heng Zhu
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Rd, Guangming District, Shenzhen, Guangdong 518107, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
2
|
Rattanapan A, Sujayanont P. Impact of Neem Seed Extract on Mortality, Esterase and Glutathione-S-Transferase Activities in Thai Polyvoltine Hybrid Silkworm, Bombyx mori L. INSECTS 2024; 15:591. [PMID: 39194796 DOI: 10.3390/insects15080591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024]
Abstract
Neem, a biopesticide, offers a safer alternative to the synthetic insecticides commonly used in mulberry cultivation, which can harm silkworms. This study aimed to investigate the effects of Thai neem seed extract on all instar larvae of the Thai polyvoltine hybrid silkworm, Bombyx mori L., Dok Bua strains, focusing on the mortality rate and the activities of esterase (EST) and glutathione S-transferases (GST) enzymes. Acute toxicity was assessed using the leaf-dipping method. Results showed that the mortality rate tended to be higher in younger instars than in older ones. The first instar larvae exhibited the highest mortality rate at 94%, whereas the LC50 was highest in the third instar at 5.23 mg L-1 at 72 h. This trend aligns with the activities of EST and GST, which were evaluated in the whole bodies of the first instar larvae and the midgut tissue of fifth instar larvae. As the extract concentration increased, EST activity decreased while GST activity increased in both the first and fifth instar larvae. These findings highlight that neem extract is toxic to all instar larvae, with GST playing a crucial role in detoxification, particularly in the whole body of the Thai polyvoltine hybrid silkworm.
Collapse
Affiliation(s)
- Ajin Rattanapan
- Department of Biology, Faculty of Science, Mahasarakham University, Kantharawichai District, Mahasarakham 44150, Thailand
- Center of Excellence for Mulberry and Silk, Mahasarakham University, Kantharawichai District, Mahasarakham 44150, Thailand
| | - Patcharawan Sujayanont
- Department of Preclinic, Faculty of Medicine, Mahasarakham University, Muang District, Mahasarakham 44000, Thailand
- Tropical Health Innovation Research Unit, Mahasarakham University, Muang District, Mahasarakham 44000, Thailand
| |
Collapse
|
3
|
Zhou Y, Wu YM, Fan R, Ouyang J, Zhou XL, Li ZB, Janjua MU, Li HG, Bao MH, He BS. Transcriptome analysis unveils the mechanisms of lipid metabolism response to grayanotoxin I stress in Spodoptera litura. PeerJ 2023; 11:e16238. [PMID: 38077416 PMCID: PMC10710133 DOI: 10.7717/peerj.16238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/14/2023] [Indexed: 12/18/2023] Open
Abstract
Background Spodoptera litura (tobacco caterpillar, S. litura) is a pest of great economic importance due to being a polyphagous and world-distributed agricultural pest. However, agricultural practices involving chemical pesticides have caused resistance, resurgence, and residue problems, highlighting the need for new, environmentally friendly methods to control the spread of S. litura. Aim This study aimed to investigate the gut poisoning of grayanotoxin I, an active compound found in Pieris japonica, on S. litura, and to explore the underlying mechanisms of these effects. Methods S. litura was cultivated in a laboratory setting, and their survival rate, growth and development, and pupation time were recorded after grayanotoxin I treatment. RNA-Seq was utilized to screen for differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted to determine the functions of these DEGs. ELISA was employed to analyze the levels of lipase, 3-hydroxyacyl-CoA dehydrogenase (HOAD), and acetyl-CoA carboxylase (ACC). Hematoxylin and Eosin (H & E) staining was used to detect the development of the fat body. Results Grayanotoxin I treatment significantly suppressed the survival rate, growth and development, and pupation of S. litura. RNA-Seq analysis revealed 285 DEGs after grayanotoxin I exposure, with over 16 genes related to lipid metabolism. These 285 DEGs were enriched in the categories of cuticle development, larvae longevity, fat digestion and absorption. Grayanotoxin I treatment also inhibited the levels of FFA, lipase, and HOAD in the hemolymph of S. litura. Conclusion The results of this study demonstrated that grayanotoxin I inhibited the growth and development of S. litura. The mechanisms might, at least partly, be related to the interference of lipid synthesis, lipolysis, and fat body development. These findings provide valuable insights into a new, environmentally-friendly plant-derived insecticide, grayanotoxin I, to control the spread of S. litura.
Collapse
Affiliation(s)
- Yi Zhou
- Changsha Medical University, The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha, Hunan, China
| | - Yong-mei Wu
- Changsha Medical University, The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha, Hunan, China
| | - Rong Fan
- Changsha Medical University, The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha, Hunan, China
| | - Jiang Ouyang
- Changsha Medical University, The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha, Hunan, China
| | - Xiao-long Zhou
- Changsha Medical University, The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha, Hunan, China
| | - Zi-bo Li
- Changsha Medical University, The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha, Hunan, China
| | - Muhammad Usman Janjua
- Changsha Medical University, School of International Education, Changsha, Hunan, China
| | - Hai-gang Li
- Changsha Medical University, The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha, Hunan, China
- Changsha Medical University, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha, Hunan, China
| | - Mei-hua Bao
- Changsha Medical University, The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha, Hunan, China
- Changsha Medical University, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha, Hunan, China
| | - Bin-sheng He
- Changsha Medical University, The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha, Hunan, China
| |
Collapse
|
4
|
Fan ST, Wu MZ, Liu C, Li HH, Huang SH, Zheng ZJ, Ye XY, Tan JF, Zhu GH. Azadirachtin Inhibits Nuclear Receptor HR3 in the Prothoracic Gland to Block Larval Ecdysis in the Fall Armyworm, Spodoptera frugiperda. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15497-15505. [PMID: 37843053 DOI: 10.1021/acs.jafc.3c05508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Azadirachtin has been used to control agricultural pests for a long time; however, the molecular mechanism of azadirachtin on lepidopterans is still not clear. In this study, the fourth instar larvae of fall armyworm were fed with azadirachtin, and then the ecdysis was blocked in the fourth instar larval stage (L4). The prothoracic glands (PGs) of the treated larvae were dissected for RNA sequencing to determine the effect of azadirachtin on ecdysis inhibition. Interestingly, one of the PG-enriched genes, the nuclear hormone receptor 3 (HR3), was decreased after azadirachtin treatment, which plays a critical role in the 20-hydroxyecdysone action during ecdysis. To deepen the understanding of azadirachtin on ecdysis, the HR3 was knocked out by using the CRISPR/Cas9 system, while the HR3 mutants displayed embryonic lethal phenotype; thus, the stage-specific function of HR3 during larval molting was not enabled to unfold. Hence, the siRNA was injected into the 24 h L4 larvae to knock down HR3. After 96 h, the injected larvae were blocked in the old cuticle during ecdysis which is consistent with the azadirachtin-treated larvae. Taken together, we envisioned that the inhibition of ecdysis in the fall armyworm after the azadirachtin treatment is due to an interference with the expression of HR3 in PG, resulting in larval mortality. The results in this study specified the understanding of azadirachtin on insect ecdysis and the function of HR3 in lepidopteran in vivo.
Collapse
Affiliation(s)
- Shu-Ting Fan
- State Key Laboratory of Biocontrol, School of Agriculture, Sun Yat-sen University, Shenzhen 518107, China
| | - Mian-Zhi Wu
- State Key Laboratory of Biocontrol, School of Agriculture, Sun Yat-sen University, Shenzhen 518107, China
| | - Chang Liu
- State Key Laboratory of Biocontrol, School of Agriculture, Sun Yat-sen University, Shenzhen 518107, China
| | - Hua-Hong Li
- State Key Laboratory of Biocontrol, School of Agriculture, Sun Yat-sen University, Shenzhen 518107, China
| | - Shang-Huan Huang
- State Key Laboratory of Biocontrol, School of Agriculture, Sun Yat-sen University, Shenzhen 518107, China
| | - Zi-Jing Zheng
- State Key Laboratory of Biocontrol, School of Agriculture, Sun Yat-sen University, Shenzhen 518107, China
| | - Xi-Yu Ye
- State Key Laboratory of Biocontrol, School of Agriculture, Sun Yat-sen University, Shenzhen 518107, China
| | - Jin-Fang Tan
- State Key Laboratory of Biocontrol, School of Agriculture, Sun Yat-sen University, Shenzhen 518107, China
| | - Guan-Heng Zhu
- State Key Laboratory of Biocontrol, School of Agriculture, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
5
|
Liu J, Lin Y, Huang Y, Liu L, Cai X, Lin J, Shu B. The effects of carvacrol on development and gene expression profiles in Spodoptera frugiperda. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105539. [PMID: 37666589 DOI: 10.1016/j.pestbp.2023.105539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 09/06/2023]
Abstract
The fall armyworm, Spodoptera frugiperda, is a highly polyphagous agricultural pest that is widely distributed around the world and causes severe crop yield loss. Carvacrol showed adverse effects on many pests, such as larval death and growth inhibition. While the effects of carvacrol on S. frugiperda larvae are not yet known. In this study, the effects of carvacrol on S. frugiperda, including larval growth inhibition and mortality induction, were observed. The detoxification and digestive enzyme activities of larvae with 1.0 and 2.0 g/kg carvacrol treatments were analyzed. Carvacrol boosted the enzyme activities of carboxylesterase (CarE) and glutathione S-transferase (GST) while decreasing the activities of α-amylase (AMS), lipase (LIP), and trypsin. A total of 3422 differentially expressed genes were identified in the larvae treated with 2.0 g/kg carvacrol, of which the DEGs involved in xenobiotic detoxification, food digestion, and insecticidal targets were further examined. These results suggest that carvacrol could regulate growth and development by affecting the process of food digestion, and exert its toxicity on the larvae through interaction with a variety of insecticidal targets. While the altered expressions of detoxification enzymes might be related to the detoxification and metabolism of carvacrol. Our findings offer a theoretical foundation for the use of carvacrol for S. frugiperda control in the field.
Collapse
Affiliation(s)
- Jiafu Liu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yanzheng Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yuting Huang
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Luyang Liu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xueming Cai
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jintian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| | - Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| |
Collapse
|
6
|
Chen HL, Hasnain A, Cheng QH, Xia LJ, Cai YH, Hu R, Gong CW, Liu XM, Pu J, Zhang L, Wang XG. Resistance monitoring and mechanism in the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) for chlorantraniliprole from Sichuan Province, China. Front Physiol 2023; 14:1180655. [PMID: 37215171 PMCID: PMC10196208 DOI: 10.3389/fphys.2023.1180655] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
The fall armyworm, Spodoptera frugiperda (Noctuidae: Lepidoptera), is a wide-reaching notorious insect pest of important cereal crops, which has developed resistance to multiple classes of insecticides. It invaded the Sichuan Province of China in 2019. In this study, we performed resistance monitoring of insecticides for 11 field-collected populations from Sichuan, and all the populations were susceptible to emamectin benzoate and chlorpyrifos. The variations in resistance level to indoxacarb (resistance ratio (RR), 9.23-45.53-fold), spinetoram (RR, 4.32-18.05-fold), and chlorantraniliprole (RR, 2.02-10.39-fold) were observed among these populations. To investigate the resistance mechanism of chlorantraniliprole, synergism tests were performed and showed that piperonyl butoxide had a slight synergistic effect on chlorantraniliprole for the QJ-20 population (1.43-fold) in moderate resistance (RR, 10.39-fold) compared with the treatment group without synergist. Furthermore, the expression scanning for resistance-related genes showed that five P450 genes (CYP6AE43, CYP321A8, CYP305A1, CYP49A1, and CYP306A1) and the ryanodine receptor gene (Ryr, chlorantraniliprole target) were overexpressed in the QJ-20 population. These results indicated that the fall armyworm in Sichuan has exhibited diverse susceptibilities to several classes of insecticides, and the overexpression of Ryr and several P450 genes may contribute to the development of resistance in S. frugiperda to chlorantraniliprole.
Collapse
Affiliation(s)
- Hui-Lin Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- College of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Ali Hasnain
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- College of Agriculture, Sichuan Agricultural University, Chengdu, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qing-Hua Cheng
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Sichuan Academy of Agricultural Sciences, Ministry of Agriculture, Institute of Plant Protection, Chengdu, China
| | - Li-Juan Xia
- Talent Development Service Center, Sichuan Provincial Department of Agriculture and Rural Affairs, Chengdu, China
| | - Yu-Hao Cai
- Department of Entomology, China Agricultural University, Beijing, China
| | - Rong Hu
- College of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Chang-Wei Gong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- College of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Xue-Mei Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- College of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Jian Pu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- College of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Lei Zhang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xue-Gui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- College of Agriculture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
7
|
Pang J, Peng Y, Di T, Du G, Chen B. Virulence of Metarhizium rileyi Is Determined by Its Growth and Antioxidant Stress and the Protective and Detoxifying Enzymes of Spodoptera frugiperda. INSECTS 2023; 14:260. [PMID: 36975945 PMCID: PMC10051772 DOI: 10.3390/insects14030260] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Spodoptera frugiperda is one of the most destructive crop pests in the world. Metarhizium rileyi is an entomopathogenic fungus specific for noctuid pests and is a very promising prospect in biological control against S. frugiperda. Two M. rileyi strains (XSBN200920 and HNQLZ200714) isolated from infected S. frugiperda were used to evaluate the virulence and biocontrol potential to different stages and instars of S. frugiperda. The results showed that XSBN200920 was significantly more virulent than HNQLZ200714 to eggs, larvae, pupae, and adults of S. frugiperda. In the larvae infected with the two M. rileyi strains, the activity of three protective enzymes (including peroxidase (POD), superoxide dismutase (SOD), catalase (CAT)) and two detoxifying enzymes (including glutathione-S transferase (GST) and carboxylesterase (CarE)) increased firstly and then decreased. The expression levels of protective enzymes and detoxification enzymes in larvae treated with XSBN200920 were greater than with HNQLZ200714. Furthermore, antioxidant stress-related gene (MrSOD and MrCAT family genes) expression in the two strains was measured by RT-qPCR (real-time quantitative PCR). The expression of these genes was significantly higher in the XSBN200920 strain compared to HNQLZ200714. There were also significant differences in the sensitivity of the two strains to the growth of different carbon and nitrogen sources and oxidative stress agents. In addition, the activity expression of antioxidant enzymes on the third day of culturing in XSBN200920 was significantly higher than with HNQLZ200714. In summary, the high virulence of M. rileyi XSBN200920 was not only determined by the expression levels of protective and detoxifying enzymes of the host but also regulated by the growth of entomogenic fungi and the resistance to the oxidative stress against S. frugiperda at different stages and instars. This study provides a theoretical fundament for the systematic control of Spodoptera frugiperda using Metarhizium rileyi.
Collapse
|