1
|
Zhang M, Liu T, Zhang L, Hua Z, Guo Z, Dong J, Tan Q, Xie Y, Yin X, Yan L, Pan G, Sun W. Assessment of microplastic exposure in nasal lavage fluid and the influence of face masks. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136069. [PMID: 39383697 DOI: 10.1016/j.jhazmat.2024.136069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/15/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Microplastics (MPs) can enter the human body through respiration and pose a hazard to human health. Wearing masks has become a routine behavior during the COVID-19 pandemic. The level of respirational exposure and the influence of wearing masks are currently unknown. We recruited 113 college students and divided them into natural exposure (NE), surgical mask (SM), and cotton mask (CM) groups. Nasal lavage fluid (NLF) was collected and MPs characteristics were analyzed using polarized light microscopy and laser direct infrared system. We found a relatively high abundance of MPs in NLF in the SM group (41.24 ± 1.73 particles/g). The particle size distribution and fibrous MP percentage significantly differed among the three groups. The main components in the NE, SM, and CM groups were polypropylene (58.70 %),polycarbonate (PC, 49.49 %),and PC (54.29 %). Components such as polyamide, polyethylene and polyethylene terephthalate were also detected. Wearing surgical masks increased the MP abundance in NLF (β = 0.36, P < 0.01). As the wear time increased, the abundance of MPs also rose (β = 0.28, P < 0.05). However, those who used bedding containing synthetic fibers had lower MP abundance in their NLF. This study highlights the use of NLF to evaluate MP exposure, which is associated with potential health risks.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, PR China; Research Center for Universal Health, School of Public Health, China Medical University, Shenyang, PR China; Liaoning Provincial Key Laboratory of Early Warning, Intervention Technology and Countermeasure Research for Major Public Health Events, Shenyang, PR China
| | - Tingting Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, PR China; Research Center for Universal Health, School of Public Health, China Medical University, Shenyang, PR China; Liaoning Provincial Key Laboratory of Early Warning, Intervention Technology and Countermeasure Research for Major Public Health Events, Shenyang, PR China
| | - Lujing Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, PR China; Research Center for Universal Health, School of Public Health, China Medical University, Shenyang, PR China; Liaoning Provincial Key Laboratory of Early Warning, Intervention Technology and Countermeasure Research for Major Public Health Events, Shenyang, PR China
| | - Zhenggang Hua
- Institute of Preventive Medicine, China Medical University, Shenyang, PR China; Institute of Inspection and Testing, Liaoning Provincial Center for Disease Control and Prevention, Shenyang, PR China
| | - Ziqi Guo
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, PR China; Research Center for Universal Health, School of Public Health, China Medical University, Shenyang, PR China; Liaoning Provincial Key Laboratory of Early Warning, Intervention Technology and Countermeasure Research for Major Public Health Events, Shenyang, PR China
| | - Jiaxin Dong
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, PR China; Research Center for Universal Health, School of Public Health, China Medical University, Shenyang, PR China; Liaoning Provincial Key Laboratory of Early Warning, Intervention Technology and Countermeasure Research for Major Public Health Events, Shenyang, PR China
| | - Qinyue Tan
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, PR China; Research Center for Universal Health, School of Public Health, China Medical University, Shenyang, PR China; Liaoning Provincial Key Laboratory of Early Warning, Intervention Technology and Countermeasure Research for Major Public Health Events, Shenyang, PR China
| | - Yifei Xie
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, PR China; Research Center for Universal Health, School of Public Health, China Medical University, Shenyang, PR China; Liaoning Provincial Key Laboratory of Early Warning, Intervention Technology and Countermeasure Research for Major Public Health Events, Shenyang, PR China
| | - Xingru Yin
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, PR China; Research Center for Universal Health, School of Public Health, China Medical University, Shenyang, PR China; Liaoning Provincial Key Laboratory of Early Warning, Intervention Technology and Countermeasure Research for Major Public Health Events, Shenyang, PR China
| | - Lingjun Yan
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, PR China; Research Center for Universal Health, School of Public Health, China Medical University, Shenyang, PR China; Liaoning Provincial Key Laboratory of Early Warning, Intervention Technology and Countermeasure Research for Major Public Health Events, Shenyang, PR China
| | - Guowei Pan
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, PR China; Research Center for Universal Health, School of Public Health, China Medical University, Shenyang, PR China; Liaoning Provincial Key Laboratory of Early Warning, Intervention Technology and Countermeasure Research for Major Public Health Events, Shenyang, PR China.
| | - Wei Sun
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, PR China; Research Center for Universal Health, School of Public Health, China Medical University, Shenyang, PR China; Liaoning Provincial Key Laboratory of Early Warning, Intervention Technology and Countermeasure Research for Major Public Health Events, Shenyang, PR China.
| |
Collapse
|
2
|
Sun H, Hu J, Wu Y, Gong H, Zhu N, Yuan H. Leachate from municipal solid waste landfills: A neglected source of microplastics in the environment. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133144. [PMID: 38056251 DOI: 10.1016/j.jhazmat.2023.133144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Over the past decade or so, microplastics (MPs) have received increasing attention due to their ubiquity and potential risk to the environment. Waste plastics usually end up in landfills. These plastics in landfills undergo physical compression, chemical oxidation, and biological decomposition, breaking down into MPs. As a result, landfill leachate stores large amounts of MPs, which can negatively impact the surrounding soil and water environment. However, not enough attention has been given to the occurrence and removal of MPs in landfill leachate. This lack of knowledge has led to landfills being an underestimated source of microplastics. In order to fill this knowledge gap, this paper collects relevant literature on MPs in landfill leachate from domestic and international sources, systematically summarizes their presence within Asia and Europe, assesses the impacts of landfill leachate on MPs in the adjacent environment, and particularly discusses the possible ecotoxicological effects of MPs in leachate. We found high levels of MPs in the soil and water around informal landfills, and the MPs themselves and the toxic substances they carry can have toxic effects on organisms. In addition, this paper summarizes the potential impact of MPs on the biochemical treatment stage of leachate, finds that the effects of MPs on the biochemical treatment stage and membrane filtration are more significant, and proposes some novel processes for MPs removal from leachate. This analysis contributes to the removal of MPs from leachate. This study is the first comprehensive review of the occurrence, environmental impact, and removal of MPs in leachate from landfills in Asia and Europe. It offers a comprehensive theoretical reference for the field, providing invaluable insights.
Collapse
Affiliation(s)
- Haoyu Sun
- Shanghai Engineering Research Center of Solid Waste Treatment and Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinwen Hu
- Shanghai Engineering Research Center of Solid Waste Treatment and Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - You Wu
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Huabo Gong
- Shanghai Engineering Research Center of Solid Waste Treatment and Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nanwen Zhu
- Shanghai Engineering Research Center of Solid Waste Treatment and Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haiping Yuan
- Shanghai Engineering Research Center of Solid Waste Treatment and Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
3
|
Shi W, Wu N, Zhang Z, Liu Y, Chen J, Li J. A global review on the abundance and threats of microplastics in soils to terrestrial ecosystem and human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169469. [PMID: 38154650 DOI: 10.1016/j.scitotenv.2023.169469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/29/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023]
Abstract
Soil is the source and sink of microplastics (MPs), which is more polluted than water and air. In this paper, the pollution levels of MPs in the agriculture, roadside, urban and landfill soils were reviewed, and the influence of MPs on soil ecosystem, including soil properties, microorganisms, animals and plants, was discussed. According to the results of in vivo and in vitro experiments, the possible risks of MPs to soil ecosystem and human health were predicted. Finally, in light of the current status of MPs research, several prospects are provided for future research directions to better evaluate the ecological risk and human health risk of MPs. MPs concentrations in global agricultural soils, roadside soils, urban soils and landfill soils had a great variance in different studies and locations. The participation of MPs has an impact on all aspects of terrestrial ecosystems. For soil properties, pH value, bulk density, pore space and evapotranspiration can be changed by MPs. For microorganisms, MPs can alter the diversity and abundance of microbiome, and different MPs have different effects on bacteria and fungi differently. For plants, MPs may interfere with their biochemical and physiological conditions and produce a wide range of toxic effects, such as inhibiting plant growth, delaying or reducing seed germination, reducing biological and fruit yield, and interfering with photosynthesis. For soil animals, MPs can affect their mobility, growth rate and reproductive capacity. At present epidemiological evidences regarding MPs exposure and negative human health effects are unavailable, but in vitro and in vivo data suggest that they pose various threats to human health, including respiratory system, digestive system, urinary system, endocrine system, nervous system, and circulation system. In conclusion, the existence and danger of MPs cannot be ignored and requires a global effort.
Collapse
Affiliation(s)
- Wenshan Shi
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Nan Wu
- School of Geography, Queen Mary University of London, London E1 4NS, UK
| | - Zengli Zhang
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou 215123, China.
| | - Yuting Liu
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Jingsi Chen
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Jiafu Li
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou 215123, China.
| |
Collapse
|
4
|
Li K, Xiu X, Hao W. Microplastics in soils: Production, behavior process, impact on soil organisms, and related toxicity mechanisms. CHEMOSPHERE 2024; 350:141060. [PMID: 38159733 DOI: 10.1016/j.chemosphere.2023.141060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
In recent years, microplastics (MPs) pollution has become a hot ecological issue of global concern and MP pollution in soil is becoming increasingly serious. Studies have shown that MPs have adverse effects on soil biology and ecological functions. Although MPs are evident in soils, identifying their source, abundance, and types is difficult because of the complexity and variability of soil components. In addition, the effects of MPs on soil physicochemical properties (PCP), including direct effects such as direct interaction with soil particles and indirect effects such as the impact on soil organisms, have not been reported in a differentiated manner. Furthermore, at present, the soil ecological effects of MPs are mostly based on biological toxicity reports of their exudate or size effects, whereas the impact of their surface-specific properties (such as environmentally persistent free radicals, surface functional groups, charge, and curvature) on soil ecological functions is not fully understood. Considering this, this paper reviews the latest research findings on the production and behavioral processes of MPs in soil, the effects on soil PCP, the impacts on different soil organisms, and the related toxic mechanisms. The above discussion will enhance further understanding of the behavioral characteristics and risks of MPs in soil ecosystems and provide some theoretical basis for further clarification of the molecular mechanisms of the effects of MPs on soil organisms.
Collapse
Affiliation(s)
- Kun Li
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China.
| | - Xiaojia Xiu
- Changwang School of Honors, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Wanqi Hao
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China
| |
Collapse
|
5
|
Zhang P, Wang J, Huang L, He M, Yang H, Song G, Zhao J, Li X. Microplastic transport during desertification in drylands: Abundance and characterization of soil microplastics in the Amu Darya-Aral Sea basin, Central Asia. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119353. [PMID: 37866184 DOI: 10.1016/j.jenvman.2023.119353] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Desertification and microplastic pollution are major environmental issues that impact the function of the ecosystem and human well-being of drylands. Land desertification may influence soil microplastics' abundance, transport, and distribution, but their distribution in the dryland deserts of Central Asia's Amu Darya-Aral Sea basin is unknown. Here, we investigated the abundance and distribution of microplastics in dryland desert soils from the Amu Darya River to the Aral Sea basin in Central Asia at a spatial scale of 1000 km and soil depths ranging from 0 to 50 cm. Microplastics were found in soils from all sample locations, with abundances ranging from 182 to 17841 items kg-1 and a median of 3369. Twenty-four polymers were identified, with polyurethane (PU, 37.3%), silicone resin (SR, 17.0%), and chlorinated polyethylene (CPE, 9.8%) accounting for 64.1% of all polymer types. The abundance of microplastics was significantly higher in deep (20-50 cm) soils than in surface (0-5, 5-20 cm) soils. The main morphological characteristics of the observed microplastics were small size (20-50 μm) and irregular particles with no round edges (mean eccentricity 0.65). The abundance was significantly and positively related to soil EC and TP. According to the findings, desertification processes increase the abundance of microplastic particles in soils and promote migration to deeper soil layers. Human activities, mainly grazing, may be the region's primary cause of desertification and microplastic pollution. Our findings provide new information on the diffusion of microplastics in drylands during desertification; these findings are critical for understanding and promoting dryland plastic pollution prevention and control.
Collapse
Affiliation(s)
- Peng Zhang
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Jin Wang
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Lei Huang
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Mingzhu He
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Haotian Yang
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Guang Song
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Jiecai Zhao
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Xinrong Li
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
6
|
Mohan K, Lakshmanan VR. A critical review of the recent trends in source tracing of microplastics in the environment. ENVIRONMENTAL RESEARCH 2023; 239:117394. [PMID: 37838194 DOI: 10.1016/j.envres.2023.117394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Microplastics are found across the globe because of their size and ability to transport across environments. The effects of microplastics on the micro- and macro-organisms have brought out concern over the potential risk to human health and the need to regulate their distribution at the source. Control of microplastic pollution requires region-specific management and mitigation strategies which can be developed with the information on sources and their contributions. This review provides an overview of the sources, fate, and distribution of microplastics along with techniques to source-trace microplastics. Source-tracing approaches provide both qualitative and quantitive information. Since better outcomes have been produced by the integration of techniques like backward trajectory analysis with cluster analysis, the significance of integrated and multi-dimensional approaches has been emphasized. The scope of the plastisphere, heavy metal, and biofilm microbial community in tracing the sources of microplastics are also highlighted. The present review allows the researchers and policymakers to understand the recent trends in the source-tracing of microplastics which will help them to develop techniques and comprehensive action plans to limit the microplastic discharge at sources.
Collapse
Affiliation(s)
- Kiruthika Mohan
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology, Vellore, 632014, India.
| | - Vignesh Rajkumar Lakshmanan
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
7
|
Zhao M, Xu L, Wang X, Li C, Zhao Y, Cao B, Zhang C, Zhang J, Wang J, Chen Y, Zou G. Microplastics promoted cadmium accumulation in maize plants by improving active cadmium and amino acid synthesis. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130788. [PMID: 36682251 DOI: 10.1016/j.jhazmat.2023.130788] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Combined pollution from microplastics (MPs) and cadmium (Cd) can influence soil environment and soil biota, altering plant growth and development, and Cd mobilization. We investigated the effects of polystyrene (PS) and polypropylene (PP) MPs alongside Cd on soil Cd bioavailability, rhizosphere soil metabolomics, bacterial community structure, and maize (Zea mays L.) growth in two soil types (red soil and cinnamon soil). Although the addition of PS/PP-Cd promoted Cd accumulation in maize plants overall, there were large-particle-size- and small-particle-size-dependent effects in the red soil and cinnamon soil, respectively. The difference is mainly due to the capacity of the large particle size MPs to significantly reduce soil pH, improve soil electrical conductivity (EC), promote active Cd, and intensify Cd mobilization in red soil. In contrast, small-size MPs in cinnamon soil promoted the synthesis and secretion of rhizosphere amino acids and soil metabolites, thus promoting Cd absorption by maize roots. Soil microorganisms also improved Cd bioavailability via C-related functional bacteria. Overall, our study provides novel insights on the potential effects of combined MPs and Cd pollution on soil ecology and agricultural production, enhancing our understanding of rhizosphere metabolites in different soils.
Collapse
Affiliation(s)
- Meng Zhao
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Li Xu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xuexia Wang
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Congping Li
- Qujing Soil Fertilizer Station, Yunnan 655000, China
| | - Yujie Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Bing Cao
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Beijing Engineering Technology Research Center for Slow / Controlled-Release Fertilizer, Beijing 100097, China
| | - Caigui Zhang
- Qujing Soil Fertilizer Station, Yunnan 655000, China
| | - Jiajia Zhang
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiachen Wang
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yanhua Chen
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Beijing Engineering Technology Research Center for Slow / Controlled-Release Fertilizer, Beijing 100097, China.
| | - Guoyuan Zou
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Beijing Engineering Technology Research Center for Slow / Controlled-Release Fertilizer, Beijing 100097, China.
| |
Collapse
|