1
|
Chowdhury R, Borgohain X, Iraqui S, Rashid MH. Carboxymethyl cellulose assisted morphology controlled synthesis of Mn 3O 4 nanostructures for adsorptive removal of malachite green from water. Int J Biol Macromol 2024:136838. [PMID: 39461632 DOI: 10.1016/j.ijbiomac.2024.136838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/05/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
The physicochemical properties of manganese oxides and their different applications mainly depend upon their crystallite size, morphology, phase structure, and surface properties, which are again dependent on the preparation methods. So, a simple, cost-effective, and versatile synthesis method for such materials is highly desirable. Intending to accomplish this, herein we report the synthesis of Mn3O4 nanostructures by alkaline hydrolysis of the corresponding metal ions in an aqueous medium. The addition of a biodegradable polymer, sodium salt of carboxymethyl cellulose (Na-CMC) assisted the development of specific morphology, which is tunable by varying the concentration of the biopolymer. The spectroscopic, microscopic, and diffractometric analyses of the synthesized Mn3O4 nanostructures confirm that this particular simple technique is very effective in controlling the morphology of the formed nanostructures. These Mn3O4 nanostructures exhibit excellent adsorption capacity in the removal of malachite green (MG) from its aqueous solution under ambient conditions. The adsorption process is exothermic following pseudo-second-order kinetics with a maximum dye adsorption capacity of 489.68 mg g-1 according to the Sips isotherm model. The Mn3O4 nanostructures can be reused for up to five cycles of dye adsorption without significant loss of their adsorption performance.
Collapse
Affiliation(s)
- Rakesh Chowdhury
- Department of Chemistry, Rajiv Gandhi University, Rono Hills, Doimukh 791 112, Arunachal Pradesh, India
| | - Xavy Borgohain
- Department of Chemistry, Rajiv Gandhi University, Rono Hills, Doimukh 791 112, Arunachal Pradesh, India
| | - Saddam Iraqui
- Department of Chemistry, Rajiv Gandhi University, Rono Hills, Doimukh 791 112, Arunachal Pradesh, India
| | - Md Harunar Rashid
- Department of Chemistry, Rajiv Gandhi University, Rono Hills, Doimukh 791 112, Arunachal Pradesh, India.
| |
Collapse
|
2
|
Xie S, Xiao Y, Huang L, Li J, Yan J, Li Q, Li M, Zhang H. The Constructing of the Oxide Phase Diagram for Fluoride Adsorption on La-Fe-Al: A Collaborative Study of Density Functional Calculation and Experimentation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:619. [PMID: 38607153 PMCID: PMC11013458 DOI: 10.3390/nano14070619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/24/2024] [Accepted: 03/30/2024] [Indexed: 04/13/2024]
Abstract
In recent years, fluoride pollution in water is a problem that has attracted much attention from researchers. The removal of fluoride-containing wastewater by adsorption with metal oxide as an adsorbent is the most common treatment method. Based on this, the effect of the doping ratio of La2O3, Fe2O3, and Al2O3 on the fluoride-removal performance was discussed by constructing a phase diagram. In this study, the adsorption mechanism of nanocrystalline lanthanum oxide terpolymer was investigated by density functional theory calculation and experiment. The optimal pH condition selected in the experiment was three, and the adsorption kinetics of fluoride ions were more consistent with the quasi-second-order kinetic model. The adsorption thermodynamics was more consistent with the Langmuir model. When the La-Fe-Al ternary composite oxides achieved the optimal adsorption efficiency for fluoride ions, the mass synthesis ratio was Al2O3:(Fe2O3:La2O3 = 1:2) = 1:100, resulting in a fluoride ion removal rate of up to 99.78%. Density functional calculations revealed that the La-Fe-Al ternary composite oxides had three important adsorption sites for La, Fe, and Al. Among them, the adsorption capacity for HF was Fe2O3 > La2O3 > Al2O3, and for F- was La2O3 > Al2O3 > Fe2O3. This provided good guidance for designing adsorbents to remove fluoride.
Collapse
Affiliation(s)
- Shaojian Xie
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (S.X.); (Y.X.); (J.L.); (J.Y.); (Q.L.); (M.L.)
| | - Yao Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (S.X.); (Y.X.); (J.L.); (J.Y.); (Q.L.); (M.L.)
| | - Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (S.X.); (Y.X.); (J.L.); (J.Y.); (Q.L.); (M.L.)
| | - Jiaxin Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (S.X.); (Y.X.); (J.L.); (J.Y.); (Q.L.); (M.L.)
| | - Jia Yan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (S.X.); (Y.X.); (J.L.); (J.Y.); (Q.L.); (M.L.)
| | - Qian Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (S.X.); (Y.X.); (J.L.); (J.Y.); (Q.L.); (M.L.)
| | - Meng Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (S.X.); (Y.X.); (J.L.); (J.Y.); (Q.L.); (M.L.)
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (S.X.); (Y.X.); (J.L.); (J.Y.); (Q.L.); (M.L.)
- Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
3
|
Guo W, Bu W, Mao Y, Wang E, Yang Y, Liu C, Guo F, Mai H, You H, Long Y. Magnesium Hydroxide as a Versatile Nanofiller for 3D-Printed PLA Bone Scaffolds. Polymers (Basel) 2024; 16:198. [PMID: 38256997 PMCID: PMC10820754 DOI: 10.3390/polym16020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Polylactic acid (PLA) has attracted much attention in bone tissue engineering due to its good biocompatibility and processability, but it still faces problems such as a slow degradation rate, acidic degradation product, weak biomineralization ability, and poor cell response, which limits its wider application in developing bone scaffolds. In this study, Mg(OH)2 nanoparticles were employed as a versatile nanofiller for developing PLA/Mg(OH)2 composite bone scaffolds using fused deposition modeling (FDM) 3D printing technology, and its mechanical, degradation, and biological properties were evaluated. The mechanical tests revealed that a 5 wt% addition of Mg(OH)2 improved the tensile and compressive strengths of the PLA scaffold by 20.50% and 63.97%, respectively. The soaking experiment in phosphate buffered solution (PBS) revealed that the alkaline degradation products of Mg(OH)2 neutralized the acidic degradation products of PLA, thus accelerating the degradation of PLA. The weight loss rate of the PLA/20Mg(OH)2 scaffold (15.40%) was significantly higher than that of PLA (0.15%) on day 28. Meanwhile, the composite scaffolds showed long-term Mg2+ release for more than 28 days. The simulated body fluid (SBF) immersion experiment indicated that Mg(OH)2 promoted the deposition of apatite and improved the biomineralization of PLA scaffolds. The cell culture of bone marrow mesenchymal stem cells (BMSCs) indicated that adding 5 wt% Mg(OH)2 effectively improved cell responses, including adhesion, proliferation, and osteogenic differentiation, due to the release of Mg2+. This study suggests that Mg(OH)2 can simultaneously address various issues related to polymer scaffolds, including degradation, mechanical properties, and cell interaction, having promising applications in tissue engineering.
Collapse
Affiliation(s)
- Wang Guo
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China; (W.B.); (Y.M.); (E.W.); (Y.Y.); (C.L.)
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Wenlang Bu
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China; (W.B.); (Y.M.); (E.W.); (Y.Y.); (C.L.)
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Yufeng Mao
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China; (W.B.); (Y.M.); (E.W.); (Y.Y.); (C.L.)
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Enyu Wang
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China; (W.B.); (Y.M.); (E.W.); (Y.Y.); (C.L.)
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Yanjuan Yang
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China; (W.B.); (Y.M.); (E.W.); (Y.Y.); (C.L.)
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Chao Liu
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China; (W.B.); (Y.M.); (E.W.); (Y.Y.); (C.L.)
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Feng Guo
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Medical University, Nanning 530021, China; (F.G.); (H.M.)
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, China
| | - Huaming Mai
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Medical University, Nanning 530021, China; (F.G.); (H.M.)
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, China
| | - Hui You
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China; (W.B.); (Y.M.); (E.W.); (Y.Y.); (C.L.)
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Yu Long
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China; (W.B.); (Y.M.); (E.W.); (Y.Y.); (C.L.)
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
4
|
Zeng Z, Li Q, Yan J, Huang L, Arulmani SRB, Zhang H, Xie S, Sio W. The model and mechanism of adsorptive technologies for wastewater containing fluoride: A review. CHEMOSPHERE 2023; 340:139808. [PMID: 37591373 DOI: 10.1016/j.chemosphere.2023.139808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/06/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
With the continuous development of society, industrialization, and human activities have been producing more and more pollutants. Fluoride discharge is one of the main causes of water pollution. This review summarizes various commonly used and effective fluoride removal technologies, including ion exchange technology, electrochemical technology, coagulation technology, membrane treatment, and adsorption technology, and points out the outstanding advantages of adsorption technology. Various commonly used fluoride removal techniques as well as typical adsorbent materials have been discussed in published papers, however, the relationship between different adsorbent materials and adsorption models has rarely been explored, therefore, this paper categorizes and summarizes the various models involved in static adsorption, dynamic adsorption, and electrosorption fluoride removal processes, such as pseudo-first-order and pseudo-second-order kinetic models, Langmuir and Freundlich isotherm models, Thomas and Clark dynamic adsorption models, including the mathematical equations of the corresponding models and the significance of the models are also comprehensively summarized. Furthermore, this comprehensive discussion delves into the fundamental adsorption mechanisms, quantification of maximum adsorption capacity, evaluation of resistance to anion interference, and assessment of adsorption regeneration performance exhibited by diverse adsorption materials. The selection of the best adsorption model not only predicts the adsorption performance of the adsorbent but also provides a better description and understanding of the details of each part of the adsorption process, which facilitates the adjustment of experimental conditions to optimize the adsorption process. This review may provide some guidance for the development of more cost-effective adsorbent materials and adsorption processes in the future.
Collapse
Affiliation(s)
- Zhen Zeng
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Qian Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jia Yan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Samuel Raj Babu Arulmani
- Université de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), Campus de Beaulieu, 35000, Rennes, France
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, 510006, China.
| | - Shaojian Xie
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Wenghong Sio
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, China
| |
Collapse
|