1
|
Yu X, Chen S, Zhang X, Wu H, Guo Y, Guan J. Research progress of the artificial intelligence application in wastewater treatment during 2012-2022: a bibliometric analysis. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:1750-1766. [PMID: 37830995 PMCID: wst_2023_296 DOI: 10.2166/wst.2023.296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
This study identified literatures from the Web of Science Core Collection on the application of artificial intelligence in wastewater treatment from 2011 to 2022, through bibliometrics, to summarize achievements and capture the scientific and technological progress. The number of papers published is on the rise, and especially, the number of papers issued after 2018 has increased sharply, with China contributing the most in this regard, followed by the US, Iran and India. The University of Tehran has the largest number of papers, WATER is the most published journal, and Nasr M has the largest number of articles. Collaborative network has been developed mainly through cooperation between European countries, China and the US. Remote sensing in developing countries needs to be further integrated with water quality monitoring programs. It is worth noting that artificial neural network is a research hotspot in recent years. Through keyword clustering analysis, 'machine learning' and 'deep learning' are hot keywords that have emerged since 2019. The use of neural networks for predicting the effectiveness of treatment of difficult to degrade wastewater is a future research trend. The rapid advancement of deep learning provides the opportunity to build automated pipeline defect detection systems through image recognition.
Collapse
Affiliation(s)
- Xiaoman Yu
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, China E-mail:
| | - Shuai Chen
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, China; Anhui International Joint Research Center for Nano Carbon-based Materials and Environmental Health, Huainan 232001, China
| | - Xiaojiao Zhang
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, China
| | - Hongcheng Wu
- Shanghai Wobai Environmental Development Co. Ltd, Shanghai 201209, China
| | - Yaoguang Guo
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, China
| | - Jie Guan
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, China
| |
Collapse
|
2
|
Lopez M, Cornaglia LM, Gutierrez LB, Bosko ML. Electrodialysis as a potential technology for 4-nitrophenol abatement from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:102198-102211. [PMID: 37665445 DOI: 10.1007/s11356-023-29510-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
4-Nitrophenol is a widely used emerging pollutant in various industries, including the production of agrochemicals, drugs, and synthetic dyes. Due to its potential environmental harmful effects, there is a need to study its reuse and removal from wastewater. This study used electrodialysis technology to separate 4-nitrophenol ions using a four-compartment stack. The effects of supporting electrolyte concentration, pH, voltages, and current density on the performance of electrodialysis for separating 4-nitrophenol were investigated. A high extraction percentage of 77% was achieved with low energy consumption (107 kWh kg-1) when high 4-nitrophenol flows and transport numbers were reached.
Collapse
Affiliation(s)
- Manuel Lopez
- Instituto de Investigaciones en Catálisis y Petroquímica, Universidad Nacional del Litoral, CONICET, Facultad de Ingeniería Química, Santiago del Estero 2829, Santa Fe, S3000AOM, Argentina
| | - Laura María Cornaglia
- Instituto de Investigaciones en Catálisis y Petroquímica, Universidad Nacional del Litoral, CONICET, Facultad de Ingeniería Química, Santiago del Estero 2829, Santa Fe, S3000AOM, Argentina
| | - Laura Beatriz Gutierrez
- Instituto de Investigaciones en Catálisis y Petroquímica, Universidad Nacional del Litoral, CONICET, Facultad de Ingeniería Química, Santiago del Estero 2829, Santa Fe, S3000AOM, Argentina
| | - María Laura Bosko
- Instituto de Investigaciones en Catálisis y Petroquímica, Universidad Nacional del Litoral, CONICET, Facultad de Ingeniería Química, Santiago del Estero 2829, Santa Fe, S3000AOM, Argentina.
| |
Collapse
|
3
|
Hugo MA, Angie CC, Vivian del Pilar RC, Camilo LJ, Orlando C. The technology life cycle of Persian lime. A patent based analysis. Heliyon 2022; 8:e11781. [DOI: 10.1016/j.heliyon.2022.e11781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/28/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
|
4
|
Hollas CE, Rodrigues HC, Oyadomari VMA, Bolsan AC, Venturin B, Bonassa G, Tápparo DC, Abilhôa HCZ, da Silva JFF, Michelon W, Cavaler JP, Antes FG, Steinmetz RLR, Treichel H, Kunz A. The potential of animal manure management pathways toward a circular economy: a bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73599-73621. [PMID: 36071358 DOI: 10.1007/s11356-022-22799-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Improper disposal of animal waste is responsible for several environmental problems, causing eutrophication of lakes and rivers, nutrient overload in the soil, and the spread of pathogenic organisms. Despite the potential to cause adverse ecological damage, animal waste can be a valuable source of resources if incorporated into a circular concept. In this sense, new approaches focused on recovery and reuse as substitutes for traditional processes based on removing contaminants in animal manure have gained attention from the scientific community. Based on this, the present work reviewed the literature on the subject, performing a bibliometric and scientometric analysis of articles published in peer-reviewed journals between 1991 and 2021. Of the articles analyzed, the main issues addressed were nitrogen and phosphorus recovery, energy generation, high-value-added products, and water reuse. The energy use of livestock waste stands out since it is characterized as a consolidated solution, unlike other routes still being developed, presenting the economic barrier as the main limiting factor. Analyzing the trend of technological development through the S curve, it was possible to verify that the circular economy in the management of animal waste will enter the maturation phase as of 2036 and decline in 2056, which demonstrates opportunities for the sector's development, where animal waste can be an economic agent, promoting a cleaner and more viable product for a sustainable future.
Collapse
Affiliation(s)
- Camila Ester Hollas
- UNIOESTE/CCET/PGEAGRI, Universidade Estadual Do Oeste Do Paraná, Cascavel, PR, Brazil
| | | | | | | | - Bruno Venturin
- UNIOESTE/CCET/PGEAGRI, Universidade Estadual Do Oeste Do Paraná, Cascavel, PR, Brazil
| | - Gabriela Bonassa
- UNIOESTE/CCET/PGEAGRI, Universidade Estadual Do Oeste Do Paraná, Cascavel, PR, Brazil
| | | | | | | | | | - Jadiane Paola Cavaler
- UNIOESTE/CCET/PGEAGRI, Universidade Estadual Do Oeste Do Paraná, Cascavel, PR, Brazil
| | | | | | - Helen Treichel
- Universidade Federal da Fronteira Sul, Erechim, RS, 99700-970, Brazil
| | - Airton Kunz
- UNIOESTE/CCET/PGEAGRI, Universidade Estadual Do Oeste Do Paraná, Cascavel, PR, Brazil.
- Embrapa Suínos E Aves, Concórdia, SC, 89715-899, Brazil.
| |
Collapse
|