1
|
Zhao S, Yin G, Zhao M, Wu J, Liu X, Wei L, Xu Q, Xu J. Inflammation as a pathway for heavy metal-induced liver damage-Insights from a repeated-measures study in residents exposed to metals and bioinformatics analysis. Int J Hyg Environ Health 2024; 261:114417. [PMID: 38968837 DOI: 10.1016/j.ijheh.2024.114417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/08/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Epidemiological studies on heavy metal exposure and liver injury are predominantly cross-sectional, lacking longitudinal data and exploration of potential mechanisms. METHOD We conducted a repeated-measures study in Northeast China from 2016 to 2019, involving 322 participants. Linear mixed models (LMM) and Bayesian kernel machine regression (BKMR) were employed to explore the associations between individual and mixed blood metal concentrations [chromium (Cr), cadmium (Cd), vanadium (V), manganese (Mn), lead (Pb)] and liver function biomarkers [alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin (ALB), globulin (GLB), total protein (TP)]. Mediation and enrichment analyses were used to determine whether the inflammatory response is a critical pathway for heavy metal-induced liver damage. RESULT We obtained a total of 958 observations. The results from LMM and BKMR indicated significant associations between individual and mixed heavy metals and liver function biomarkers. Longitudinal analysis revealed associations between Cd and the annual increase rate of ALT (β = 2.61; 95% CI: 0.97, 4.26), the annual decrease rate of ALB (β = -0.21; 95% CI: -0.39, -0.03), Mn and the annual increase rate of GLB (β = 0.38; 95% CI: 0.05, 0.72), and V and the annual decrease rate of ALB/GLB (β = -1.15; 95% CI: -2.00, -0.31). Mediation analysis showed that high-sensitivity C-reactive protein (hsCRP) mediated the associations between Cd and AST, TP, with mediation effects of 27.7% and 13.4%, respectively. Additionally, results from Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses supported the role of inflammatory response pathways. CONCLUSION Our findings indicate that heavy metal exposure leads to liver damage, with the inflammatory response potentially serving as a crucial pathway in this process. This study offers a novel perspective on understanding heavy metal-induced liver injury and provides insights for preventive measures against the health damage caused by heavy metals.
Collapse
Affiliation(s)
- Shuanzheng Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Guohuan Yin
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jingtao Wu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Xiaolin Liu
- Department of Epidemiology and Biostatistics, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Lanping Wei
- Jinzhou Central Hospital, Jinzhou, 121001, Liaoning, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
2
|
Zhang H, Zheng H, Wang Q, Ma Z, Liu W, Xu L, Li D, Zhu Y, Xue Y, Mei L, Huang X, Guo Z, Ke X. Sinomenine hydrochloride improves DSS-induced colitis in mice through inhibition of the TLR2/NF-κB signaling pathway. Clin Res Hepatol Gastroenterol 2024; 48:102411. [PMID: 38992426 DOI: 10.1016/j.clinre.2024.102411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/20/2024] [Accepted: 06/29/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Sinomenine hydrochloride (SH) has anti-inflammatory and immunosuppressive effects, and its effectiveness in inflammatory diseases, such as rheumatoid arthritis, has been demonstrated. However, whether SH has a therapeutic effect on dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) in mice and its mechanism of action have not been clarified. This study aimed to investigate the therapeutic effects and mechanism of action of SH on UC. METHODS Twenty-four mice were randomly divided into control, model, SH low-dose (SH-L, 20mg/kg), and SH high-dose (SH-H, 60mg/kg) groups with six mice in each group. Disease activity index (DAI), colonic mucosal damage index, and colonic histopathology scores were calculated. The expression levels of related proteins, genes, and downstream inflammatory factors in the Toll-like receptor 2/NF-κB (TLR2/NF-κB) signaling pathway were quantified. RESULTS SH inhibited weight loss, decreased DAI and histopathological scores, decreased the expression levels of TLR2, MyD88, P-P65, P65 proteins, and TLR2 genes, and also suppressed the expression of inflammatory factors TNF-α, IL-1 β, and IL-6 in the peripheral blood of mice. CONCLUSION The therapeutic effect of SH on DSS-induced UC in mice may be related to the inhibition of the TLR2/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Hailun Zheng
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Qizhi Wang
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Zhenzeng Ma
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Wei Liu
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Linxia Xu
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Dapeng Li
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Yu Zhu
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Yongju Xue
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Letian Mei
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Xixiang Huang
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Zhiguo Guo
- Department of Gastroenterology, Suzhou Hospital of Anhui Medical University, No. 616, Bianyangsan Road, Suzhou, Anhui 234000, China.
| | - Xiquan Ke
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China.
| |
Collapse
|
3
|
Niu Z, Li X, Yang X, Sun Z. Protective effects of sinomenine against dextran sulfate sodium-induced ulcerative colitis in rats via alteration of HO-1/Nrf2 and inflammatory pathway. Inflammopharmacology 2024; 32:2007-2022. [PMID: 38573363 DOI: 10.1007/s10787-024-01455-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Dextran Sulfate Sodium (DSS) induces ulcerative colitis (UC), a type of inflammatory bowel disease (IBD) that leads to inflammation, swelling, and ulcers in the large intestine. The aim of this experimental study is to examine how sinomenine, a plant-derived alkaloid, can prevent or reduce the damage caused by DSS in the colon and rectum of rats. MATERIAL AND METHODS Induction of ulcerative colitis (UC) in rats was achieved by orally administering a 2% Dextran Sulfate Sodium (DSS) solution, while the rats concurrently received oral administrations of sinomenine and sulfasalazine. The food, water intake was estimated. The body weight, disease activity index (DAI), colon length and spleen index estimated. Antioxidant, cytokines, inflammatory parameters and mRNA expression were estimated. The composition of gut microbiota was analyzed at both the phylum and genus levels in the fecal samples obtained from all groups of rats. RESULTS Sinomenine treatment enhanced the body weight, colon length and reduced the DAI, spleen index. Sinomenine treatment remarkably suppressed the level of NO, MPO, ICAM-1, and VCAM-1 along with alteration of antioxidant parameters such as SOD, CAT, GPx, GR and MDA. Sinomenine treatment also decreased the cytokines like TNF-α, IL-1, IL-1β, IL-6, IL-10, IL-17, IL-18 in the serum and colon tissue; inflammatory parameters viz., PAF, COX-2, PGE2, iNOS, NF-κB; matrix metalloproteinases level such as MMP-1 and MMP-2. Sinomenine significantly (P < 0.001) enhanced the level of HO-1 and Nrf2. Sinomenine altered the mRNA expression of RIP1, RIP3, DRP3, NLRP3, IL-1β, caspase-1 and IL-18. Sinomenine remarkably altered the relative abundance of gut microbiota like firmicutes, Bacteroidetes, F/B ratio, Verrucomicrobia, and Actinobacteria. CONCLUSION The results clearly indicate that sinomenine demonstrated a protective effect against DSS-induced inflammation, potentially through the modulation of inflammatory pathways and gut microbiota.
Collapse
Affiliation(s)
- Zhongbao Niu
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Xinhong Li
- Department of Outpatient Surgery, Central Hospital Affiliated to Shandong First Medical University, No. 105 Jiefang Road, Jinan, 250013, Jinan, China
| | - Xiuhua Yang
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, No. 105 Jiefang Road, Jinan, 250013, Jinan, China
| | - Zhongwei Sun
- Department of Gastrointestinal Surgery, Jinan Central Hospital, No.105, Jiefang Road, Lixia District, Jinan, 250013, Shandong, China.
| |
Collapse
|
4
|
Hou W, Huang L, Huang H, Liu S, Dai W, Tang J, Chen X, Lu X, Zheng Q, Zhou Z, Zhang Z, Lan J. Bioactivities and Mechanisms of Action of Sinomenine and Its Derivatives: A Comprehensive Review. Molecules 2024; 29:540. [PMID: 38276618 PMCID: PMC10818773 DOI: 10.3390/molecules29020540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Sinomenine, an isoquinoline alkaloid extracted from the roots and stems of Sinomenium acutum, has been extensively studied for its derivatives as bioactive agents. This review concentrates on the research advancements in the biological activities and action mechanisms of sinomenine-related compounds until November 2023. The findings indicate a broad spectrum of pharmacological effects, including antitumor, anti-inflammation, neuroprotection, and immunosuppressive properties. These compounds are notably effective against breast, lung, liver, and prostate cancers, exhibiting IC50 values of approximately 121.4 nM against PC-3 and DU-145 cells, primarily through the PI3K/Akt/mTOR, NF-κB, MAPK, and JAK/STAT signaling pathways. Additionally, they manifest anti-inflammatory and analgesic effects predominantly via the NF-κB, MAPK, and Nrf2 signaling pathways. Utilized in treating rheumatic arthritis, these alkaloids also play a significant role in cardiovascular and cerebrovascular protection, as well as organ protection through the NF-κB, Nrf2, MAPK, and PI3K/Akt/mTOR signaling pathways. This review concludes with perspectives and insights on this topic, highlighting the potential of sinomenine-related compounds in clinical applications and the development of medications derived from natural products.
Collapse
Affiliation(s)
- Wen Hou
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Lejun Huang
- College of Rehabilitation, Gannan Medical University, Ganzhou 341000, China;
| | - Hao Huang
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Shenglan Liu
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Wei Dai
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Jianhong Tang
- Laboratory Animal Engineering Research Center of Ganzhou, Gannan Medical University, Ganzhou 341000, China;
| | - Xiangzhao Chen
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Xiaolu Lu
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Qisheng Zheng
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Zhinuo Zhou
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Ziyun Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Jinxia Lan
- College of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
5
|
Jabbar AA, Abdul-Aziz Ahmed K, Abdulla MA, Abdullah FO, Salehen NA, Mothana RA, Houssaini J, Hassan RR, Hawwal MF, Fantoukh OI, Hasson S. Sinomenine accelerate wound healing in rats by augmentation of antioxidant, anti-inflammatory, immunuhistochemical pathways. Heliyon 2024; 10:e23581. [PMID: 38173533 PMCID: PMC10761791 DOI: 10.1016/j.heliyon.2023.e23581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Sinomenine (SN) is a well-documented unique plant alkaloid extracted from many herbal medicines. The present study evaluates the wound healing potentials of SN on dorsal neck injury in rats. A uniform cut was created on Sprague Dawley rats (24) which were arbitrarily aligned into 4 groups receiving two daily topical treatments for 14 days as follows: A, rats had gum acacia; B, rats addressed with intrasite gel; C and D, rats had 30 and 60 mg/ml of SN, respectively. The acute toxicity trial revealed the absence of any toxic signs in rats after two weeks of ingestion of 30 and 300 mg/kg of SN. SN-treated rats showed smaller wound areas and higher wound closure percentages compared to vehicle rats after 5, 10, and 15 days of skin excision. Histological evaluation of recovered wound tissues showed increased collagen deposition, fibroblast content, and decreased inflammatory cells in granulated tissues in SN-addressed rats, which were statistically different from that of gum acacia-treated rats. SN treatment caused positive augmentation of Transforming Growth Factor Beta 1 (angiogenetic factor) in wound tissues, denoting a higher conversion rate of fibroblast into myofibroblast (angiogenesis) that results in faster wound healing action. Increased antioxidant enzymes (SOD and CAT), as well as decreased MDA contents in recovered wound tissues of SN-treated rats, suggest the antioxidant potentials of SN that aid in faster wound recovery. Wound tissue homogenates showed higher hydroxyproline amino acid (collagen content) values in SN-treated rats than in vehicle rats. SN treatment suppressed the production of pro-inflammatory cytokines and increased anti-inflammatory cytokines in the serum of wounded rats. The outcomes present SN as a viable pharmaceutical agent for wound healing evidenced by its positive modulation of the antioxidant, immunohistochemically proteins, hydroxyproline, and anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Ahmed A.j. Jabbar
- Department of Medical Laboratory Technology, Erbil Technical Health and Medical College, Erbil Polytechnic University, Erbil, 44001, Iraq
| | - Khaled Abdul-Aziz Ahmed
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Mahmood Ameen Abdulla
- Department of Medical Microbiology, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Fuad Othman Abdullah
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Kurdistan Region, Erbil, 44001, Iraq
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil, 44001, Iraq
| | - Nur Ain Salehen
- Department of Biomedical Sciences, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jamal Houssaini
- Department of Laboratory and Forensic Medicine (I-PPerForM), Institute of Pathology, Universiti Teknologi MARA (UiTM), 47000, Sungai Buloh, Selangor, Malaysia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Sungai Buloh Campus, Universiti Teknologi MARA (UiTM), 47000, Sungai Buloh, Selangor, Malaysia
| | - Rawaz Rizgar Hassan
- Department of Medical Laboratory Science, College of Science, Knowledge University, Kirkuk Road, Erbil, 44001, Iraq
| | - Mohammed F. Hawwal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Omer I. Fantoukh
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sidgi Hasson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 5UG, UK
| |
Collapse
|
6
|
Ovalle Rodríguez P, Ramírez Ortega D, Blanco Ayala T, Roldán Roldán G, Pérez de la Cruz G, González Esquivel DF, Gómez-Manzo S, Sánchez Chapul L, Salazar A, Pineda B, Pérez de la Cruz V. Modulation of Kynurenic Acid Production by N-acetylcysteine Prevents Cognitive Impairment in Adulthood Induced by Lead Exposure during Lactation in Mice. Antioxidants (Basel) 2023; 12:2035. [PMID: 38136155 PMCID: PMC10740504 DOI: 10.3390/antiox12122035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Lead (Pb2+) exposure during early life induces cognitive impairment, which was recently associated with an increase in brain kynurenic acid (KYNA), an antagonist of NMDA and alpha-7 nicotinic receptors. It has been described that N-acetylcysteine (NAC) favors an antioxidant environment and inhibits kynurenine aminotransferase II activity (KAT II, the main enzyme of KYNA production), leading to brain KYNA levels decrease and cognitive improvement. This study aimed to investigate whether the NAC modulation of the brain KYNA levels in mice ameliorated Pb2+-induced cognitive impairment. The dams were divided into four groups: Control, Pb2+, NAC, and Pb2++NAC, which were given drinking water or 500 ppm lead acetate in the drinking water ad libitum, from 0 to 23 postnatal days (PNDs). The NAC and Pb2++NAC groups were simultaneously fed NAC (350 mg/day) in their chow from 0 to 23 PNDs. At PND 60, the effect of the treatment with Pb2+ and in combination with NAC on learning and memory performance was evaluated. Immediately after behavioral evaluation, brain tissues were collected to assess the redox environment; KYNA and glutamate levels; and KAT II activity. The NAC treatment prevented the long-term memory deficit exhibited in the Pb2+ group. As expected, Pb2+ group showed redox environment alterations, fluctuations in glutamate levels, and an increase in KYNA levels, which were partially avoided by NAC co-administration. These results confirmed that the excessive KYNA levels induced by Pb2+ were involved in the onset of cognitive impairment and could be successfully prevented by NAC treatment. NAC could be a tool for testing in scenarios in which KYNA levels are associated with the induction of cognitive impairment.
Collapse
Affiliation(s)
- Paulina Ovalle Rodríguez
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (P.O.R.); (D.R.O.); (T.B.A.); (D.F.G.E.)
- Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Unidad de Posgrado, Mexico City 04510, Mexico
| | - Daniela Ramírez Ortega
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (P.O.R.); (D.R.O.); (T.B.A.); (D.F.G.E.)
| | - Tonali Blanco Ayala
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (P.O.R.); (D.R.O.); (T.B.A.); (D.F.G.E.)
| | - Gabriel Roldán Roldán
- Laboratorio de Neurobiología de la Conducta, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Gonzalo Pérez de la Cruz
- Department of Mathematics, Faculty of Sciences, Universidad Nacional Autónoma de México UNAM, Mexico City 04510, Mexico;
| | - Dinora Fabiola González Esquivel
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (P.O.R.); (D.R.O.); (T.B.A.); (D.F.G.E.)
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico;
| | - Laura Sánchez Chapul
- Neuromuscular Diseases Laboratory, Clinical Neurosciences Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico;
| | - Aleli Salazar
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (A.S.); (B.P.)
| | - Benjamín Pineda
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (A.S.); (B.P.)
| | - Verónica Pérez de la Cruz
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (P.O.R.); (D.R.O.); (T.B.A.); (D.F.G.E.)
| |
Collapse
|