1
|
Pi R, Yang Z, Chai J, Qi Y, Sun X, Zhou Y. Peroxysulfur species-mediated enhanced oxidation of micropollutants by ferrate(VI): Peroxymonosulfate versus peroxydisulfate. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134871. [PMID: 38876020 DOI: 10.1016/j.jhazmat.2024.134871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/16/2024]
Abstract
Many studies have shown that Peroxymonosulfate (PMS) works synergistically with ferrate (Fe(VI)) to remove refractory organic compounds in a few minutes. However, little has been reported on the combined effects of peroxydisulfate (PDS) and Fe(VI). Since PDS is stable and cost effective, it is of practical significance to study the reaction mechanism and conditions of the PDS/Fe(VI) system. The results of the study indicate that the intermediate Fe(II) is formed during the decomposition of Fe(VI), which is then rapidly oxidized. Due to the asymmetry of the PMS molecular structure, PMS can rapidly trap Fe(II) (kPMS/Fe(II)= 3 × 104 M-1∙s-1), whereas PDS cannot (kPDS/Fe(II)= 26 M-1∙s-1). Hydroxylamine hydrochloride (HA) can reduce Fe(VI) and Fe(III) to Fe(II) to excite PDS to produce SO4•-. Acetate helps to detect Fe(II), but does not help PDS to trap Fe(II). Active species such as SO4•-, •OH, 1O2, and Fe(IV), Fe(V) are present in both systems, but in different amounts. In the PMS/Fe(Ⅵ) system, all these active species react with ibuprofen (IBP) and degrade IBP within several minutes. The effects of the initial pH, PMS or Fe(VI) dosage, and different amounts of IBP on the removal rate of IBP were investigated. According to the intermediates detected by the GC-MS, the degradation process of IBP includes hydroxylation, demethylation and single bond breakage. The degradation pathways of IBP were proposed. The degradation of IBP in tap water and Songhua River was also investigated. In actual water treatment, the dosage needs to be increased to achieve the same results. This study provides a basis and theoretical support for the application of PMS/Fe(Ⅵ) and PDS/Fe(VI) system in water treatment.
Collapse
Affiliation(s)
- Ruobing Pi
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, PR China
| | - Zhe Yang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, PR China
| | - Jin Chai
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, PR China
| | - Yuan Qi
- Northeast Electric Power Design Institute Co., Ltd. of China Power Engineering Consulting Group, Changchun 131001, Jilin, China
| | - Xuhui Sun
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, PR China.
| | - Yunlong Zhou
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, PR China
| |
Collapse
|
2
|
Real FJ, Acero JL, Matamoros E. Removal of neonicotinoids present in secondary effluents by ferrate(VI)-based oxidation processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29684-29694. [PMID: 38589587 PMCID: PMC11512836 DOI: 10.1007/s11356-024-33167-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/27/2024] [Indexed: 04/10/2024]
Abstract
The persistence in the environment and possible harmful effects of neonicotinoid insecticides have raised some concerns, which have led to the proposal of various measures for their remediation. The aim of this work was to study the elimination of five neonicotinoids (thiamethoxam (THM), imidacloprid (IMI), clothianidin (CLO), thiacloprid (THC), and acetamiprid (ACE)) using ferrate (Fe(VI)) as the oxidizing agent. Firstly, second-order rate constants for the reactions of neonicotinoids with Fe(VI) were determined at different pHs. The most reactive compound was THC, with a rate constant of 400 ± 43 M-1 s-1 at pH 8 (the optimum pH considering the predominance of the most reactive species (HFeO4-) and the decreasing self-decomposition of Fe(VI) with pH), followed by CLO (10.7 ± 1.7 M-1 s-1), THM (9.7 ± 0.7 M-1 s-1), and IMI (2.5 ± 0.6 M-1 s-1). ACE did not significantly react with Fe(VI). The oxidation of the selected pollutants in secondary effluents by Fe(VI) was rather slow, and only THC could be efficiently removed. The presence of natural organic matter (NOM) exerted a negative influence on the removal of the neonicotinoids of moderate reactivity with Fe(VI) (CLO, THM, and IMI). The additional presence of peroxymonosulfate (Fe(VI)/PMS system) slightly increased the removal of neonicotinoids due to the formation of hydroxyl and sulfate radicals. Finally, the application of the Fe(VI)/sulfite system considerably increased the oxidation rate of the selected pollutants, with enhanced formation of hydroxyl and, especially, sulfate radicals. Overall, these results suggest that the Fe(VI)/sulfite system has significant potential to address environmental and health concerns associated with neonicotinoids in water sources with low NOM content.
Collapse
Affiliation(s)
- Francisco J Real
- Departamento de Ingeniería Química y Química Física, Facultad de Ciencias, Instituto Universitario de Investigación del Agua, Cambio Climático y Sostenibilidad (IACYS), Universidad de Extremadura, Avda. de Elvas S/N, 06006, Badajoz, Spain.
| | - Juan L Acero
- Departamento de Ingeniería Química y Química Física, Facultad de Ciencias, Instituto Universitario de Investigación del Agua, Cambio Climático y Sostenibilidad (IACYS), Universidad de Extremadura, Avda. de Elvas S/N, 06006, Badajoz, Spain
| | - Esther Matamoros
- Departamento de Ingeniería Química y Química Física, Facultad de Ciencias, Instituto Universitario de Investigación del Agua, Cambio Climático y Sostenibilidad (IACYS), Universidad de Extremadura, Avda. de Elvas S/N, 06006, Badajoz, Spain
| |
Collapse
|
3
|
Cao Y, Li J, Wang Z, Guan C, Jiang J. The synergistic effect of oxidant-peroxide coupling systems for water and wastewater treatments. WATER RESEARCH 2024; 249:120992. [PMID: 38096724 DOI: 10.1016/j.watres.2023.120992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/09/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024]
Abstract
With the growing complexity and severity of water pollution, it has become increasingly challenging to effectively remove contaminants or inactivate microorganisms just by traditional chemical oxidants such as O3, chlorine, Fe(VI) and Mn(VII). Up till now, numerous studies have indicated that these oxidants in combination with peroxides (i.e., hydrogen peroxide (H2O2), peroxymonosulfate (PMS), peracetic acid (PAA) and periodate (PI)) exhibited excellent synergistic oxidation. This paper provided a comprehensive review on the combination of aforementioned oxidant-peroxide applied in water and wastewater treatments. From one aspect, the paper thoroughly elucidated the synergy mechanism of each oxidant-peroxide combination in turn. Among these combinations, H2O2 or PMS generally performed as the activator of four traditional oxidants above to accelerate reactive species generation and therein various reaction mechanisms, including electron transfer, O atom abstraction and oxo ligand substitution, were involved. In addition, although neither PAA nor PI was able to directly activate Fe(VI) and Mn(VII), they could act as the stabilizer of intermediate reactive iron/manganese species to improve the latter utilization efficiency. From another aspect, this paper summarized the influence of water quality parameters, such as pH, inorganic ions and natural organic matter (NOM), on the oxidation performance of most combined systems. Finally, this paper highlighted knowledge gaps and identified areas that require further research.
Collapse
Affiliation(s)
- Ying Cao
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Juan Li
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhu Hai, 519087, China
| | - Zhen Wang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Chaoting Guan
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
4
|
Wang X, Xiong Y, Yuan B, Wu Y, Hu W, Wang X, Liu W. Performances and mechanisms of the peroxymonosulfate/ferrate(VI) oxidation process in real shale gas flowback water treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119355. [PMID: 37857222 DOI: 10.1016/j.jenvman.2023.119355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/18/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Shale gas flowback water (SGFW), which is an inevitable waste product generated after hydraulic fracturing during development, poses a severe threat to the environment and human health. Managing high-salinity wastewater with complex physicochemical compositions is critical for ensuring environmental sustainability of shale gas development. Desalination processes have been recommended to treat SGFW to adhere to the discharge limits. However, organic fouling has become a significant concern in the steady operation of desalination processes, and the effective removal of organic compounds is challenging. This study aimed to develop an effective oxidation method to mitigate membrane fouling in real SGFW treatment process. It adopted the peroxymonosulfate (PMS)/ferrate (Fe(VI)) process, involving both free and non-free radical pathways that can alleviate the negative effects of high-salinity environments on oxidation. The operating parameters were optimized and removal effects were examined, while the synergistic oxidation mechanism and organic conversion of the PMS/Fe(VI) process were also analyzed. The results showed that the PMS/Fe(VI) process exhibited a synergistic effect compared with the PMS and Fe(VI) processes alone, with a total organic carbon (TOC) removal efficiency of 46.8% under optimal reaction conditions in real SGFW. In the Fe(VI)/PMS process, active species such as Fe(V)/Fe(IV), ·OH, and SO4-· were jointly involved in the oxidation of organic matter. Additionally, 99.5% of the total suspended solids and 95.2% of Ba2+ in the SGFW were removed owing to the formation of a coagulant (Fe3+) and SO42- during the reaction. Finally, an ultrafiltration membrane fouling experiment proved that oxidation processes can increase the membrane-specific flux and alleviate fouling resistance. This study can serve as a reference for the design of real SGFW treatment processes and is significant for the environmental management of shale gas development.
Collapse
Affiliation(s)
- Xuemei Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Ying Xiong
- Research Institute of Natural Gas Technology, PetroChina Southwest Oil & Gasfield Company, Chengdu, 610095, China
| | - Bo Yuan
- CNPC Research Institute of Safety and Environmental Technology, Beijing, 102206, China
| | - You Wu
- Sichuan Zaojing Baicui Environmental Protection Technology Co., Ltd., Chengdu, 610095, China
| | - Wanjin Hu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Xin Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Wenshi Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China.
| |
Collapse
|
5
|
Thermal effect on sulfamethoxazole degradation in a trivalent copper involved peroxymonosulfate system. J Colloid Interface Sci 2023; 640:121-131. [PMID: 36842418 DOI: 10.1016/j.jcis.2023.02.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023]
Abstract
Persulfate (PS) activated by thermal or homogeneous metals can generate reactive oxygen species (ROS) and high-valence-state metals for contaminants degradation, showing great potential for applications. However, thermal effect in peroxymonosulfate (PMS) system with high-valence-state metal is still ambiguous. In this study, divalent copper (Cu(II)) catalysis was taken to explore thermal effect on PMS performance. Results showed that the Sulfamethoxazole (SMX) removal efficiency in the Cu(II)/PMS system at 60 min increased by only 5.9% with temperature increase from 30 °C to 60 °C. Moreover, SMX removal efficiency was excellent at neutral or basic pH, best with PMS concentration of 2.4 mM, and slightly affected by Cu(II) concentration. The singlet oxygen (1O2) was identified as main active species at low temperature while sulfate radicals (SO4-) was more effective at high temperature with Cu(II) co-activation. Also, trivalent copper (Cu(III)) was an important active species. The higher Cu(III) content, the better SMX removal efficiency, but the stronger intermediates toxicity. In combination with removal efficiency and intermediates toxicity at different temperatures, 30 °C was the optimal reaction temperature. Overall, this study provides new perspective on utilization of waste heat and high-valence-state metal for organic wastewater treatment in PMS systems.
Collapse
|