1
|
Tan H, Othman MHD, Kek HY, Chong WT, Nyakuma BB, Wahab RA, Teck GLH, Wong KY. Revolutionizing indoor air quality monitoring through IoT innovations: a comprehensive systematic review and bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44463-44488. [PMID: 38943001 DOI: 10.1007/s11356-024-34075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Indoor air quality (IAQ) in the built environment is significantly influenced by particulate matter, volatile organic compounds, and air temperature. Recently, the Internet of Things (IoT) has been integrated to improve IAQ and safeguard human health, comfort, and productivity. This review seeks to highlight the potential of IoT integration for monitoring IAQ. Additionally, the paper details progress by researchers in developing IoT/mobile applications for IAQ monitoring, and their transformative impact in smart building, healthcare, predictive maintenance, and real-time data analysis systems. It also outlines the persistent challenges (e.g., data privacy, security, and user acceptability), hampering effective IoT implementation for IAQ monitoring. Lastly, the global developments and research landscape on IoT for IAQ monitoring were examined through bibliometric analysis (BA) of 106 publications indexed in Web of Science from 2015 to 2022. BA revealed the most significant contributing countries are India and Portugal, while the top productive institutions and researchers are Instituto Politecnico da Guarda (10.37% of TP) and Marques Goncalo (15.09% of TP), respectively. Keyword analysis revealed four major research themes: IoT, pollution, monitoring, and health. Overall, this paper provides significant insights for identifying prospective collaborators, benchmark publications, strategic funding, and institutions for future IoT-IAQ researchers.
Collapse
Affiliation(s)
- Huiyi Tan
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor, Skudai, Malaysia
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor, Skudai, Malaysia
| | - Hong Yee Kek
- Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310, Johor, Skudai, Malaysia
| | - Wen Tong Chong
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Bemgba Bevan Nyakuma
- Department of Chemical Sciences, Faculty of Science and Computing, Pen Resource University, P. M. B, Gombe, 0198, Gombe State, Nigeria
| | - Roswanira Abdul Wahab
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor, Skudai, Malaysia
- Department of Chemistry, Faculty of Sciences, Universiti Teknologi Malaysia, 81310, Johor, Skudai, Malaysia
| | - Gabriel Ling Hoh Teck
- Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, 81310, Johor, Skudai, Malaysia
| | - Keng Yinn Wong
- Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310, Johor, Skudai, Malaysia.
- Process Systems Engineering Centre (PROSPECT), Universiti Teknologi Malaysia, 81310, Johor, Skudai, Malaysia.
| |
Collapse
|
2
|
Kek HY, Tan H, Othman MHD, Nyakuma BB, Goh PS, Wong SL, Deng X, Leng PC, Yatim AS, Wong KY. Perspectives on human movement considerations in indoor airflow assessment: a comprehensive data-driven systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121253-121268. [PMID: 37979109 DOI: 10.1007/s11356-023-30912-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Understanding particle dispersion characteristics in indoor environments is crucial for revising infection prevention guidelines through optimized engineering control. The secondary wake flow induced by human movements can disrupt the local airflow field, which enhances particle dispersion within indoor spaces. Over the years, researchers have explored the impact of human movement on indoor air quality (IAQ) and identified noteworthy findings. However, there is a lack of a comprehensive review that systematically synthesizes and summarizes the research in this field. This paper aims to fill that gap by providing an overview of the topic and shedding light on emerging areas. Through a systematic review of relevant articles from the Web of Science database, the study findings reveal an emerging trend and current research gaps on the topic titled Impact of Human Movement in Indoor Airflow (HMIA). As an overview, this paper explores the effect of human movement on human microenvironments and particle resuspension in indoor environments. It delves into the currently available methods for assessing the HMIA and proposes the integration of IoT sensors for potential indoor airflow monitoring. The present study also emphasizes incorporating human movement into ventilation studies to achieve more realistic predictions and yield more practical measures. This review advances knowledge and holds significant implications for scientific and public communities. It identifies future research directions and facilitates the development of effective ventilation strategies to enhance indoor environments and safeguard public health.
Collapse
Affiliation(s)
- Hong Yee Kek
- Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Huiyi Tan
- Faculty of Chemical & Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Bemgba Bevan Nyakuma
- Department of Chemical Sciences, Faculty of Science and Computing, Pen Resource University, P. M. B. 086, Gombe, Gombe State, Nigeria
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Syie Luing Wong
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Xiaorui Deng
- Department of Building Environment and Energy Engineering, College of Civil Engineering, Hunan University, Changsha, 410082, Hunan, China
| | - Pau Chung Leng
- Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Ardiyansyah Saad Yatim
- Department of Mechanical Engineering, Universitas Indonesia, 16424, Depok, Jawa Barat, Indonesia
| | - Keng Yinn Wong
- Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| |
Collapse
|
3
|
Fowler P, Del Ama Gonzalo F, Newell S, Poolman J, Montero Burgos MJ, González Lezcano RA. Assessment of indoor air quality and comfort by comparing an energy simulation and actual data in Native American shelters. FRONTIERS IN BUILT ENVIRONMENT 2023; 9. [DOI: 10.3389/fbuil.2023.1202965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Introduction: This research will determine if a native American shelter (wigwam) can create comfort and if while doing so can provide healthy indoor air quality (IAQ) levels as defined by current standards. Concurrent to this research a technique to digitally model the outcomes of comfort created within the shelter was developed.Methods: A fullsize example of a wigwam was built and data from inside and outside the wigwam monitored for comparison. Data collected both inside and outside was temperature and relative humidity of the air, collected inside the wigwam were CO2, VOC, and PM2.5 levels. The wigwam allowed us to compare the accuracy of a digital model created in Design Builder. The Design Builder model was made to the specific size, materials, and location of the actual wigwam. This allowed an accurate comparison of temperature and relative humidity levels. Design-Builder accurately recreated the attributes of the full-size wigwam.Results and Discussion: It was found that comfort can be achieved to modern standards in this native shelter; as temperature, relative humidity, and rainfall exposure can all be controlled to acceptable levels. Indoor air quality is always at an acceptable level when a fire isn’t active. When an open fire is introduced, the particulates and VOC released into the interior of the wigwam are at dangerous levels. A woodstove with flue pipe allowed for comfort to be maintained at healthier air quality levels but did not reach acceptable levels for particulate matter.
Collapse
|