1
|
Amer AE, Ghoneim HA, Abdelaziz RR, Shehatou GSG, Suddek GM. L-carnitine attenuates autophagic flux, apoptosis, and necroptosis in rats with dexamethasone-induced non-alcoholic steatohepatitis. BMC Pharmacol Toxicol 2024; 25:102. [PMID: 39736705 DOI: 10.1186/s40360-024-00820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND UpToDate, no drugs have been approved to treat nonalcoholic steatohepatitis, the advanced stage of the most prevalent liver disease, non-alcoholic fatty liver disease. The present study was conducted to explore the potential influences of L-carnitine on the pathomechanisms of hepatic injury that mediate progression to non-alcoholic steatohepatitis in dexamethasone-toxified rats. METHODS Male Wistar rats were allocated as follows: dexamethasone group, rats received dexamethasone (8 mg/kg/day, intraperitoneally) for 6 days; DEXA-LCAR300, DEXA-LCAR500, and DEXA-MET groups, rats administered L-carnitine (300 or 500 mg/kg/day, IP) or metformin (500 mg/kg/day, orally) one week prior to dexamethasone injection (8 mg/kg/day, IP) and other six days alongside dexamethasone administration. Two groups of age-matched normal rats received either the drug vehicle (the control group) or the higher dose of L-carnitine (the drug-control group). At the end of the experiment, sets of biochemical, histological, and immunohistochemical examinations were performed. RESULTS L-carnitine (mainly at the dose of 500 mg/kg/day) markedly abolished dexamethasone-induced alterations in glucose tolerance, hepatic histological features, and serum parameters of hepatic function and lipid profile. Moreover, it significantly ameliorated dexamethasone-induced elevations of hepatic oxidative stress, SREBP-1 and p-MLKL protein levels, and nuclear FOXO1, LC3, P62, and caspase-3 immunohistochemical expression. Furthermore, it markedly diminished dexamethasone-induced suppression of hepatic Akt phosphorylation and Bcl2 immunohistochemical expression. The effects of L-carnitine (500 mg/kg/day) were comparable to those of metformin in most assessments and better than its corresponding lower dose. CONCLUSION These findings introduce L-carnitine as a potential protective drug that may mitigate the rate of disease progression in non-alcoholic fatty liver disease patients with early stages or those at the highest risks.
Collapse
Affiliation(s)
- Ahmed E Amer
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa City, Dakahliya, 35712, Egypt.
| | - Hamdy A Ghoneim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Rania R Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - George S G Shehatou
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa City, Dakahliya, 35712, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
2
|
Hassanin HM, Kamal AA, Ismail OI. Resveratrol ameliorates atrazine-induced caspase-dependent apoptosis and fibrosis in the testis of adult albino rats. Sci Rep 2024; 14:17743. [PMID: 39085279 PMCID: PMC11291673 DOI: 10.1038/s41598-024-67636-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Pesticides like atrazine which are frequently present in everyday surroundings, have adverse impacts on human health and may contribute to male infertility. The work aimed to analyze the histological and biochemical effects of atrazine on the testis in adult albino rats and whether co-administration with resveratrol could reverse the effect of atrazine. Forty adult male albino rats in good health participated in this study. They were categorized at random into four groups: the Group Ӏ received water through a gastric tube for two months every day, the Group ӀӀ received resveratrol (20 mg/kg body weight (b.w.)) through a gastric tube for two months every day, the Group ӀӀӀ received atrazine (50 mg/kg bw) through a gastric tube for two months every day, the Group ӀV received concomitant doses of atrazine and resveratrol for two months every day. The testes of the animals were then carefully removed and prepared for biochemical, immunohistochemical, light, and electron microscopic studies. Atrazine exposure led to a significant decrease in serum testosterone hormone level, upregulation of caspase 3 and iNOS mRNA levels, destructed seminiferous tubules with few sperms in their lumens, many collagen fibres accumulation in the tunica albuginea and the interstitium, abnormal morphology of some sperms as well as many vacuolations, and damaged mitochondria in the cytoplasm of many germ cells. Concomitant administration of resveratrol can improve these adverse effects. It was concluded that atrazine exposure is toxic to the testis and impairs male fertility in adult rat and coadministration of resveratrol guards against this toxicity.
Collapse
Affiliation(s)
- Hala Mohamed Hassanin
- Human Anatomy and Embryology Department, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Asmaa A Kamal
- Medical Biochemistry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Omnia I Ismail
- Human Anatomy and Embryology Department, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.
| |
Collapse
|
3
|
Edwards H, Javed K, Yadev K, Ara C, Omer AM. Therapeutic potential of salvigenin to combat atrazine induced liver toxicity in rats via regulating Nrf-2/Keap-1 and NF-κB pathway. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 202:105966. [PMID: 38879343 DOI: 10.1016/j.pestbp.2024.105966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/11/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024]
Abstract
Atrazine (ATR) is the second most extensively used herbicide which adversely affects the body organs including liver. Salvigenin (SGN) is a flavonoid which demonstrates a wide range of biological and pharmacological abilities. This study was planned to assess the protective ability of SGN to avert ATR induced liver damage in rats. Thirty-two rats (Rattus norvegicus) were divided into four groups including control, ATR (5 mg/kg), ATR (5 mg/kg) + SGN (10 mg/kg) and SGN (10 mg/kg) alone supplemented group. ATR exposure reduced the expression of Nrf-2 while instigating an upregulation in Keap-1 expression. Furthermore, the activities of catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), heme‑oxygenase-1 (HO-1) and glutathione reductase (GSR) contents were decreased while increasing reactive oxygen species (ROS) and malondialdehyde (MDA) levels after ATR treatment. Moreover, ATR poisoning increased the levels of ALT, AST, and ALP while reducing the levels of total proteins, and albumin in hepatic tissues of rats. Besides, ATR administration escalated the expressions of Bax and Caspase-3 while inducing a downregulation in the expressions of Bcl-2. Similarly, ATR intoxication increased the levels of Interleukin-6 (IL-6), Nuclear factor kappa-B (NF-κB), Interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and the activity of cyclooxygenase-2 (COX-2). Furthermore, ATR disrupted the normal histology of hepatic tissues. However, SGN treatment remarkably protected the liver tissues via regulating antioxidant, anti, inflammatory, anti-apoptotic as well as histology parameters. Therefore, it is concluded that SGN can be used as therapeutic agent to combat ATR-induced hepatotoxicity.
Collapse
Affiliation(s)
- Henry Edwards
- Department of Biology, The University of Melbourne, Australia.
| | - Khadija Javed
- School of Natural Sciences, University of Chester, England
| | - Kumar Yadev
- Department of Biology, The University of Melbourne, Australia
| | - Chaman Ara
- Department of Zoology, Ghazi University, Pakistan
| | | |
Collapse
|
4
|
Nofal AE, AboShabaan HS, Fadda WA, Ereba RE, Elsharkawy SM, Hathout HM. L-carnitine and Ginkgo biloba Supplementation In Vivo Ameliorates HCD-Induced Steatohepatitis and Dyslipidemia by Regulating Hepatic Metabolism. Cells 2024; 13:732. [PMID: 38727268 PMCID: PMC11083725 DOI: 10.3390/cells13090732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Treatment strategies for steatohepatitis are of special interest given the high prevalence of obesity and fatty liver disease worldwide. This study aimed to investigate the potential therapeutic mechanism of L-carnitine (LC) and Ginkgo biloba leaf extract (GB) supplementation in ameliorating the adverse effects of hyperlipidemia and hepatosteatosis induced by a high-cholesterol diet (HCD) in an animal model. The study involved 50 rats divided into five groups, including a control group, a group receiving only an HCD, and three groups receiving an HCD along with either LC (300 mg LC/kg bw), GB (100 mg GB/kg bw), or both. After eight weeks, various parameters related to lipid and glucose metabolism, antioxidant capacity, histopathology, immune reactivity, and liver ultrastructure were measured. LC + GB supplementation reduced serum total cholesterol, triglyceride, low-density lipoprotein cholesterol, glucose, insulin, HOMA-IR, alanine transaminase, and aspartate transaminase levels and increased high-density lipoprotein cholesterol levels compared with those in the HCD group. Additionally, treatment with both supplements improved antioxidant ability and reduced lipid peroxidation. The histological examination confirmed that the combination therapy reduced liver steatosis and fibrosis while also improving the appearance of cell organelles in the ultrastructural hepatocytes. Finally, the immunohistochemical analysis indicated that cotreatment with LC + GB upregulated the immune expression of GLP-1 and β-Cat in liver sections that were similar to those of the control animals. Mono-treatment with LC or GB alone substantially but not completely protected the liver tissue, while the combined use of LC and GB may be more effective in treating liver damage caused by high cholesterol than either supplement alone by regulating hepatic oxidative stress and the protein expression of GLP-1 and β-Cat.
Collapse
Affiliation(s)
- Amany E. Nofal
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Hind S. AboShabaan
- Clinical Pathology Department, National Liver Institute Hospital, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Walaa A. Fadda
- Human Anatomy and Embryology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Rafik E. Ereba
- Department of Pharmacology, Faculty of Medicine, Al-Azhar University, Cario 11511, Egypt;
| | | | - Heba M. Hathout
- Natural Resources Department, Faculty of African Postgraduate Studies, Cairo University, Giza 12613, Egypt
| |
Collapse
|
5
|
Qian H, Zhao Y, Wang Y, Zhao H, Cui J, Wang Z, Ye H, Fang X, Ge Z, Zhang Y, Ye L. ATR induces hepatic lipid metabolism disorder in rats by activating IRE1α/XBP1 signaling pathway. Toxicology 2024; 501:153696. [PMID: 38056589 DOI: 10.1016/j.tox.2023.153696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/18/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Atrazine (ATR) is a widely used herbicide and due to its persistence in environment and bioaccumulation, it can cause harmful impacts on human health. ATR exposure can lead to disorders of lipid metabolism in the liver, but its underlying mechanism is still unclear. 40 eight-week-old rats were given different doses of ATR (0, 0.5, 5 and 50 mg/kg/d) for 90 days. The liver tissue and serum were collected for histological observation and biochemical analysis. The levels of lipid and oxidative stress were assessed using colorimetry. Changes in MMP and ROS of liver cells were observed through flow cytometry. The expression of mRNA and protein was detected using Real-Time PCR and western blot. The results showed that TC and HDL-C levels in both the liver and serum were increased in the ATR-treated groups. The levels of MDA were accumulated, while the levels of SOD and GSH were depleted in the liver with ATR exposure. The expression of liver lipid metabolism related genes (SCD1, DGAT2, ACC1, PPARγ) was elevated. The liver ERS was activated and the gene expression of IRE1α/XBP1 signal pathway and GRP78, GRP94 in the liver was increased. There was a correlation between the levels of ERS and the levels of lipid metabolism. These results suggested that ATR can activate ERS and promote the expression of IRE1α/XBP1 signaling pathway, and further lead to lipid metabolism disorders in rat liver. This study can provide valuable insights as a reference for the prevention and control of hazards associated with agricultural residues.
Collapse
Affiliation(s)
- Honghao Qian
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yaming Zhao
- Department of Anatomy, School of Basic Medicine, Jilin University, Changchun, China
| | - Yiming Wang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Haotang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jianwei Cui
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Ziyu Wang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Hui Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Xiaoqi Fang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Zhili Ge
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yuezhu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
6
|
Radwan SM, Abdel-Latif GA, Abbas SS, Elmongy NF, Wasfey EF. The beneficial effects of l-carnitine and infliximab in methotrexate-induced hepatotoxicity: Emphasis on Notch1/Hes-1 signaling. Arch Pharm (Weinheim) 2023; 356:e2300312. [PMID: 37625018 DOI: 10.1002/ardp.202300312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
Methotrexate (MTX)-induced hepatotoxicity is a serious adverse effect that may limit its use. Therefore, eligible drugs to ameliorate MTX-induced hepatotoxicity are required. l-Carnitine (LC) is a natural molecule with beneficial metabolic effects and infliximab (INF) is an anti-inflammatory monoclonal antibody against tumor necrosis factor-alpha (TNF-α). Recently, Notch1/Hes-1 signaling was found to play a key role in the pathogenesis of liver injury. However, its role in MTX-induced hepatotoxicity is unclear. This study aimed to evaluate the modulatory effects of LC or INF on MTX-induced hepatotoxicity and to explore the underlying mechanism with emphasis on the Notch1/Hes-1 signaling pathway. Sixty rats were randomized into six groups (n = 10): (1) control (saline); (2) MTX (20 mg/kg MTX, intraperitoneal [ip], once); (3) LC group (500 mg/kg ip, 5 days); (4) INF (7 mg/kg INF ip, once); (5) MTX+LC (20 mg/kg ip, once, 500 mg/kg ip, 5 days, respectively); (6) MTX+INF (20 mg/kg ip, once, 7 mg/kg INF ip, once, respectively). Oxidative stress, inflammatory markers, and Notch1/Hes-1 were investigated. MTX induced the expression of Notch1 and Hes-1 proteins and increased the levels of TNF-α, interleukin (IL)-6, and IL-1β in the liver. Cotreatment with LC or INF showed apparent antioxidant and anti-inflammatory effects. Interestingly, the downregulation of Notch1 and Hes-1 expression was more prominent in LC cotreatment as compared with INF. In conclusion, LC or INF attenuates MTX-induced hepatotoxicity through modulation of Notch1/Hes-1 signaling. The LC ameliorative effect against MTX-induced hepatotoxicity is significantly better than that of INF. Therefore, LC cotreatment may present a safe and therapeutically effective therapy in alleviating MTX-induced hepatotoxicity.
Collapse
Affiliation(s)
- Sara M Radwan
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ghada A Abdel-Latif
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
- Translational and Clinical Research Unit, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Samah S Abbas
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
- Translational and Clinical Research Unit, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Noura F Elmongy
- Physiology Department, Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Eman F Wasfey
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
7
|
Abarikwu SO, Ezim OE, Ikeji CN, Farombi EO. Atrazine: cytotoxicity, oxidative stress, apoptosis, testicular effects and chemopreventive Interventions. FRONTIERS IN TOXICOLOGY 2023; 5:1246708. [PMID: 37876981 PMCID: PMC10590919 DOI: 10.3389/ftox.2023.1246708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/19/2023] [Indexed: 10/26/2023] Open
Abstract
Atrazine (ATZ) is an environmental pollutant that interferes with several aspects of mammalian cellular processes including germ cell development, immunological, reproductive and neurological functions. At the level of human exposure, ATZ reduces sperm count and contribute to infertility in men. ATZ also induces morphological changes similar to apoptosis and initiates mitochondria-dependent cell death in several experimental models. When in vitro experimental models are exposed to ATZ, they are faced with increased levels of reactive oxygen species (ROS), cytotoxicity and decreased growth rate at dosages that may vary with cell types. This results in differing cytotoxic responses that are influenced by the nature of target cells, assay types and concentrations of ATZ. However, oxidative stress could play salient role in the observed cellular and genetic toxicity and apoptosis-like effects which could be abrogated by antioxidant vitamins and flavonoids, including vitamin E, quercetin, kolaviron, myricetin and bioactive extractives with antioxidant effects. This review focuses on the differential responses of cell types to ATZ toxicity, testicular effects of ATZ in both in vitro and in vivo models and chemopreventive strategies, so as to highlight the current state of the art on the toxicological outcomes of ATZ exposure in several experimental model systems.
Collapse
Affiliation(s)
- Sunny O. Abarikwu
- Reproductive Biology and Molecular Toxicology Research Group, Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | - Ogechukwu E. Ezim
- Reproductive Biology and Molecular Toxicology Research Group, Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | - Cynthia N. Ikeji
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebenezer O. Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
8
|
Das S, Sakr H, Al-Huseini I, Jetti R, Al-Qasmi S, Sugavasi R, Sirasanagandla SR. Atrazine Toxicity: The Possible Role of Natural Products for Effective Treatment. PLANTS (BASEL, SWITZERLAND) 2023; 12:2278. [PMID: 37375903 DOI: 10.3390/plants12122278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023]
Abstract
There are various herbicides which were used in the agriculture industry. Atrazine (ATZ) is a chlorinated triazine herbicide that consists of a ring structure, known as the triazine ring, along with a chlorine atom and five nitrogen atoms. ATZ is a water-soluble herbicide, which makes it capable of easily infiltrating into majority of the aquatic ecosystems. There are reports of toxic effects of ATZ on different systems of the body but, unfortunately, majority of these scientific reports were documented in animals. The herbicide was reported to enter the body through various routes. The toxicity of the herbicide can cause deleterious effects on the respiratory, reproductive, endocrine, central nervous system, gastrointestinal, and urinary systems of the human body. Alarmingly, few studies in industrial workers showed ATZ exposure leading to cancer. We embarked on the present review to discuss the mechanism of action of ATZ toxicity for which there is no specific antidote or drug. Evidence-based published literature on the effective use of natural products such as lycopene, curcumin, Panax ginseng, Spirulina platensis, Fucoidans, vitamin C, soyabeans, quercetin, L-carnitine, Telfairia occidentalis, vitamin E, Garcinia kola, melatonin, selenium, Isatis indigotica, polyphenols, Acacia nilotica, and Zingiber officinale were discussed in detail. In the absence of any particular allopathic drug, the present review may open the doors for future drug design involving the natural products and their active compounds.
Collapse
Affiliation(s)
- Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Hussein Sakr
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Isehaq Al-Huseini
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Raghu Jetti
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia
| | - Sara Al-Qasmi
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Raju Sugavasi
- Department of Anatomy, Fathima Institute of Medical Sciences, Kadapa 516003, India
| | - Srinivasa Rao Sirasanagandla
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| |
Collapse
|