1
|
Berns S, Falla-Angel J, Bonnefoy A, Charrois L, Laval-Gilly P. Stress reduction with co-culture of Miscanthus x giganteus and Pelargonium x hortorum in a pb contaminated soil to improve biomass production. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 27:353-361. [PMID: 39466113 DOI: 10.1080/15226514.2024.2419444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The industrial past of most regions in Lorraine and the intensification of activities on soils has increased the number of polluted sites. To rehabilitate these areas, several methods can be employed. In this study, co-culture of Miscanthus x giganteus and Pelargonium x hortorum was used to clean up a soil mainly contaminated by metallic elements including lead. The use of ornamental plants has been little studied, even if these species can be used to rehabilitate a site while improving its esthetics. At the end of the experiment, Pb concentrations were measured in the soil and plants. Furthermore, phytohormones were also measured to evaluate the defense mechanisms of the plants in front of pollutants. The results showed a reduction in Pb concentrations following the phytoremediation process implemented and that PxH was able to extract Pb from the soil. Results showed that co-culture was not beneficial to the development of MxG. Concerning the molecules synthesized by the plants under stress conditions, only salicin was found in MxG roots and aerial parts in particular for plants grown in individual culture. According to the results obtained, it seems that MxG is able to make compromises between the synthesis of protective molecules and its development.
Collapse
Affiliation(s)
- Sarah Berns
- Laboratoire Sols et Environnement, Université de Lorraine, INRAE, Nancy, France
| | - Jaïro Falla-Angel
- Laboratoire Sols et Environnement, Université de Lorraine, INRAE, Nancy, France
| | - Antoine Bonnefoy
- Université de Lorraine, IUT de Thionville-Yutz, PRTI, Yutz, France
| | - Lucas Charrois
- Laboratoire Sols et Environnement, Université de Lorraine, INRAE, Nancy, France
| | | |
Collapse
|
2
|
Huang H, Zhao R, Guo G, He Y, Chen S, Zhu Y, Xiao M, Liu P, Liu J, Fang Y, Zhou Y. Effect of various phosphorus levels on the extraction of Cd, the transformation of P, and phosphorus-related gene during the phytoremediation of Cd contaminated soil. ENVIRONMENTAL RESEARCH 2024; 251:118389. [PMID: 38460661 DOI: 10.1016/j.envres.2024.118389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 03/11/2024]
Abstract
Phytoremediation has emerged as a common technique for remediating Cd pollution in farmland soil. Moreover, phosphorus, an essential element for plants, can alter the pectin content of plant cell walls and facilitate the accumulation of Cd in plant tissues, thereby enhancing phytoremediation efficiency. Therefore, pot experiments were conducted in order to investigate the effect of phosphorus levels on Cd extraction, phosphorus transformation and phosphorus-related genes during phytoremediation. The results revealed that an optimal application of suitable phosphate fertilizers elevated the soil's pH and electrical conductivity (EC), facilitated the conversion of soil from insoluble phosphorus into available forms, augmented the release of pertinent enzyme activity, and induced the expression of phosphorus cycling-related genes. These enhancements in soil conditions significantly promoted the growth of ryegrass. When applying phosphorus at a rate of 600 mg/kg, ryegrass exhibited plant height, dry weight, and chlorophyll relative content that were 1.27, 1.26, and 1.18 times higher than those in the control group (P0), while the Cd content was 1.12 times greater than that of P0. The potentially toxic elements decline ratio and bioconcentration factor were 42.86% and 1.17 times higher than those of P0, respectively. Consequently, ryegrass demonstrated the highest Cd removal efficiency under these conditions. Results from redundancy analysis (RDA) revealed a significant correlation among pH, total phosphorus, heavy metal content, phosphorus forms, soil enzyme activity, and phosphorus-related genes. In conclusion, this study suggests applying an optimal amount of suitable phosphate fertilizers can enhance restoration efficiency, leading to a reduction in soil Cd content and ultimately improving the safety of crop production in farmlands.
Collapse
Affiliation(s)
- Hongli Huang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Rule Zhao
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Guanlin Guo
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China.
| | - Yinhai He
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Shuofu Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Yichun Zhu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Mingjun Xiao
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Ping Liu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Junwu Liu
- Hunan Engineering Research Center of Mine Site Pollution Remediation, Changsha 410118, China
| | - Yingchun Fang
- Hunan Engineering Research Center of Mine Site Pollution Remediation, Changsha 410118, China
| | - Yaoyu Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
3
|
Yao S, Zhou B. Enhancing phytoremediation of cadmium and arsenic in alkaline soil by Miscanthus sinensis: A study on the synergistic effect of endophytic fungi and biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171458. [PMID: 38438035 DOI: 10.1016/j.scitotenv.2024.171458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/25/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Endophytic fungi (Trichoderma harzianum (TH) and Paecilomyces lilacinus (PL)) showed potential in phytoremediation for soils contaminated with potentially toxic elements (PTEs (Cd and As)). However, their efficiency is limited, which can be enhanced with the assistance of biochar. This study sought to investigate the effects of TH at two application rates (T1: 4.5 g m-2; T2: 9 g m-2), PL at two application rates (P1: 4.5 g m-2; P2: 9 g m-2), in conjunction with biochar (BC) at 750 g m-2 on the phytoremediation of PTEs by Miscanthus sinensis (M. sinensis). The results showed that the integration of endophytic fungi with biochar notably enhanced the accumulation of Cd and As in M. sinensis by 59.60 %-114.38 % and 49.91 %-134.60 %, respectively. The treatments T2BC and P2BC emerged as the most effective. Specifically, the P2BC treatment significantly enhanced the soil quality index (SQI > 0.55) across all examined soil layers, markedly improving the overall soil condition. It was observed that T2BC treatment could elevate the SQI to 0.56 at the 0-15 cm depth. The combined amendment shifted the primary influences on plant PTEs accumulation from fungal diversity and soil nutrients to bacterial diversity and the availability of soil PTEs. Characteristic microorganisms identified under the combined treatments were RB41 and Pezizaceae, indicating an increase in both bacterial and fungal diversity. This combination altered the soil microbial community, influencing key metabolic pathways. The combined application of PL and biochar was superior to the TH and biochar combination for the phytoremediation of M. sinensis. This approach not only enhanced the phytoremediation potential but also positively impacted soil health and microbial community, suggesting that the synergistic use of endophytic fungi and biochar is an effective strategy for improving the condition of alkaline soils contaminated with PTEs.
Collapse
Affiliation(s)
- Shaoxiong Yao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Beibei Zhou
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China.
| |
Collapse
|
4
|
Peng X, Zhao R, Yang Y, Zhou Y, Zhu Y, Qin P, Wang M, Huang H. Effect of the Combination of Phosphate-Solubilizing Bacteria with Orange Residue-Based Activator on the Phytoremediation of Cadmium by Ryegrass. PLANTS (BASEL, SWITZERLAND) 2023; 12:2727. [PMID: 37514342 PMCID: PMC10384834 DOI: 10.3390/plants12142727] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/25/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Amendments with activators or microorganisms to enhance phytoremediation in toxic-metal-polluted soils have been widely studied. In this research, the production of indoleacetic acid, siderophore, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase by phosphate-solubilizing bacteria was investigated during a pure culture experiment. Pot experiments were performed using Cd-polluted soil with the following treatments: control (CK, only ultrapure water), orange-peel-based activator (OG), and a combination of phosphate-solubilizing bacteria (Acinetobacter pitti) and OG (APOG). Ryegrass plant height and fresh weight, Cd content in ryegrass, total and available Cd soil content, soil enzyme activity, and soil bacterial diversity were determined in this work. The findings showed that the height of ryegrass in OG and APOG increased by 14.78% and 21.23%. In the APOG group, a decreased ratio of Cd was 3.37 times that of CK, and the bioconcentration factor was 1.28 times that of CK. The neutral phosphatase activity of APOG was 1.33 times that of CK and catalase activity was 1.95 times that of CK. The activity of urease was increased by 35.48%. APOG increased the abundance of beneficial bacteria and Proteobacteria was the dominant bacterium, accounting for 57.38% in APOG. Redundancy analysis (RDA) showed that nutrient elements were conducive to the propagation of the dominant bacteria, the secretion of enzymes, and the extraction rate of Cd in the soil. The possible enhancement mechanism of phytoremediation of cadmium by A. pitti combined with OG was that, on the one hand, APOG increased soil nutrient elements and enzyme activities promoted the growth of ryegrass. On the other hand, APOG activated Cd and boosted the movement of Cd from soil to ryegrass. This research offers insight for the combination of phosphate-solubilizing bacteria with an orange-peel-based activator to improve phytoremediation of Cd-contaminated soils and also provides a new way for the resource utilization of fruit residue.
Collapse
Affiliation(s)
- Xin Peng
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Rule Zhao
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Yuan Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Yichun Zhu
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Pufeng Qin
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Mi Wang
- Chinalco Environmental Protection and Ecological Technology (Hunan) Co., Ltd., Changsha 410021, China
| | - Hongli Huang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|