1
|
Liu Q, Tong Y, Li Q, Liao M, Wang J. Knowledge, attitudes, and practice of medical students towards the use of benzalkonium chloride in hand sanitization from the perspective of environmental sustainability. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-16. [PMID: 39661332 DOI: 10.1080/09603123.2024.2440906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/07/2024] [Indexed: 12/12/2024]
Abstract
Control measures for disinfectant pollution and related anthropogenic behaviors are required. Benzalkonium chloride (BAC) with widespread use especially in hand sanitization is highlighted as a representative disinfectant emerging contaminant. This cross-sectional survey was conducted to assess the knowledge, attitudes, practice regarding BAC use for hand hygiene among medical students from the perspective of environmental sustainability. Of the 703 responding students, only 3.7% had never used hand sanitizer products containing BAC. But few students paid attention to the "environmental friendliness" property of products when consumption. Mean knowledge test score was 1.90 out of 5, suggesting poor knowledge regarding BAC use. Most students had positive attitudes toward source control of BAC pollution and strong intentions to learn more about environmental knowledge related to BAC and other disinfectants. Data indicated that medical students had positive attitudes but lacked knowledge and practices towards eco-friendly disinfectant use, thus further training and practice standards are required.
Collapse
Affiliation(s)
- Qinghua Liu
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Yongxin Tong
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Qin Li
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Mengfan Liao
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Jun Wang
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Liu L, Shen Z, Wang C. Recent advances and new insights on the construction of photocatalytic systems for environmental disinfection. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120235. [PMID: 38310793 DOI: 10.1016/j.jenvman.2024.120235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/06/2024]
Abstract
Photocatalysis, as a sustainable and environmentally friendly green technology, has garnered widespread recognition and application across various fields. Especially its potential in environmental disinfection has been highly valued by researchers. This study commences with foundational research on photocatalytic disinfection technology and provides a comprehensive overview of its current developmental status. It elucidates the complexity of the interface reaction mechanism between photocatalysts and microorganisms, providing valuable insights from the perspectives of materials and microorganisms. This study reviews the latest design and modification strategies (Build heterojunction, defect engineering, and heteroatom doping) for photocatalysts in environmental disinfection. Moreover, this study investigates the research focuses and links in constructing photocatalytic disinfection systems, including photochemical reactors, light sources, and material immobilization technologies. It studies the complex challenges and influencing factors generated by different environmental media during the disinfection process. Simultaneously, a comprehensive review extensively covers the research status of photocatalytic disinfection concerning bacteria, fungi, and viruses. It reveals the observable efficiency differences caused by the microstructure of microorganisms during photocatalytic reactions. Based on these influencing factors, the economy and effectiveness of photocatalytic disinfection systems are analyzed and discussed. Finally, this study summarizes the current application status of photocatalytic disinfection products. The challenges faced by the synthesis and application of future photocatalysts are proposed, and the future development in this field is discussed. The potential for research and innovation has been further emphasized, with the core on improving efficiency, reducing costs, and strengthening the practical application of photocatalysis in environmental disinfection.
Collapse
Affiliation(s)
- Liming Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Zhurui Shen
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, PR China.
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China.
| |
Collapse
|
3
|
Amodeo D, Manzi P, De Palma I, Puccio A, Nante N, Barcaccia M, Marini D, Pietrella D. Efficacy of Violet-Blue (405 nm) LED Lamps for Disinfection of High-Environmental-Contact Surfaces in Healthcare Facilities: Leading to the Inactivation of Microorganisms and Reduction of MRSA Contamination. Pathogens 2023; 12:1338. [PMID: 38003802 PMCID: PMC10674356 DOI: 10.3390/pathogens12111338] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Effective disinfection procedures in healthcare facilities are essential to prevent transmission. Chemical disinfectants, hydrogen peroxide vapour (HPV) systems and ultraviolet (UV) light are commonly used methods. An emerging method, violet-blue light at 405 nm, has shown promise for surface disinfection. Its antimicrobial properties are based on producing reactive oxygen species (ROS) that lead to the inactivation of pathogens. Studies have shown significant efficacy in reducing bacterial levels on surfaces and in the air, reducing nosocomial infections. The aim of this study was to evaluate the antimicrobial effectiveness of violet-blue (405 nm) LED lamps on high-contact surfaces in a hospital infection-control laboratory. High-contact surfaces were sampled before and after 7 days of exposure to violet-blue light. In addition, the effect of violet-blue light on MRSA-contaminated surfaces was investigated. Exposure to violet-blue light significantly reduced the number of bacteria, yeasts and moulds on the sampled surfaces. The incubator handle showed a low microbial load and no growth after irradiation. The worktable and sink showed an inconsistent reduction due to shaded areas. In the second experiment, violet-blue light significantly reduced the microbial load of MRSA on surfaces, with a greater reduction on steel surfaces than on plastic surfaces. Violet-blue light at 405 nm has proven to be an effective tool for pathogen inactivation in healthcare settings Violet-blue light shows promise as an additional and integrated tool to reduce microbial contamination in hospital environments but must be used in combination with standard cleaning practices and infection control protocols. Further research is needed to optimise the violet-blue, 405 nm disinfection method.
Collapse
Affiliation(s)
- Davide Amodeo
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy;
| | - Pietro Manzi
- Hospital of Santa Maria di Terni, 05100 Terni, Italy;
| | - Isa De Palma
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy;
| | - Alessandro Puccio
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (A.P.); (N.N.)
| | - Nicola Nante
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (A.P.); (N.N.)
| | | | - Daniele Marini
- Medical Microbiology Section, Department of Medicine and Surgery, University of Perugia, 06100 Perugia, Italy; (D.M.); (D.P.)
| | - Donatella Pietrella
- Medical Microbiology Section, Department of Medicine and Surgery, University of Perugia, 06100 Perugia, Italy; (D.M.); (D.P.)
| |
Collapse
|
4
|
Liao M, Wei S, Zhao J, Wang J, Fan G. Risks of benzalkonium chlorides as emerging contaminants in the environment and possible control strategies from the perspective of ecopharmacovigilance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115613. [PMID: 37862750 DOI: 10.1016/j.ecoenv.2023.115613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
An unprecedented increase in the use of disinfection products triggered by the coronavirus disease 2019 (COVID-19) pandemic is resulting in aggravating environmental loads of disinfectants as emerging contaminants, which has been considered a cause for worldwide secondary disasters. This review analyzed the literature published in the last decade about occurrence, bioaccumulation, and possible environmental risks of benzalkonium chlorides (BKCs) as emerging contaminants. Results indicated that BKCs globally occurred in municipal wastewater, surface water, groundwater, reclaimed water, sludge, sediment, soil, roof runoff, and residential dust samples across 13 countries. The maximum residual levels of 30 mg/L and 421 μg/g were reported in water and solid environmental samples, respectively. Emerging evidences suggested possible bioaccumulation of BKCs in plants, even perhaps humans. Environmentally relevant concentrations of BKCs exert potential adverse impacts on aquatic and terrestrial species, including genotoxicity, respiratory toxicity, behavioural effects and neurotoxicity, endocrine disruption and reproductive impairment, phytotoxicity, etc. Given the intrinsic biocidal and preservative properties of disinfectants, the inductive effects of residual BKCs in environment in terms of resistance and imbalance of microorganisms have been paid special attention. Considering the similarities of disinfectants to pharmaceuticals, from the perspective of ecopharmacovigilance (EPV), a well-established strategy for pharmaceutical emerging contaminants, we use the control of BKC pollution as a case, and provide some recommendations for employing the EPV measures to manage environmental risks posed by disinfectant emerging contaminants.
Collapse
Affiliation(s)
- Mengfan Liao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Songyi Wei
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jinru Zhao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Guangquan Fan
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
5
|
Valentukeviciene M, Andriulaityte I, Chadysas V. Assessment of Residual Chlorine Interaction with Different Microelements in Stormwater Sediments. Molecules 2023; 28:5358. [PMID: 37513231 PMCID: PMC10386466 DOI: 10.3390/molecules28145358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
One consequence of intensive outdoor disinfection using chlorinated compounds is environmental pollution. It has been found that disinfectants are the most effective tool to avoid the spread of infections and viruses. Studies have shown that the use of chlorine-based disinfectants (sodium hypochlorite) leaves residual chlorine and other disinfection byproducts in the environment. They also have harmful effects on, inter alia, water quality, ecosystems, as well as exacerbating the corrosion of surfaces. To meet regulatory standards, monitoring of the presence of residual chlorine in the environment is vitally important. The aim of this study is to analyse the occurrence of residual chlorine in stormwater after outdoor disinfection using sodium hypochlorite and to investigate its interaction with different microelements as well their possible impacts. Stormwater samples collected at permanently disinfected locations were analysed via X-ray absorption spectroscopy. The concentrations of Cl and the following elements Na, Si, K, Ca, Cr, Fe, Ni, Cu, Zn were detected and their relationship with chlorine was determined using the Python programming language. The research presents Cl concentration values (%) that vary from 0.02 to 0.04. The results of the modelling revealed strong correlations between Cl and Fe (value 0.65) and Ca (value -0.61) and the occurrence of CaCl2 and FeCl3. The strong relationship between Cl and Fe explains the significant increase in surface corrosion after disinfection with chlorine-based substances.
Collapse
Affiliation(s)
- Marina Valentukeviciene
- Department of Environmental Protection and Water Engineering, Faculty of Environment Engineering, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| | - Ieva Andriulaityte
- Department of Environmental Protection and Water Engineering, Faculty of Environment Engineering, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| | - Viktoras Chadysas
- Department of Mathematical Statistics, Faculty of Fundamentals Science, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| |
Collapse
|
6
|
Tong Y, Zhu Z, Chen W, Wang F, Hu X, Wang J. Knowledge, attitudes and practice regarding environmental friendly disinfectants for household use among residents of China in the post-pandemic period. Front Public Health 2023; 11:1161339. [PMID: 37139374 PMCID: PMC10150880 DOI: 10.3389/fpubh.2023.1161339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/20/2023] [Indexed: 05/05/2023] Open
Abstract
Background A sharp rise in household consumption of disinfectants triggered by COVID-19 pandemic has generated tremendous environmental burden and risks of disinfectant emissions in the post-pandemic period. To address this emerging challenge, replacing highly hazardous disinfectants with more environmental friendly alternatives has been accepted as an inherently effective solution to environment issues posed by disinfectant emerging contaminants. However, no study has yet been done to explore the potential customers' attitudes and the market prospect of environmental friendly disinfectants until now. Methods This cross-sectional questionnaire-based survey was conducted from January to March, 2022, among resident volunteers in China, to explore the practices, knowledge and attitudes of the public regarding environmental friendly disinfectants for household use. Results Among a total of 1,861 Chinese residents finally included in the analyses, 18% agreed or strongly agreed that they paid special attention to the environmental certification label on the product, and only bought the environmental certified disinfectant products; 16% and 10% were using environmental friendly disinfectants for hand sanitization and environmental disinfection, respectively. The mean self-assessed and actual knowledge scores were 2.42 ± 1.74 and 2.12 ± 1.97, respectively, out of a total of 5. Participants having good practices of consuming environmental friendly disinfectants achieved higher knowledge scores. Residents' overall attitudes toward the development, consumption and application of environmental friendly disinfectants were very positive. "Possible conflict between disinfection effectiveness and environmental factor of disinfectants in a context of severe COVID-19 pandemic" was considered as the most important barrier jeopardizing the participants' usage intention for environmental friendly disinfectants. Conclusions These data suggested most residents of China had a positive attitude, poor knowledge and practices toward environmental friendly disinfectants. More should be done to enhance the residents' environmental knowledge levels about disinfectants, and to further develop and promote disinfectant products with both excellent disinfection activity and environmentally friendly attributes.
Collapse
Affiliation(s)
- Yongxin Tong
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Zerong Zhu
- Institute of Pathogenic Biology, Wuhan Centers for Disease Prevention and Control, Wuhan, China
| | - Wenjing Chen
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Fang Wang
- Institute of Pathogenic Biology, Wuhan Centers for Disease Prevention and Control, Wuhan, China
| | - Xianmin Hu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
- *Correspondence: Jun Wang
| |
Collapse
|