1
|
Malik MS, Rehman A, Shah IH, Arif S, Nan K, Yan Y, Song S, Hameed MK, Azam M, Zhang Y. Green synthesized silicon dioxide nanoparticles (SiO 2NPs) ameliorated the cadmium toxicity in melon by regulating antioxidant enzymes activity and stress-related genes expression. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125459. [PMID: 39644955 DOI: 10.1016/j.envpol.2024.125459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/06/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Green synthesized nanoparticles (NPs) are an eco-friendly and cost-effective approach to reduce heavy metal stress in plants. Among heavy metals, cadmium (Cd) possesses higher toxicity to the crops and ultimately reduces their growth and yield. The current study aims to evaluate the effectiveness of green synthesized SiO2NPs to reduce toxic effects of Cd in melon (Cucumis melo) by regulating physiological parameters, enhancing antioxidant enzyme activity, and modulating stress-related gene expression. The SiO2NPs were synthesized using Artemisia annua plant extract having spherical shape and size within the range of 40-70 nm and characterized using advanced spectroscopic and analytical techniques. The application of SiO2NPs (75 mg/L) significantly improved physiological parameters such as shoot length (SL), root length (RL), leaf fresh weight (LFW), root fresh weight (RFW), leaf dry weight (LDW) and root dry weight (RDW) by 14%, 20%, 15%, 16%, 14%, and 28%, respectively, compared to Cd-stressed plants. Photosynthetic pigments (chlorophyll and carotenoids) showed a notable increase of 15% and 40%, respectively. Furthermore, the activities of antioxidant enzymes such as SOD, POD, CAT, and APX were enhanced by 28.67%, 35.45%, 32.07%, and 42.75%, respectively. In addition, applying SiO2NPs increased the concentration of macronutrients N, P, and K by 33%, 40%, and 37%, respectively, compared to Cd-stressed plants. Moreover, SiO2NPs upregulated the expression of several stress-related genes and reduced Cd accumulation in shoots and roots. This study reveals that green synthesized SiO2NPs effectively reduced the Cd toxicity in melon by improving morphological and physiological parameters, enhancing antioxidant enzyme activity, and regulating the expression of stress-related genes. These findings suggest that green synthesized SiO2NPs could play a crucial role in sustainable agriculture by protecting crops from heavy metal stress.
Collapse
Affiliation(s)
| | - Asad Rehman
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | | | - Samiah Arif
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Nan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yumeng Yan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiren Song
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | | | - Muhammad Azam
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yidong Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Danish M, Shahid M, Shafi Z, Farah MA, Al-Anazi KM. Cu-tolerant Klebsiella variicola SRB-4 increased the nanoparticle (NP) stress resilience in garden peas (Pisum sativum L.) raised in soil polluted with varying doses of copper oxide (CuO)-NP. World J Microbiol Biotechnol 2025; 41:34. [PMID: 39794604 DOI: 10.1007/s11274-024-04239-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
Utilizing metal/nanoparticle (NP)- tolerant plant growth-promoting rhizobacteria (PGPR) is a sustainable and eco-friendly approach for remediation of NP-induced phytotoxicity. Here, Pisum sativum (L.) plants co-cultivated with different CuO-NP concentrations exhibited reduced growth, leaf pigments, yield attributes, and increased oxidative stress levels. Cu-tolerant (800 µM) Klebsiella variicola strain SRB-4 (Accession no. OR715781.1) recovered from metal-contaminated soils produced various PGP traits, including IAA, EPS, siderophore, HCN, ammonia, and solubilized insoluble P. The PGP substances were marginally increased with increasing CuO-NP concentrations. When applied, Cu-tolerant SRB-4 strain increased root length (18%), root biomass (15.3%), total chlorophyll (29%), carotenoids (30%), root N (21%), root P (23%), total soluble protein (20%) nodule number (32%), nodule biomass (39%) and leghaemoglobin content (18%) in 50 µM CuO-NP-exposed peas. Furthermore, proline, malondialdehyde (MDA), superoxide radical, hydrogen peroxide (H2O2) content, and membrane injury in K. variicola-inoculated and 50 µM CuO-NP-treated plants were maximally and significantly (p ≤ 0.05) reduced by 70.6, 26.8, 60.8, and 71.6%, respectively, over uninoculated but treated with similar NP doses. Moreover, K. variicola inoculation caused a significant (p ≤ 0.05) decline in Cu uptake in roots (71%), shoots (65.5%), and grains (76.4%) of peas grown in soil contaminated with 50 µM CuO-NP. The multivariate i.e. heat map and pearson correlation analyses between the NP-treated and PGPR inoculated parameters revealed a significant and strong positive corelation. The NP-tolerant indigenous beneficial K. variicola could be applied as an alternative to enhance the production of P. sativum cultivated in nano-polluted soil systems. Additionally, more investigation is required to ascertain the seed/soil inoculation effect of K. variicola SRB-4 on soil biological activities and different crops under various experimental setups.
Collapse
Affiliation(s)
- Mohammad Danish
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, India
| | - Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agriculture Sciences, Aligarh Muslim University, Aligarh, U.P, 202002, India.
| | - Zaryab Shafi
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Khalid Mashay Al-Anazi
- Department of Zoology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Siddiqui S. DNA Damage, Cell Death, and Alteration of Cell Proliferation Insights Caused by Copper Oxide Nanoparticles Using a Plant-Based Model. BIOLOGY 2024; 13:805. [PMID: 39452114 PMCID: PMC11505580 DOI: 10.3390/biology13100805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
The speedy growth of copper oxide nanoparticle (CuO NP) manufacturing due to their wide application in industries has caused concerns due to their increased discharge into the environment from both purposeful and accidental sources. Their presence at an elevated concentration in the environment can cause potential hazards to the plant kingdom, specifically to staple food crops. However, limited research is available to determine the consequences of CuO NPs. The present study aimed to assess the morphological and cytological changes induced by CuO NPs on Pisum sativum L., a key staple food crop. Seeds of Pisum sativum were exposed to various concentrations of CuO NPs (0, 25, 50, 75, 100, and 125 ppm) for 2 h, and their effects on seed germination (SG), radicle length (RL), cell proliferation kinetics (CPK), mitotic index (MI), cell death (CD), micronucleus frequency (MNF), and chromosomal aberration frequency (CAF) were studied. The results indicate a significant reduction in SG, RL, CPK, and MI and a significant dose-dependent increase in CD, MNF, and CAF. CuO NP treatment has led to abnormal meiotic cell division, increased incidence of micronucleus frequency, and chromosomal aberration frequency. Additionally, the CuO NP-treated groups showed an increase in the percentage of aberrant meiotic cells such as laggard (LG), double bridge (DB), stickiness (STC), clumped nuclei (CNi), precocious separation (PS), single bridge (SB), and secondary association (SA). CuO NP treatment led to reductions in SG as follows: 55% at 24 h, 60.10% at 48 h, and 65% at 72 h; reductions in RL as follows: 0.55 ± 0.021 cm at 24 h, 0.67 ± 0.01 cm at 48 h, and 0.99 ± 0.02 cm at 72 h; reductions in CPK as follows: 34.98% at prophase, 7.90% at metaphase, 3.5% at anaphase, and 0.97% at telophase. It also led to a 57.45% increase in CD, a 39.87% reduction in MI, and a 60.77% increase in MNF at a higher concentration of 125 ppm. The findings of this study clearly show that CuO NPs have a genotoxic effect on the food crop plant Pisum sativum.
Collapse
Affiliation(s)
- Sazada Siddiqui
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| |
Collapse
|
4
|
Graciano DE, Pontes MS, Araujo LO, Lima RG, Grillo R, Machulek A, Santiago EF, Oliveira SL, Caires ARL. CuO nanoparticles' effect on the photosynthetic performance in seed tissues of Inga laurina (Fabaceae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50722-50732. [PMID: 39102133 DOI: 10.1007/s11356-024-34499-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Copper oxide nanoparticles (CuONPs) have been produced on a large scale because they can be applied across various fields, especially in nano-enabled healthcare and agricultural products. However, the increasing use of CuONPs leads to their release and accumulation into the environment. The CuONPs uptaken by seeds and their implications on germination behavior have been reported, but little is known or understood about their impact on photosynthesis in seed tissues. To fill knowledge gaps, this study evaluated the effects of CuONP concentrations (0-300 mg L-1) on the photosynthetic activity of Inga laurina seeds. The microscopy data showed that CuONPs had an average size distribution of 57.5 ± 0.7 nm. Copper ion release and production of reactive oxygen species (ROS) by CuONPs were also evaluated by dialysis and spectroscopy experiments, respectively. CuONPs were not able to intrinsically generate ROS and released a low content of Cu2⁺ ions (4.5%, w/w). Time evolution of chlorophyll fluorescence imaging and laser-induced fluorescence spectroscopy were used to monitor the seeds subjected to nanoparticles during 168 h. The data demonstrate that CuONPs affected the steady-state maximum chlorophyll fluorescence (F m ' ), the photochemical efficiency of photosystem II (F v / F m ), and non-photochemical quenching ( NPQ ) of Inga laurina seeds over time. Besides, the NPQ significantly increased at the seed development stage, near the root protrusion stage, probably due to energy dissipation at this germination step. Additionally, the results indicated that CuONPs can change the oscillatory rhythms of energy dissipation of the seeds, disturbing the circadian clock. In conclusion, the results indicate that CuONPs can affect the photosynthetic behavior of I. laurina seeds. These findings open opportunities for using chlorophyll fluorescence as a non-destructive tool to evaluate nanoparticle impact on photosynthetic activity in seed tissues.
Collapse
Affiliation(s)
- Daniela Espanguer Graciano
- Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, MS, Brazil
- Faculty of Exact Sciences and Technology, Federal University of Grande Dourados (UFGD), Dourados, MS, Brazil
| | - Montcharles Silva Pontes
- Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, MS, Brazil
- Plant Resources Study Group, Natural Resources Program, Mato Grosso do Sul State University (UEMS), Dourados, MS, Brazil
| | - Leandro Oliveira Araujo
- Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, MS, Brazil
| | - Regiane Godoy Lima
- Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, MS, Brazil
| | - Renato Grillo
- Department of Physics and Chemistry, School of Engineering, São Paulo State University (UNESP), Ilha Solteira, SP, Brazil
| | - Amilcar Machulek
- Institute of Chemistry, Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, MS, Brazil
| | - Etenaldo Felipe Santiago
- Plant Resources Study Group, Natural Resources Program, Mato Grosso do Sul State University (UEMS), Dourados, MS, Brazil
| | - Samuel Leite Oliveira
- Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, MS, Brazil
| | - Anderson Rodrigues Lima Caires
- Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, MS, Brazil.
| |
Collapse
|
5
|
Solanki B, Saleem S, Khan MS. Amelioration of phytotoxic impact of biosynthesized zinc oxide nanoparticles: Plant growth promoting rhizobacteria facilitates the growth and biochemical responses of Eggplant (Solanum melongena) under nanoparticles stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108678. [PMID: 38714126 DOI: 10.1016/j.plaphy.2024.108678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/15/2024] [Accepted: 04/28/2024] [Indexed: 05/09/2024]
Abstract
The consistently increasing use of zinc oxide nanoparticles (ZnONPs) in crop optimization practices and their persistence in agro-environment necessitate expounding their influence on sustainable agro-environment. Attempts have been made to understand nanoparticle-plant beneficial bacteria (PBB)- plant interactions; the knowledge of toxic impact of nanomaterials on soil-PBB-vegetable systems and alleviating nanotoxicity using PBB is scarce and inconsistent. This study aims at bio-fabrication of ZnONPs from Rosa indica petal extracts and investigates the impact of PBB on growth and biochemical responses of biofertilized eggplants exposed to phyto-synthesized nano-ZnO. Microscopic and spectroscopic techniques revealed nanostructure, triangular shape, size 32.5 nm, and different functional groups of ZnONPs and petal extracts. Inoculation of Pseudomonas fluorescens and Azotobacter chroococcum improved germination efficiency by 22% and 18% and vegetative growth of eggplants by 14% and 15% under NPs stress. Bio-inoculation enhanced total chlorophyll content by 36% and 14 %, increasing further with higher ZnONP concentrations. Superoxide dismutase and catalase activity in nano-ZnO and P. fluorescens inoculated eggplant shoots reduced by 15-23% and 9-11%. Moreover, in situ experiment unveiled distortion and accumulation of NPs in roots revealed by scanning electron microscope and confocal laser microscope. The present study highlights the phytotoxicity of biosynthesized ZnONPs to eggplants and demonstrates that PBB improved agronomic traits of eggplants while declining phytochemicals and antioxidant levels. These findings suggest that P. fluorescens and A. chroococcum, with NPs ameliorative activity, can be cost-effective and environment-friendly strategy for alleviating NPs toxicity and promoting eggplant production under abiotic stress, fulfilling vegetable demands.
Collapse
Affiliation(s)
- Bushra Solanki
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | - Samia Saleem
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Mohd Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
6
|
Qi Q, Wang Z. Machine learning-based models to predict aquatic ecological risk for engineered nanoparticles: using hazard concentration for 5% of species as an endpoint. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25114-25128. [PMID: 38467999 DOI: 10.1007/s11356-024-32723-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Assessment and prediction for the ecotoxicity of engineered nanoparticles (ENPs) at the community or ecosystem levels represents a critical step toward a comprehensive understanding of the ecological risks of ENPs. Current studies on predicting the ecotoxicity of ENPs primarily focus on the cellular and individual levels, with limited exploration at the community or ecosystem levels. Herein, we present the first of the reports for the direct prediction of aquatic ecological risk for ENPs at the community level using machine learning (ML) approaches in the field of computational toxicology. Specifically, we extensively collected the threshold concentrations of twelve ENPs including metal- and carbon-based nanoparticles for aquatic species, i.e., hazardous concentrations at which 5% of species are harmed (HC5), established by a species sensitivity distribution. Afterwards, we used eight supervised ML methods including Adaboost, artificial neural network, C4.5 decision tree, K-nearest neighbor, logistic regression, Naive Bayes, random forest, and support vector machine to develop nine classification models and four regression models, respectively, for the qualitative and quantitative prediction of HC5. The evaluation of model performance yielded the internal validation accuracy of all classification models ranging from 71.4 to 100%, and the determination coefficient of regression models ranging from 0.702 to 0.999, indicating that the developed models showed good performance. By using a cross-validation method and an application domain characterization, the selected models were further validated to have powerful predictive ability. Furthermore, the incorporation of three nanostructural descriptors (metal oxide sublimation enthalpy, zeta potential, and specific surface area) linked to toxicity mechanisms (the release of metal ions, the stability of dispersions of particles in aqueous suspensions, and the surface properties of the material) effectively enhanced the prediction power and mechanistic interpretability of the selected models. These findings would not only be beneficial in the screening of ENPs with potential high ecological risks that need to be tested as a priority but also contribute to the development of environmental regulations and standards for ENPs.
Collapse
Affiliation(s)
- Qi Qi
- School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing, 210044, People's Republic of China
| | - Zhuang Wang
- School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing, 210044, People's Republic of China.
| |
Collapse
|
7
|
Mahawar L, Živčák M, Barboricova M, Kovár M, Filaček A, Ferencova J, Vysoká DM, Brestič M. Effect of copper oxide and zinc oxide nanoparticles on photosynthesis and physiology of Raphanus sativus L. under salinity stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108281. [PMID: 38157834 DOI: 10.1016/j.plaphy.2023.108281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/24/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
The study evaluates the impact of two metal oxide nanoparticles: copper oxide (CuO) and zinc oxide (ZnO) on the growth and physiology of Raphanus sativus L. (radish) under salinity stress. Fifteen days old seedlings of R. sativus were subjected to different concentrations of salt stress (0 mM, 150 mM, and 300 mM NaCl) alone and in interaction with 100 mgL-1 metal oxide nanoparticle treatments (CuO and ZnO NPs via foliar spray) for 15 days. The results confirmed the severe effects of salinity stress on the growth and physiology of radish plants by decreasing nutrient uptake, leaf area, and photosystems photochemistry and by increasing proline accumulation, anthocyanin, flavonoids content, and antioxidant enzyme activities which is directly linked to increased oxidative stress. The foliar application of CuO and ZnO NPs alleviated the adverse effects of salt stress on radish plants, as indicated by improving these attributes. Foliar spray of ZnO NPs was found efficient in improving the leaf area, photosynthetic electron transport rate, the PSII quantum yield, proton conductance and mineral content in radish plants under NaCl stress. Besides, ZnO NPs decreased the NaCl-induced oxidative stress by declining proline, anthocyanin, and flavonoids contents and enzymatic activities such as superoxide dismutase (SOD), ascorbate peroxidase (APX) and guaiacol peroxidase (GOPX). Thus, our study revealed that ZnO NPs are more effective and have beneficial effects over CuO NPs in promoting growth and reducing the adverse effects of NaCl stress in radish plants.
Collapse
Affiliation(s)
- Lovely Mahawar
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, 949 76, Slovakia; Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, 90187, Sweden.
| | - Marek Živčák
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, 949 76, Slovakia
| | - Maria Barboricova
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, 949 76, Slovakia
| | - Marek Kovár
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, 949 76, Slovakia
| | - Andrej Filaček
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, 949 76, Slovakia
| | - Jana Ferencova
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, 949 76, Slovakia
| | - Dominika Mlynáriková Vysoká
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, 949 76, Slovakia
| | - Marián Brestič
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, 949 76, Slovakia.
| |
Collapse
|
8
|
Hanif S, Bilal M, Nasreen S, Latif M, Zia M. Indole-3-acetic acid (IAA) doping on the surface of CuO-NPs reduces the toxic effects of NPs on Lactuca sativa. J Biotechnol 2023; 367:53-61. [PMID: 36990354 DOI: 10.1016/j.jbiotec.2023.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/27/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
CuO Nanoparticles (CuO NPs) retard the plant growth but at appropriate concentration boosts shoot growth and therefore may function as nano-carrier or nano-fertilizer. To overcome the toxic effects, NPs can be capped with plant growth regulators. In this work, CuO-NPs (30 nm) were synthesized as the carrier and capped with indole-3-acetic acid (IAA) to generate CuO-IAA NPs (30.4 nm) as toxicity mitigant molecules. Seedlings of dicots, Lactuca sativa L. (Lettuce) were exposed to 5, 10 mg Kg-1/ of NPs in the soil to analyze shoot length, fresh and dry weight of shoots, phytochemicals, and antioxidant response. Toxicity to shoot length was recorded at higher concentrations of CuO-NPs, however, a reduction in toxicity was observed for CuO-IAA nanocomposite. Concentration-dependent decrease in the biomass of plants was also observed at higher concentrations of CuO-NPs (10 mg/kg). The antioxidative phytochemicals (phenolics and flavonoids) and antioxidative response increased in plants when exposed to CuO-NPs. However, the presence of CuO-IAA NPs combats the toxic response and a significant decrease in non-enzymatic antioxidants and total antioxidative response and total reducing power potential was observed. The results demonstrate that CuO-NPs can be used as a carrier of hormones for the enhancement of plant biomass and IAA on the surface of NPs reduces the toxic effects on NPs.
Collapse
Affiliation(s)
- Saad Hanif
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Bilal
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Syeda Nasreen
- Ibadat International University, Islamabad 44000, Pakistan
| | - Muhammad Latif
- Centre for Genetics and Inherited Diseases (CGID), Taibah University, Madinah, Saudi Arabia; Department of Biochemistry and Molecular Medicine, College of Medicine, Taibah University, Madinah, Saudi Arabia.
| | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|