1
|
Zaafar D, Khalil HMA, Elkhouly GE, Sedeky AS, Ahmed YH, Khalil MG, Abo-Zeid Y. Preparation and characterization of Sorafenib nano-emulsion: impact on pharmacokinetics and toxicity; an in vitro and in vivo study. Drug Deliv Transl Res 2024; 14:3089-3111. [PMID: 38430357 PMCID: PMC11445346 DOI: 10.1007/s13346-024-01530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2024] [Indexed: 03/03/2024]
Abstract
Hepatocellular carcinoma (HCC) ranks as the third leading cause of cancer-related deaths worldwide. Current treatment strategies include surgical resection, liver transplantation, liver-directed therapy, and systemic therapy. Sorafenib (Sor) is the first systemic drug authorized by the US Food and Drug Administration (FDA) for HCC treatment. Nevertheless, the conventional oral administration of Sor presents several limitations: poor solubility, low bioavailability, drug resistance development, and off-target tissue accumulation, leading to numerous adverse effects. Nano-emulsion, a nano-delivery system, is a viable carrier for poorly water-soluble drugs. It aims to enhance drug bioavailability, target organ accumulation, and reduce off-target tissue exposure, thus improving therapeutic outcomes while minimizing side effects. This study formulated Sor nano-emulsion (Sor NanoEm) using the homogenization technique. The resultant nano-emulsion was characterized by particle size (121.75 ± 12 nm), polydispersity index (PDI; 0.310), zeta potential (-12.33 ± 1.34 mV), viscosity (34,776 ± 3276 CPs), and pH (4.38 ± 0.3). Transmission Electron Microscopy exhibited spherical nano-droplets with no aggregation signs indicating stability. Furthermore, the encapsulation of Sor within the nano-emulsion sustained its release, potentially reducing the frequency of therapeutic doses. Cytotoxicity assessments on the HepG2 cell line revealed that Sor NanoEm had a significantly (P < 0.05) more potent cytotoxic effect compared to Sor suspension. Subsequent tests highlighted superior pharmacokinetic parameters and reduced dosage requirements of Sor NanoEm in mice. It exhibited an enhanced safety profile, particularly in behavior, brain, and liver, compared to its suspended form. These findings underscore the enhanced pharmacological and toxicological attributes of Sor Nano-emulsion, suggesting its potential utility in HCC treatment.
Collapse
Affiliation(s)
- Dalia Zaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt.
| | - Heba M A Khalil
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Gehad E Elkhouly
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
- Helwan Nanotechnology Center, Helwan University, Cairo, 11792, Egypt
| | - Abanoub Selim Sedeky
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg im Breisgau, Germany
- Nanomedicine Lab, Center of Materials Science (CMS), Zewail City of Science and Technology, 6Th of October, 12578, Giza, Egypt
| | - Yasmine H Ahmed
- Department of Cytology and Histology, Veterinary Medicine Faculty, Cairo University, Giza, 12211, Egypt
| | - Mona G Khalil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Yasmin Abo-Zeid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
- Helwan Nanotechnology Center, Helwan University, Cairo, 11792, Egypt
| |
Collapse
|
2
|
El-Shoura EAM, Abdelzaher LA, Mahmoud NI, Farghaly OA, Sabry M, Girgis Shahataa M, Salem EA, Saad HM, Elhussieny O, Kozman MR, Atwa AM. Combined sulforaphane and β-sitosterol mitigate olanzapine-induced metabolic disorders in rats: Insights on FOXO, PI3K/AKT, JAK/STAT3, and MAPK signaling pathways. Int Immunopharmacol 2024; 140:112904. [PMID: 39116489 DOI: 10.1016/j.intimp.2024.112904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
One of the best antipsychotics for treating schizophrenia and bipolar disorders is olanzapine (OLA). However, its use is restricted owing to unfavorable adverse effects as liver damage, dyslipidemia, and weight gain. The primary objective of the present investigation was to examine the signaling mechanisms that underlie the metabolic disruption generated by OLA. Besides, the potential protective effect of sulforaphane (SFN) and β-sitosterol (βSS) against obesity and metabolic toxicity induced by OLA were inspected as well. A total of five groups of male Wistar rats were established, including the control, OLA, SFN+OLA, βSS+OLA, and the combination + OLA groups. Hepatic histopathology, biochemical analyses, ultimate body weights, liver function, oxidative stress, and pro-inflammatory cytokines were evaluated. In addition to the relative expression of FOXO, the signaling pathways for PI3K/AKT, JAK/STAT3, and MAPK were assessed as well. All biochemical and hepatic histopathological abnormalities caused by OLA were alleviated by SFN and/or βSS. A substantial decrease in systolic blood pressure (SBP), proinflammatory cytokines, serum lipid profile parameters, hepatic MDA, TBIL, AST, and ALT were reduced through SFN or/and βSS. To sum up, the detrimental effects of OLA are mediated by alterations in the Akt/FOXO3a/ATG12, Ras/SOS2/Raf-1/MEK/ERK1/2, and Smad3,4/TGF-β signaling pathways. The administration of SFN and/or βSS has the potential to mitigate the metabolic deficit, biochemical imbalances, hepatic histological abnormalities, and the overall unfavorable consequences induced by OLA by modulating the abovementioned signaling pathways.
Collapse
Affiliation(s)
- Ehab A M El-Shoura
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | - Lobna A Abdelzaher
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Nesreen I Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Omar A Farghaly
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Egypt
| | - Mostafa Sabry
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Egypt
| | - Mary Girgis Shahataa
- Department of Pharmacology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Esraa A Salem
- Department of Medical Physiology, Faculty of Medicine, Menoufia University, Shebeen ElKom, 32511, Egypt
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh 51744, Egypt
| | - Omnya Elhussieny
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh 51744, Egypt
| | - Magy R Kozman
- Clinical Pharmacy Department, Faculty of Pharmacy, Misr University for Science and Technology, Giza 12563, Egypt
| | - Ahmed M Atwa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt; Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Ayen Iraqi University, Thi-Qar 64001, Iraq
| |
Collapse
|
3
|
El-Shoura EAM, Mohamed AAN, Atwa AM, Salem EA, Sharkawi SMZ, Mostafa Selim H, Ibrahim Elberri A, Gawesh ES, Ahmed YH, Abd El-Ghafar OAM. Combined diosmin and bisoprolol attenuate cobalt chloride-induced cardiotoxicity and endothelial dysfunction through modulating miR-143-3P/MAPK/MCP-1, ERK5/CXCR4, Orai-1/STIM-1 signaling pathways. Int Immunopharmacol 2024; 140:112777. [PMID: 39088923 DOI: 10.1016/j.intimp.2024.112777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/05/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024]
Abstract
Even while accelerated cardiomyocyte apoptosis is one of the primary causes of cardiac damage, the underlying mechanism is still mostly unknown. In addition to examining potential protective effects of bisoprolol and diosmin against CoCl2-induced cardiac injury, the goal of this study was to identify potential mechanisms regulating the hypoxic cardiac damage caused by cobalt chloride (CoCl2). For a period of 21 days except Cocl2 14 days from the first day of the experiment, rats were split into the following groups: Normal control group, rats received vehicle only (2 ml/kg/day, p.o.), (Cocl2, 150 mg/kg/day, p.o.), bisoprolol (25 mg/kg/day, p.o.); diosmin (100 mg/kg/day, p.o.) and bisoprolol + diosmin + Cocl2 groups. At the end of the experimental period, serum was taken for estimation of cardiac function, lipid profile, and pro/anti-inflammatory cytokines. Moreover, tissue samples were collected for evaluation of oxidative stress, endothelial dysfunction, α-SMA, PKC-α, MiR-143-3P, MAPK, ERK5, MCP-1, CXCR4, Orai-1, and STIM-1. Diosmin and bisoprolol, either alone or in combination, enhance heart function by reducing abnormalities in the electrocardiogram and the hypotension brought on by CoCl2. Additionally, they significantly ameliorate endothelial dysfunction by downregulating the cardiac expressions of α-SMA, PKC-α, MiR-143-3P, MAPK, ERK5, MCP-1, CXCR4, Orai-1, and STIM-1. Bisoprolol and diosmin produced modulatory activity against inflammatory state, redox balance, and atherogenic index concurrently. Together, diosmin and bisoprolol, either alone or in combination, significantly reduced all the cardiac alterations brought on by CoCl2. The capacity to obstruct hypoxia-induced α-SMA, PKC-α, MiR-143-3P/MAPK/MCP-1, MiR-143-3P/ERK5/CXCR4, Orai-1/STIM-1 signaling activation, as well as their anti-inflammatory, antioxidant, and anti-apoptotic properties, may be responsible for these cardio-protective results.
Collapse
Affiliation(s)
- Ehab A M El-Shoura
- Clinical Pharmacy Department, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | | | - Ahmed M Atwa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Esraa A Salem
- Department of Clinical Physiology, Faculty of Medicine, Menoufia University, Shebeen ElKom, 32511, Egypt
| | - Souty M Z Sharkawi
- Pharmacology and Toxicology Department, Beni Suef University, Beni Suef, Egypt
| | | | - Aya Ibrahim Elberri
- Genetic Engineering and Molecular Biology Division, Department of Zoology, Faculty of Science, Menoufia University, Shebeen Elkom 32511, Egypt
| | - El-Sayed Gawesh
- Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Yasmine H Ahmed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | |
Collapse
|
4
|
Singh D, Oladimeji-Salami J, Akindele AJ. New insights on pharmacological and therapeutic potentials of trimetazidine beyond anti-anginal drug: A comprehensive review. Eur J Pharmacol 2024; 985:177062. [PMID: 39427862 DOI: 10.1016/j.ejphar.2024.177062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/27/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Trimetazidine (TMZ) is a beneficial and well-tolerable anti-anginal drug which has protective action towards ischemia and reperfusion injury. TMZ performs its anti-ischemic effect by modifying cardiac metabolism without shifting the hemodynamic functions, so it represents an outstanding complementary perspective to the general angina treatment. TMZ possesses a positive impact on the inflammatory profile, and also endothelial function furthermore displays various benefits through minimising the number, as well as the intensity of angina strikes and ameliorating the clinical indication and symptoms of myocardium ischemia. It is administrated as monotherapy along with a combination of different antianginal drugs. Apart from anti-angina action, in recent years TMZ has shown various pharmacological activities such as neuroprotective, renal protective, hepato-protective, cardio-protective effects, and other beneficial pharmacological activities. We select to write the present review article to cover the different pharmacological and therapeutic potentials of TMZ.
Collapse
Affiliation(s)
- Dhirendra Singh
- Department of Pharmacology, M.M College of Pharmacy, Maharishi Markandeshwar Mullana, Ambala, Haryana, India.
| | - Joy Oladimeji-Salami
- Medical Biotechnology Department, National Biotechnology Research and Development Agency, Abuja, Nigeria
| | - Abidemi James Akindele
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Idi-Araba, P.M.B. 12003, Lagos, Nigeria.
| |
Collapse
|
5
|
El-Shoura EAM, Abdelzaher LA, Ahmed AAN, Abdel-Wahab BA, Sharkawi SMZ, Mohamed SA, Salem EA. Reno-protective effect of nicorandil and pentoxifylline against potassium dichromate-induced acute renal injury via modulation p38MAPK/Nrf2/HO-1 and Notch1/TLR4/NF-κB signaling pathways. J Trace Elem Med Biol 2024; 85:127474. [PMID: 38788404 DOI: 10.1016/j.jtemb.2024.127474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/09/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Occupational and environmental exposure to chromium compounds such as potassium dichromate (PDC) (K2Cr2O7) has emerged as a potential aetiologic cause for renal disease through apoptotic, and inflammatory reactions. The known potent antioxidants such as nicorandil (NIC) and/or pentoxifylline (PTX) were studied for their possible nephroprotective effect in PDC-treated rats. METHODS Forty male Wistar rats were divided into five groups; control, PDC group, NIC+PDC, PTX+PDC group, and combination+PDC group. Nephrotoxicity was evaluated histopathologically and biochemically. Invasive blood pressure, renal function parameters urea, creatinine, uric acid and albumin, glomerular filtration rate markers Cys-C, Kim-1 and NGAL, inflammatory markers IL-1β, IL-6, TNF-α, TGF-β, COX-II, p38MAPK, NF-κB and TLR4, oxidative stress SOD, GSH, MDA, MPO, HO-1 and Nrf2 and apoptotic mediators Notch1 and PCNA were evaluated. Besides, renal cortical histopathology was assayed as well. RESULTS PDC led to a considerable increase in indicators for kidney injury, renal function parameters, invasive blood pressure, oxidative stress, and inflammatory markers. They were markedly reduced by coadministration of PDC with either/or NIC and PTX. The NIC and PTX combination regimen showed a more significant improvement than either medication used alone. Our results demonstrated the nephroprotective effect of NIC, PTX, and their combined regimen on PDC-induced kidney injury through suppression of oxidative stress, apoptosis, and inflammatory response. CONCLUSION Renal recovery from PDC injury was achieved through enhanced MAPK/Nrf2/HO-1 and suppressed Notch1/TLR4/NF-κB signaling pathways. This study highlights the role of NIC and PTX as effective interventions to ameliorate nephrotoxicity in patients undergoing PDC toxicity.
Collapse
Affiliation(s)
- Ehab A M El-Shoura
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt; Department of Pharmacy Practice, Faculty of Pharmacy, Horus University, New Damietta, Egypt.
| | - Lobna A Abdelzaher
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed A N Ahmed
- Department of Pharmacology, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, P.O. Box 1988, Najran, Saudi Arabia
| | - Souty M Z Sharkawi
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | | | - Esraa A Salem
- Department of Medical Physiology, Faculty of Medicine, Menoufia University, Shebeen ElKom 32511, Egypt
| |
Collapse
|
6
|
Abdel-Wahab BA, Zafaar D, Habeeb MS, El-Shoura EAM. Nicorandil mitigates arsenic trioxide-induced lung injury via modulating vital signalling pathways SIRT1/PGC-1α/TFAM, JAK1/STAT3, and miRNA-132 expression. Br J Pharmacol 2024; 181:3215-3231. [PMID: 38741475 DOI: 10.1111/bph.16414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/13/2024] [Accepted: 03/01/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND AND PURPOSE Nicorandil, a selective opener of potassium channels, used to treat angina, has drawn attention for its potential in mitigating lung injury, positioning it as a promising therapeutic approach to treat drug-induced lung toxicity. This study aimed to explore the protective role of nicorandil in arsenic trioxide (ATO)-induced lung injury and to elucidate the underlying mechanistic pathways. EXPERIMENTAL APPROACH We assessed the effects of nicorandil (15 mg·kg-1, p.o.) in a rat model of pulmonary injury induced by ATO (5 mg·kg-1, i.p.). The assessment included oxidative stress biomarkers, inflammatory cytokine levels, and other biomarkers, including sirtuin-1, sirtuin-3, STAT3, TFAM, and JAK in lung tissue. Histological examination using H&E staining and molecular investigations using western blotting and PCR techniques were conducted. KEY RESULTS In our model of lung injury, treatment with nicorandil ameliorated pathological changes as seen with H&E staining, reduced tissue levels of toxicity markers, and exerted significant antioxidant and anti-inflammatory actions. On a molecular level, treatment with nicorandil down-regulated JAK, STAT3, PPARγ, Nrf2, VEGF, p53, and micro-RNA 132 while up-regulating Sirt1, 3, TFAM, AMPK, and ERR-α in lung tissue. CONCLUSIONS AND IMPLICATIONS The results presented here show nicorandil as a significant agent in attenuating lung injury induced by ATO in a rodent model. Nonetheless, further clinical studies are warranted to strengthen these findings.
Collapse
Affiliation(s)
- Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Dalia Zafaar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University of Technology, and Information, Cairo, Egypt
| | | | - Ehab A M El-Shoura
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| |
Collapse
|
7
|
El Omari N, Bakrim S, Khalid A, Abdalla AN, Iesa MAM, El Kadri K, Tang SY, Goh BH, Bouyahya A. Unveiling the molecular mechanisms: dietary phytosterols as guardians against cardiovascular diseases. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:27. [PMID: 38722432 PMCID: PMC11082103 DOI: 10.1007/s13659-024-00451-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
Until recently, the main pharmaceuticals used to control cholesterol and prevent cardiovascular disease (CVD) were statin-related drugs, known for their historical side effects. Therefore, there is growing interest in exploring alternatives, such as nutritional and dietary components, that could play a central role in CVD prevention. This review aims to provide a comprehensive understanding of how natural phytosterols found in various diets combat CVDs. We begin with a description of the overall approach, then we explore in detail the different direct and indirect mechanisms that contribute to reducing cardiovascular incidents. Phytosterols, including stigmasterol, β-sitosterol, ergosterol, and fucosterol, emerge as promising molecules within nutritional systems for protection against CVDs due to their beneficial effects at different levels through direct or indirect cellular, subcellular, and molecular mechanisms. Specifically, the mentioned phytosterols exhibit the ability to diminish the generation of various radicals, including hydroperoxides and hydrogen peroxide. They also promote the activation of antioxidant enzymes such as superoxide dismutase, catalase, and glutathione, while inhibiting lipid peroxidation through the activation of Nrf2 and Nrf2/heme oxygenase-1 (HO-1) signaling pathways. Additionally, they demonstrate a significant inhibitory capacity in the generation of pro-inflammatory cytokines, thus playing a crucial role in regulating the inflammatory/immune response by inhibiting the expression of proteins involved in cellular signaling pathways such as JAK3/STAT3 and NF-κB. Moreover, phytosterols play a key role in reducing cholesterol absorption and improving the lipid profile. These compounds can be used as dietary supplements or included in specific diets to aid control cholesterol levels, particularly in individuals suffering from hypercholesterolemia.
Collapse
Affiliation(s)
- Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, 80000, Agadir, Morocco
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, 45142, Jazan, Saudi Arabia.
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P. O. Box 2404, Khartoum, Sudan.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Mohamed A M Iesa
- Department of Physiology, Al Qunfudah Medical College, Umm Al Qura University, Mecca, Saudi Arabia
| | - Kawtar El Kadri
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, 10106, Rabat, Morocco
| | - Siah Ying Tang
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, 47500, Bandar Sunway, Malaysia.
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, 47500, Sunway City, Malaysia.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, 10106, Rabat, Morocco.
| |
Collapse
|
8
|
Abdel-Reheim MA, Zaafar D, El-Shoura EAM, Abdelaal N, Atwa AM, Bazeed SM, Mahmoud HM. Unlocking the miRNA-34a-5p/TGF-β and HMGB1/PI3K/Akt/mTOR crosstalk participate in the enhanced cardiac protection of liraglutide against isoproterenol-induced acute myocardial injury rat model. Int Immunopharmacol 2024; 127:111369. [PMID: 38101219 DOI: 10.1016/j.intimp.2023.111369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/07/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
Liraglutide (LIRA), a drug used to treat type 2 diabetes mellitus that belongs to the glucagon-like peptide-1 class, has recently drawn attention for its potential cardioprotective properties because of its anti-oxidative and anti-inflammatory properties. This current investigation was designed to assess the impact of LIRA on myocardial injury induced by isoproterenol (ISO). The experiment included 24 male Wistar rats in total, and they were divided into four groups: Control, LIRA (200 µg/kg/12 hrs., S.C.), ISO (85 mg/kg, S.C.), and ISO + LIRA. To assess the results, various biochemical and histopathological analyses were carried out. The findings showed elevated serum enzyme levels, a sign of cardiac injury. ISO-treated rats showed an upregulation of oxidative stress and inflammatory biomarkers like MDA, MPO, nitrites, NADPH oxidase, TNF-α, IL-1β, IL-6, 8-Hydroxyguanosine (8-OHdG), and TGF-β, as well as altered gene expressions like TLR-1 and miRNA-34a-5p. According to western blotting analysis, protein levels of AKT, PI3K, and mTOR were obviously enhanced. Additionally, ISO-treated samples showed altered tissue morphology, elevated caspase 3, and decreased Bcl2 concentrations. The levels of these dysregulated parameters were significantly normalized by LIRA therapy, demonstrating its cardioprotective function against ISO-induced myocardial injury in rats. This protective mechanism was linked to anti-inflammatory properties, redox balance restoration, and modulation of the miRNA-34a-5p/TGF-β pathway.
Collapse
Affiliation(s)
- Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62514, Egypt
| | - Dalia Zaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Ehab A M El-Shoura
- Clinical Pharmacy Department, Al-Azhar University, Assiut branch, Assiut 71524, Egypt.
| | - Nashwa Abdelaal
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Ahmed M Atwa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Shefaa M Bazeed
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Heba M Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62514, Egypt
| |
Collapse
|
9
|
Abdel-Wahab BA, El-Shoura EAM, Habeeb MS, Zaafar D. Dapagliflozin alleviates arsenic trioxide-induced hepatic injury in rats via modulating PI3K/AkT/mTOR, STAT3/SOCS3/p53/MDM2 signaling pathways and miRNA-21, miRNA-122 expression. Int Immunopharmacol 2024; 127:111325. [PMID: 38070468 DOI: 10.1016/j.intimp.2023.111325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 01/18/2024]
Abstract
Dapagliflozin (DPG) is a sodium-glucose co-transporter 2 inhibitor that is commonly used in the treatment of type 2 diabetes. However, studies have shown that DPG has a protective effect under a variety of experimental conditions through its antioxidative and anti-inflammatory properties. DPG's effect on experimental hepatotoxicity caused by arsenic trioxide (ATO) has yet to be investigated. The purpose of this study was to investigate the protective effect of DPG in preventing hepatic damage caused by ATO and discover the underlying mechanisms. The effect of DPG (1 mg/kg, orally) on ATO (5 mg/kg, i.p.)-induced hepatic injury was evaluated in rats. Serum liver function parameters, as well as oxidative stress biomarkers and inflammatory cytokine levels were assessed. Histopathological changes in the liver were detected using H&E staining. Using Western blotting and PCR techniques, the molecular mechanisms of DPG in ameliorating hepatic injury were investigated. DPG improved liver function by inhibiting histopathological changes, decreasing levels of hepatic function and toxicity parameters measured in both serum and tissues, and exhibiting antioxidant and anti-inflammatory effects, according to the findings. Consistent with the PCR results, DPG also decreased the expression of LC3-II, micro-RNA-122, and micro-RNA-21 while increased the expression of SOCS3. Furthermore, according to western blotting results, DPG was able to reduce the protein expression of AKT, mTOR, PI3K, and STAT3. Although further clinical research is necessary, this study highlights the potential of DPG in preventing liver damage in a rat model of hepatotoxicity induced by ATO.
Collapse
Affiliation(s)
- Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran P.O. Box 1988, Saudi Arabia.
| | - Ehab A M El-Shoura
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | - Mohammed S Habeeb
- Department of Pharmacology, College of Pharmacy, Najran University, Najran P.O. Box 1988, Saudi Arabia.
| | - Dalia Zaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology, and Information, Cairo, Egypt.
| |
Collapse
|
10
|
Abdel-Wahab BA, El-Shoura EAM, Shafiuddin Habeeb M, Zafaar D. Febuxostat alleviates Arsenic Trioxide-Induced renal injury in Rats: Insights on the crosstalk between NLRP3/TLR4, Sirt-1/NF-κB/TGF-β signaling Pathways, and miR-23b-3p, miR-181a-5b expression. Biochem Pharmacol 2023; 216:115794. [PMID: 37689273 DOI: 10.1016/j.bcp.2023.115794] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/15/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Febuxostat (FBX), a xanthine oxidase inhibitor, is known to improve renal function and can show promise as a therapeutic agent for preventing drug-induced nephrotoxicity. This study aimed to explore the protective effect of FBX in preventing renal damage caused by arsenic trioxide (ATO) toxicity and uncover the underlying mechanisms. The researchers examined how FBX (10 mg/kg, orally) affected ATO-induced kidney injury (5 mg/kg, intraperitoneally) in rats. Kidney function and toxicity parameters in serum and oxidative stress biomarkers and inflammatory cytokine levels in renal tissue were measured. H&E staining was used to detect histopathological changes in the kidney. Network the molecular mechanisms of FBX in improving kidney injury were investigated using Western blotting and PCR techniques. The findings showed that FBX improved kidney function by inhibiting the pathological changes seen in H&E staining, decreasing levels of probed kidney function and toxicity measures in serum and tissue, and exhibiting antioxidant and anti-inflammatory effects. FBX decreased MDA, MPO, TNF-α, IL-1β, IL-6, COX-II, and NADPH oxidase levels, while increased GSH, GPx, SOD, and IL-10 levels. FBX also reduced the expression of NLRP3, ASC, TLR4, and micro-RNA 181a-5b while increased the expression of IKBα, Sirt-1, and micro-RNA 23b-3p, according to Western blotting and PCR results. In conclusion, FBX can play a vital role in reducing kidney injury in cases of ATO-induced nephrotoxicity, though more clinical research needs to be conducted.
Collapse
Affiliation(s)
- Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran P.O. Box 1988, Saudi Arabia.
| | - Ehab A M El-Shoura
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | | | - Dalia Zafaar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University of Technology, and Information, Cairo, Egypt.
| |
Collapse
|