1
|
Kuang HX, Liu Y, Wang JR, Li MY, Zhou Y, Meng LX, Xiang MD, Yu YJ. Revealing the links between hair metal(loids) and alterations in blood pressure among children in e-waste recycling areas through urinary metabolomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176352. [PMID: 39299322 DOI: 10.1016/j.scitotenv.2024.176352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/11/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Hypertension is prevalent in e-waste recycling areas, and elevated blood pressure in children significantly increases the risk of hypertension in adulthood. However, the associations and toxic pathways between chronic exposure to metal(loids) and elevated blood pressure are rarely investigated. In this study, we measured the levels of 29 hair metal(loids) (chronic exposure biomarkers) and blood pressure in 667 susceptible children from an e-waste recycling area to explore their relationships. Paired urine metabolomics analysis was also performed to interpret potential mechanistic pathways. Results showed that the hypertension prevalence in our recruited children (13.0 %) exceeded the average rate (9.5 %) for Chinese children aged 6-17 years. The top five abundant metal(loids), including lead, strontium, barium, and zinc, demonstrated the most profound associations with elevated systolic blood pressure. Quantile g-computation, weighted quantile sum, and Bayesian kernel machine regression analysis jointly demonstrated a significant association between chronic exposure to metal(loids) mixture and systolic blood pressure. Interestingly, selenium showed significant antagonistic interactions with these four metals, suggesting that supplementing selenium may help children resist the elevated blood pressure induced by metal(loids) exposure. Increased metal(loids) and blood pressure levels were significantly linked to changes in urine metabolomics. Structural equation model indicated that androsterone glucuronide and N-Acetyl-1-aspartylglutamic acid were the significant mediators of the associations between metal(loids) and blood pressure, with mediation effects of 77.4 % and 29.0 %, respectively, suggesting that androsterone glucuronide and N-Acetyl-1-aspartylglutamic acid may be involved in the development of metal-induced blood pressure elevating effect. Girls were more vulnerable to metal(loids)-induced hormonal imbalance, especially androsterone glucuronide, than boys. Chronic exposure to metal(loids) at e-waste recycling sites may contribute to elevated blood pressure in children through disrupting various metabolism pathways, particularly hormonal balance. Our study provides new insights into potential mechanistic pathways of metal(loids)-induced changes in children's blood pressure.
Collapse
Affiliation(s)
- Hong-Xuan Kuang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Ye Liu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Jia-Rong Wang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Meng-Yang Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Lin-Xue Meng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Ming-Deng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| |
Collapse
|
2
|
Kushnir MM, Salihovic S, Bergquist J, Lind PM, Lind L. Environmental contaminants, sex hormones and SHBG in an elderly population. ENVIRONMENTAL RESEARCH 2024; 263:120054. [PMID: 39341538 DOI: 10.1016/j.envres.2024.120054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/12/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
INTRODUCTION Effects of environmental contaminants (ECs) on endocrine systems have been reported, but few studies assessed associations between ECs and sex hormones (SH) in elderly. Aim of this study was to investigate whether blood concentrations of four classes of ECs were associated with SH concentrations in elderly. METHODS Samples from participants of the cross-sectional population-based Prospective Investigation of the Vasculature in Uppsala Seniors study (PIVUS, 70-year-old men and women, n = 1016) were analyzed using validated mass spectrometry-based methods for SH (testosterone (T), dihydrotestosterone (DHT), estrone and estradiol (E2)); 23 persistent organic pollutants (POPs); 8 perfluoroalkyl substances (PFAS); 4 phthalates and 11 metals. SH binding globulin (SHBG) was analyzed using immunoassay. The measured concentrations were normalized, and the values converted to a z-scale. Linear regression analyses were conducted to assess association between concentration of the SH, SHBG and E2/T (aromatase enzyme index, AEI) with the ECs. Multiple linear regression analyses were performed to model the relationships. RESULTS The strongest associations were observed with the polychlorinated biphenyls (PCBs). In men, the strongest associations with concentrations of SH and SHBG were seen for PCBs containing >5 chlorine, monoethyl phthalate (MEP), Ni and Cd; and in women, with PCBs, MEP, several of the PFAS, Cd, Co, and Ni. Difference in the effect of ECs on AEI between men and women were observed. Area under the ROC curve for the models predicting abnormal values of SH and SHBG >0.75 due to the effects of ECs was observed for T, DHT, and E2 in men, and for E2 and SHBG in women. CONCLUSIONS Results of this study suggest that in elderly subjects, concentrations of many ECs associated with concentrations of SH and SHBG, and AEI. Further studies are needed to confirm the findings and to assess effect of the pollutants on endocrine system function in elderly.
Collapse
Affiliation(s)
- Mark M Kushnir
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA; Department of Pathology, University of Utah, Salt Lake City, UT, USA.
| | - Samira Salihovic
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Sweden
| | - Jonas Bergquist
- Department of Pathology, University of Utah, Salt Lake City, UT, USA; Department of Chemistry, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | - P Monica Lind
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Hua X, Hu R, Chen C, Sun J, Feng X, Zhang X. Joint effects of tobacco smoke exposure and heavy metals on serum sex hormones in adult males. Hormones (Athens) 2024:10.1007/s42000-024-00600-8. [PMID: 39269601 DOI: 10.1007/s42000-024-00600-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
OBJECTIVE This study aimed to explore the associations of tobacco smoke exposure (TSE) and heavy metal exposure on sex hormones and the joint effects between them in adult males. METHODS The study used data of 2244 adult males from the National Health and Nutrition Examination Survey (NHANES, 2013-2016). Weighted linear regression models were used to calculate their beta (β) coefficients and corresponding confidence interval (95% CI), which assessed the joint effects of TSE and heavy metals on sex hormones. RESULTS Sex hormone-binding globulin (SHBG) showed a positive association with increased per standard deviation (SD) for cotinine (β=0.024 [0.004, 0.043]; P<0.001), lead (β=0.021 [0.002, 0.039]; P=0.028), and cadmium (β=0.034 [0.015, 0.053]; P<0.001). Manganese was positively associated with estradiol (E2) (β=0.025 [0.009, 0.042]; P=0.002). The subjects with higher cadmium levels were more likely to have higher total testosterone (TT) (β=0.042 [0.023, 0.062]; P<0.001). TSE and lead exerted synergistic effects on TT (p for interaction = 0.015) and E2 (p for interaction = 0.009), as also did TSE and cadmium on SHBG (p for interaction = 0.037). Compared with the reference group, TSE participants who were exposed to high concentrations of lead, cadmium, mercury, and manganese had significantly elevated TT levels, but these high levels presented no significant association with E2 levels. A significantly higher level of SHBG among TSE participants was detected in high concentrations for lead, cadmium, and mercury. CONCLUSION TSE exacerbated sex hormone imbalances when combined with high levels of metal exposure. Smoking cessation is crucial, especially in the case of high levels of occupational exposure to heavy metals.
Collapse
Affiliation(s)
- Xiaoguo Hua
- Office of Medical Insurance Management, The Second Affiliated Hospital, Anhui Medical University, 678 Furong Road, Hefei, 230601, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Rui Hu
- Department of Clinical Teaching Management, The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, 117 Meishan Road, Hefei, 230031, China
| | - Cai Chen
- Department of Emergency, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
| | - Jiangjie Sun
- Department of Health Data Science, School of Health Care Management, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xiqiu Feng
- Office of Medical Insurance Management, The Second Affiliated Hospital, Anhui Medical University, 678 Furong Road, Hefei, 230601, China
| | - Xiujun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
4
|
Shen T, Zhong L, Ji G, Chen B, Liao M, Li L, Huang H, Li J, Wei Y, Wu S, Chen Z, Ma W, Dong M, Wu B, Liu T, Chen Q. Associations between metal(loid) exposure with overweight and obesity and abdominal obesity in the general population: A cross-sectional study in China. CHEMOSPHERE 2024; 350:140963. [PMID: 38114022 DOI: 10.1016/j.chemosphere.2023.140963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/26/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Previous studies have revealed links between metal(loid)s and health problems; however, the link between metal(loid)s and obesity remains controversial. We evaluated the cross-sectional association between metal(loid) exposure in whole blood and obesity among the general population. Vanadium (V), chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), molybdenum (Mo), cadmium (Cd), antimony (Sb), thallium (T1), and lead (Pb) were measured in 3029 subjects in Guangdong Province (China) using ICP-MS. The prevalence of overweight and obesity (OWO) and abdominal obesity (AOB) was calculated according to body mass index (BMI) and waist circumference (WC), respectively. Multivariate analysis showed that elevated blood Cu, Cd, and Pb levels were inversely associated with the risk of OWO, and these associations were confirmed by a linear dose-response relationship. Elevated blood Co concentration was associated with a decreased risk of AOB. A quantile g-computation approach showed a significantly negative mixture-effect of 13 metal(loid)s on OWO (OR: 0.96; 95% CI: 0.92, 0.99). Two metals-Ni and Mo-were inversely associated with the risk of OWO but positively associated with AOB. We cross-grouped the two obesity measurement types and found that the extremes of metal content were present in people with AOB only. In conclusion, blood Cu, Mo, Ni, Cd, and Pb were inversely associated with the risk of OWO. The presence of blood Co may be protective, while Ni and Mo exposure might increase the risk of AOB. The association between metal(loid) exposure and obesity warrants further investigation in longitudinal cohort studies.
Collapse
Affiliation(s)
- Tianran Shen
- Guangdong Pharmaceutical University, Guangzhou, 510310, China; Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Liling Zhong
- Guangdong Pharmaceutical University, Guangzhou, 510310, China; Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Guiyuan Ji
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511530, China
| | - Baolan Chen
- Guangdong Pharmaceutical University, Guangzhou, 510310, China; Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Mengfan Liao
- Guangdong Pharmaceutical University, Guangzhou, 510310, China; Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Lvrong Li
- Guangdong Pharmaceutical University, Guangzhou, 510310, China; Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Huiming Huang
- Guangdong Pharmaceutical University, Guangzhou, 510310, China; Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Jiajie Li
- Guangdong Pharmaceutical University, Guangzhou, 510310, China; Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Yuan Wei
- Guangdong Pharmaceutical University, Guangzhou, 510310, China; Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Shan Wu
- Guangdong Pharmaceutical University, Guangzhou, 510310, China; Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Zihui Chen
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511530, China
| | - Wenjun Ma
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Ming Dong
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510399, China
| | - Banghua Wu
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510399, China.
| | - Tao Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qingsong Chen
- Guangdong Pharmaceutical University, Guangzhou, 510310, China; Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China; NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, 511400, China.
| |
Collapse
|
5
|
Hu P, Hu H, Jiang X, Qi C, He P, Zhang Q. Association between heavy metal exposures and the prevalence of pelvic inflammatory disease: a cross-sectional study from the National Health and Nutrition Examination Survey 2013-2018. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112433-112444. [PMID: 37831240 DOI: 10.1007/s11356-023-30176-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
Pelvic inflammatory disease (PID) is a common medical condition in women. However, the correlation between exposure to heavy metals, including cadmium (Cd), lead (Pb), manganese (Mn), mercury (Hg), and selenium (Se), and PID, is unclear. Using a large sample size from the National Health and Nutrition Examination Survey, these relationships were studied and verified. PID diagnosis was acquired through a self-reported questionnaire (2013-2018). Heavy metal exposure (Cd, Pb, Mn, Hg, and Se) was measured using mass spectrometry of blood samples. Covariate data were obtained through questionnaires and physical tests. Individuals with complete covariate data were included in the study. The relationship between heavy metal exposure (Cd, Pb, Mn, Hg, and Se) and PID was demonstrated using logistic regression analysis, weighted quantile sum (WQS) regression analysis, and restricted cubic splines (RCS). Overall, 2743 participants were included. Of these, 183 were diagnosed with PID. Through weighted univariate and multivariate regression analyses, the heavy metals of Cd and Pb were positively correlated with the prevalence of PID. However, no significant relationship was observed in the heavy metals of Mn, Hg, and Se. The joint effect of heavy metals further confirmed the important role of Cd and Pb in WQS analysis. After visualizing the RCS, significant curved and linear relationships were observed for Cd and Pb, respectively. Most subgroup analyses confirmed these results. In conclusion, exposure to Cd was nonlinearly correlated with the risk of PID, whereas exposure to Pb showed a linear relationship. Our findings increase the awareness of the environmental effects of exposure to heavy metals in PID. However, further studies are needed to elucidate the causality and underlying mechanisms between heavy metal exposure and the prevalence of PID.
Collapse
Affiliation(s)
- Panwei Hu
- Department of Obstetrics and Gynecology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Hui Hu
- Department of Obstetrics and Gynecology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Xiaomei Jiang
- Department of Obstetrics and Gynecology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Cong Qi
- Department of Obstetrics and Gynecology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Peizhi He
- Department of Obstetrics and Gynecology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Qinhua Zhang
- Department of Obstetrics and Gynecology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
| |
Collapse
|