1
|
Kumar R, Gullapalli RR. Evaluating combined effects of chronic, low-dose exposures of cadmium (CLEC) and hyperglycemia on insulin signaling dysfunction in a hepatocellular model. Toxicology 2024; 508:153929. [PMID: 39191366 PMCID: PMC11573001 DOI: 10.1016/j.tox.2024.153929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
The pathophysiological effects of chronic heavy metal exposures on human health remains uncertain. In this study, we developed a novel chronic, low-dose exposure of Cadmium (CLEC) model using the hepatocellular cell lines, HepG2 and HUH7. We modulated cell culture conditions to mimic human normoglycemic (5.6 mM) and hyperglycemic (15 mM) states with concomitant cadmium (Cd) exposures for 24 weeks. CLEC cells undergo non-trivial alterations in glucose signaling and metabolic characteristics within our model. We observe elevated baseline reactive oxygen species (ROS) production and decreased 2-NBDG uptake indicative of glucose metabolic dysfunction. Additionally, induction of metallothionein (MT) expression, increased activation of Akt signaling (via phosphorylation) and reduced IRS-2 protein expression are observed in CLEC cells. Cell line specific changes are observed with HepG2 showing a much higher MT gene induction compared to HUH7 cell line which impacts glucose metabolic dysfunction. Hyperglycemic culture conditions (representing type II diabetes) significantly modulate CLEC effects on cells. In conclusion, pathophysiologically relevant models of chronic heavy metal exposures are urgently needed to gain an in-depth, mechanistic understanding of the long-term impacts of toxic metals (e.g., Cd) on human metabolic health.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Pathology, United States; Department of Chemical and Biological Engineering, Room 333A, MSC08-4640, University of New Mexico, Albuquerque, NM 87131, United States; Center for Metals in Biology and Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Rama R Gullapalli
- Department of Pathology, United States; Department of Chemical and Biological Engineering, Room 333A, MSC08-4640, University of New Mexico, Albuquerque, NM 87131, United States; Center for Metals in Biology and Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| |
Collapse
|
2
|
Zhang L, Shi WY, Xu JY, Liu Y, Wang SJ, Zheng JY, Li YH, Yuan LX, Qin LQ. Protective effects and mechanism of chemical- and plant-based selenocystine against cadmium-induced liver damage. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133812. [PMID: 38368684 DOI: 10.1016/j.jhazmat.2024.133812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Although selenium (Se) and cadmium (Cd) often coexist naturally in the soil of China, the health risks to local residents consuming Se-Cd co-enriched foods are unknown. In the present study, we investigated the effects of chemical-based selenocystine (SeCys2) on cadmium chloride-induced human hepatocarcinoma (HepG2) cell injury and plant (Cardamine hupingshanensis)-derived SeCys2 against Cd-induced liver injury in mice. We found that chemical- and plant-based SeCys2 showed protective effects against Cd-induced HepG2 cell injury and liver damage in mice, respectively. Compared with Cd intervention group, co-treatment with chemical- or plant-based SeCys2 both alleviated liver toxicity and ferroptosis by decreasing ferrous iron, acyl-CoA synthetase long-chain (ACSL) family member 4, lysophosphatidylcholine acyltransferase 3, reactive oxygen species and lipid peroxide levels, and increasing ACSL3, peroxisome proliferator-activated receptor α, solute carrier family 7 member 11 (SLC7A11) and glutathione and glutathione peroxidase 4 (GPX4) levels. In conclusion, chemical- and plant-based SeCys2 alleviated Cd-induced hepatotoxicity and ferroptosis by regulating SLC7A11/GPX4 signaling and lipid peroxidation. Our findings indicate that potential Cd toxicity from consuming foods grown in Se- and Cd-rich soils should be re-evaluated. This study offers a new perspective for the development of SeCys2-enriched agricultural products.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Wen-Yao Shi
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Jia-Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Yan Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Shi-Jia Wang
- Department of Clinical Nutrition, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Jia-Yang Zheng
- Department of Nutrition and Food Hygiene, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China; School of the Environment, School of Medicine, Nanjing University, Nanjing 210023, China
| | - Yun-Hong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| | - Lin-Xi Yuan
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|