1
|
Saleh AK, Aboelghait KM, El-Fakharany EM, El-Gendi H. Multifunctional engineering of Mangifera indica L. peel extract-modified bacterial cellulose hydrogel: Unveiling novel strategies for enhanced heavy metal sequestration and cytotoxicity evaluation. Int J Biol Macromol 2024; 278:134874. [PMID: 39168196 DOI: 10.1016/j.ijbiomac.2024.134874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/10/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
The escalating interest in bacterial cellulose (BC) confronts a substantial obstacle due to its biologically inert properties. Hence, BC was modified with ethanolic mango peel extract (EEMP) for various industrial and medical applications of the novel nanocomposite (BC/EEMP). High-performance liquid chromatography (HPLC) delineated the phenolic composition of EEMP, revealing a repertoire of polyphenolic compounds, notably chlorogenic acid, gallic acid, catechin, and ellagic acid. EEMP exhibited broad-spectrum antimicrobial activity against Candida albicans and Staphylococcus aureus, with MIC of 0.018 mg/mL and 0.009 mg/mL, respectively. The removal mechanism of Pb2+ and Ni2+ by BC/EEMP nanocomposite membrane via SEM, EDX, FT-IR, and XRD was characterized, indicating deposition and aggregation of heavy metals with diminished porosity. Heavy metal removal optimization using the Box-Behnken design achieved maximal removal of 95.5 % and 90 % for Pb2+ and Ni2+, respectively. Moreover, BC/EEMP nanocomposite demonstrated selective dose-dependent anticancer activity toward hepatoma (HepG-2, IC50 of 208.8 μg/mL), skin carcinoma (A431, IC50 of 216.7 μg/mL), and breast carcinoma (MDA, IC50 of 197.5 μg/mL), attributed to the enhanced availability of biologically active polyphenolic compounds and physical characteristics of BC. This study underscores the remarkable potential of BC/EEMP nanocomposite for multifaceted industrial and biomedical applications, marking a pioneering contribution to the field.
Collapse
Affiliation(s)
- Ahmed K Saleh
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, P.O. 12622 Giza, Egypt.
| | - K M Aboelghait
- Water Pollution Research Department, National Research Centre, El-Bohouth St. 33, Dokki, P.O. 12622 Giza, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute GEBRI, City of Scientific Research and Technological Applications (SRTA City), New Borg El-Arab, Alexandria 21934, Egypt; Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab, Alexandria, Egypt; Pharos University in Alexandria; Canal El Mahmoudia Street, Beside Green Plaza Complex, 21648 Alexandria, Egypt
| | - Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA City), New Borg El-Arab, Alexandria 21934, Egypt.
| |
Collapse
|
2
|
Chinnappa K, Bai CDG, Srinivasan PP. Nanocellulose-stabilized nanocomposites for effective Hg(II) removal and detection: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30288-30322. [PMID: 38619767 DOI: 10.1007/s11356-024-33105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/22/2024] [Indexed: 04/16/2024]
Abstract
Mercury pollution, with India ranked as the world's second-largest emitter, poses a critical environmental and public health challenge and underscores the need for rigorous research and effective mitigation strategies. Nanocellulose is derived from cellulose, the most abundant natural polymer on earth, and stands out as an excellent choice for mercury ion remediation due to its remarkable adsorption capacity, which is attributed to its high specific surface area and abundant functional groups, enabling efficient Hg(II) ion removal from contaminated water sources. This review paper investigates the compelling potential of nanocellulose as a scavenging tool for Hg(II) ion contamination. The comprehensive examination encompasses the fundamental attributes of nanocellulose, its diverse fabrication techniques, and the innovative development methods of nanocellulose-based nanocomposites. The paper further delves into the mechanisms that underlie Hg removal using nanocellulose, as well as the integration of nanocellulose in Hg detection methodologies, and also acknowledges the substantial challenges that lie ahead. This review aims to pave the way for sustainable solutions in mitigating Hg contamination using nanocellulose-based nanocomposites to address the global context of this environmental concern.
Collapse
Affiliation(s)
- Karthik Chinnappa
- Department of Biotechnology, St. Joseph's College of Engineering, OMR, Chennai, 600119, Tamil Nadu, India
| | | | - Pandi Prabha Srinivasan
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur Taluk, Chennai, 602117, Tamil Nadu, India
| |
Collapse
|
3
|
Tsouko E, Pilafidis S, Kourmentza K, Gomes HI, Sarris G, Koralli P, Papagiannopoulos A, Pispas S, Sarris D. A sustainable bioprocess to produce bacterial cellulose (BC) using waste streams from wine distilleries and the biodiesel industry: evaluation of BC for adsorption of phenolic compounds, dyes and metals. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:40. [PMID: 38475851 PMCID: PMC10935973 DOI: 10.1186/s13068-024-02488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND The main challenge for large-scale production of bacterial cellulose (BC) includes high production costs interlinked with raw materials, and low production rates. The valorization of renewable nutrient sources could improve the economic effectiveness of BC fermentation while their direct bioconversion into sustainable biopolymers addresses environmental pollution and/or resource depletion challenges. Herein a green bioprocess was developed to produce BC in high amounts with the rather unexplored bacterial strain Komagataeibacter rhaeticus, using waste streams such as wine distillery effluents (WDE) and biodiesel-derived glycerol. Also, BC was evaluated as a bio-adsorbent for phenolics, dyes and metals removal to enlarge its market diversification. RESULTS BC production was significantly affected by the WDE mixing ratio (0-100%), glycerol concentration (20-45 g/L), type of glycerol and media-sterilization method. A maximum BC concentration of 9.0 g/L, with a productivity of 0.90 g/L/day and a water holding capacity of 60.1 g water/g dry BC, was achieved at 100% WDE and ≈30 g/L crude glycerol. BC samples showed typical cellulose vibration bands and average fiber diameters between 37.2 and 89.6 nm. The BC capacity to dephenolize WDE and adsorb phenolics during fermentation reached respectively, up to 50.7% and 26.96 mg gallic acid equivalents/g dry BC (in-situ process). The produced BC was also investigated for dye and metal removal. The highest removal of dye acid yellow 17 (54.3%) was recorded when 5% of BC was applied as the bio-adsorbent. Experiments performed in a multi-metal synthetic wastewater showed that BC could remove up to 96% of Zn and 97% of Cd. CONCLUSIONS This work demonstrated a low-carbon approach to produce low-cost, green and biodegradable BC-based bio-adsorbents, without any chemical modification. Their potential in wastewater-treatment-applications was highlighted, promoting closed-loop systems within the circular economy era. This study may serve as an orientation for future research towards competitive or targeted adsorption technologies for wastewater treatment or resources recovery.
Collapse
Affiliation(s)
- Erminta Tsouko
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635, Athens, Greece.
| | - Sotirios Pilafidis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635, Athens, Greece
- Laboratory of Physico-Chemical & Biotechnological Valorization of Food By-Products, Department of Food Science & Nutrition, School of Environment, University of the Aegean, Leoforos Dimokratias 66, 81400, Lemnos, Greece
| | - Konstantina Kourmentza
- Food, Water, Waste Research Group, Department of Chemical & Environmental Engineering, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Green Chemicals Beacon of Excellence, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Helena I Gomes
- Food, Water, Waste Research Group, Department of Chemical & Environmental Engineering, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Giannis Sarris
- Laboratory of Physico-Chemical & Biotechnological Valorization of Food By-Products, Department of Food Science & Nutrition, School of Environment, University of the Aegean, Leoforos Dimokratias 66, 81400, Lemnos, Greece
| | - Panagiota Koralli
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635, Athens, Greece
| | - Aristeidis Papagiannopoulos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635, Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635, Athens, Greece
| | - Dimitris Sarris
- Laboratory of Physico-Chemical & Biotechnological Valorization of Food By-Products, Department of Food Science & Nutrition, School of Environment, University of the Aegean, Leoforos Dimokratias 66, 81400, Lemnos, Greece
| |
Collapse
|