1
|
Alotaibi MM, Aljuaid A, Alsudays IM, Aloufi AS, AlBalawi AN, Alasmari A, Alghanem SMS, Albalawi BF, Alwutayd KM, Gharib HS, Awad-Allah MMA. Effect of Bio-Fertilizer Application on Agronomic Traits, Yield, and Nutrient Uptake of Barley ( Hordeum vulgare) in Saline Soil. PLANTS (BASEL, SWITZERLAND) 2024; 13:951. [PMID: 38611480 PMCID: PMC11013266 DOI: 10.3390/plants13070951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024]
Abstract
Under salinity conditions, growth and productivity of grain crops decrease, leading to inhibition and limited absorption of water and elements necessary for plant growth, osmotic imbalance, ionic stress, and oxidative stress. Microorganisms in bio-fertilizers have several mechanisms to provide benefits to crop plants and reduce the harmful effect of salinity. They can be effective in dissolving phosphate, fixing nitrogen, promoting plant growth, and can have a combination of all these qualities. During two successful agricultural seasons, two field experiments were conducted to evaluate the effect of bio-fertilizer applications, including phosphate solubilizing bacteria (PSB), nitrogen fixation bacteria and a mix of phosphate-solubilizing bacteria and nitrogen fixation bacteria with three rates, 50, 75 and 100% NPK, of the recommended dose of minimal fertilizer on agronomic traits, yield and nutrient uptake of barley (Hordeum vulgare) under saline condition in Village 13, Farafra Oasis, New Valley Governorate, Egypt. The results showed that the application of Microbein + 75% NPK recorded the highest values of plant height, spike length, number of spikes/m2, grain yield (Mg ha-1), straw yield (Mg ha-1), biological yield (Mg ha-1), protein content %, nitrogen (N), phosphorus (P), potassium (K) uptakes in grain and straw (kg ha-1), available nitrogen (mg/kg soil), available phosphorus (mg/kg soil), total microbial count of soil, antioxidant activity of soil (AOA), dehydrogenase, nitrogen fixers, and PSB counts. The application of bio-fertilizers led to an increase in plant tolerance to salt stress, plant growth, grain yield, and straw yield, in addition to the application of the bio-fertilizers, which resulted in a 25% saving in the cost of mineral fertilizers used in barley production.
Collapse
Affiliation(s)
- Mashael M. Alotaibi
- Biology Department, College of Science and Humanities, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Alya Aljuaid
- Biology Department, College of Science and Humanities, Shaqra University, Shaqra 11961, Saudi Arabia
| | | | - Abeer S. Aloufi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Aisha Nawaf AlBalawi
- Biology Department, University College of Haqel, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Abdulrahman Alasmari
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| | | | - Bedur Faleh Albalawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hany S. Gharib
- Department of Agronomy, Faculty of Agriculture, University of Kafrelsheikh, Kafrelsheikh 33516, Egypt
| | | |
Collapse
|
2
|
Wang M, Chen S, Li S, Zhang J, Sun Y, Wang C, Ni D. Enhancement of nitrogen cycling and functional microbial flora by artificial inoculation of biological soil crusts in sandy soils of highway slopes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4400-4411. [PMID: 38102430 DOI: 10.1007/s11356-023-31461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Biological soil crusts (BSCs) are common in arid and semi-arid ecosystems and enhance soil stability and fertility. Highway slopes severely deplete the soil ecological structure and soil nutrients, hindering plant survival. The construction of highway slope BSCs under human intervention is critical to ensure the long-term stable operation of the slope ecosystem. This study investigated the variation rules and interaction mechanisms between soil nutrients and microbial communities in the subsoil BSCs on highway slopes. Bacterial 16S rRNA high-throughput sequencing was employed to investigate the dynamic compositional changes in the microbial community and perform critical metabolic predictive analyses of functional bacteria. This study revealed that the total soil nitrogen increased significantly from 0.557 to 0.864 g/kg after artificial inoculation with desert Phormidium tenue and Scytonema javanicum. Actinobacteria (44-48%) and Proteobacteria (28-31%) were the dominant phyla in all samples. The abundance of Cyanobacteria, Cytophagaceae, and Chitinophagaceae increased significantly after inoculation. PICRUST analysis showed that the main metabolic pathways of soil microorganisms on highway slopes included cofactor and vitamin, nucleotide, and amino acid metabolisms. These findings suggest that the artificial inoculation with Phormidium tenue and Scytonema javanicum could alter soil microbial distribution to promote soil development on highway slopes toward nutrient accumulation.
Collapse
Affiliation(s)
- Mengyan Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Sibao Chen
- Key Laboratory of Changjiang Regulation and Protection of Ministry of Water Resources, Changjiang Institude of Survey Planning Design and Research, Wuhan, 430010, China
| | - Shuangshuang Li
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Jianhong Zhang
- China International Engineering Consulting Corporation, Ltd., Beijing, 100048, China
| | - Yingxue Sun
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Chun Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
- Key Laboratory of Road Traffic Environmental Protection Technology, Ministry of Transport, Beijing, 100088, China.
| | - Dong Ni
- Key Laboratory of Road Traffic Environmental Protection Technology, Ministry of Transport, Beijing, 100088, China
| |
Collapse
|