1
|
Pavlou IA, Spandidos DA, Zoumpourlis V, Papakosta VK. Neurobiology of bruxism: The impact of stress (Review). Biomed Rep 2024; 20:59. [PMID: 38414628 PMCID: PMC10895390 DOI: 10.3892/br.2024.1747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024] Open
Abstract
Bruxism is a non-functional involuntary muscle activity that affects more than one-third of the population at some point in their lives. A number of factors have been found to be related to the etiopathogenesis of bruxism; therefore, the condition is considered multifactorial. The most commonly accepted factor is stress. Stress has long been considered to increase muscle tone and to reduce the pain threshold. Current evidence indicates that exposure to chronic stress, distress and allostatic load ignite neurological degeneration and the attenuation of critical neuronal pathways that are highly implicated in the orofacial involuntary muscle activity. The present review discusses the negative effects that chronic stress exerts on certain parts of the central nervous system and the mechanisms through which these changes are involved in the etiopathogenesis of bruxism. The extent of these morphological and functional changes on nerves and neuronal tracts provides valuable insight into the obstacles that need to be overcome in order to achieve successful treatment. Additionally, particular emphasis is given on the effects of bruxism on the central nervous system, particularly the activation of the hypothalamic-pituitary-adrenal axis, as this subsequently induces an increase in circulating corticosterone levels, also evidenced by increased levels of salivary cortisol, thereby transforming bruxism into a self-reinforcing loop.
Collapse
Affiliation(s)
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Veronica K Papakosta
- Department of Oral and Maxillofacial Surgery, University Hospital Attikon, 12462 Athens, Greece
| |
Collapse
|
2
|
Pavlou IA, Spandidos DA, Zoumpourlis V, Adamaki M. Nutrient insufficiencies and deficiencies involved in the pathogenesis of bruxism (Review). Exp Ther Med 2023; 26:563. [PMID: 37954114 PMCID: PMC10632959 DOI: 10.3892/etm.2023.12262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/02/2023] [Indexed: 11/14/2023] Open
Abstract
Stress has been well-documented to have a significant role in the etiopathogenesis of bruxism. Activation of the hypothalamic-pituitary-adrenal axis (HPA) and subsequent release of corticosteroids lead to increased muscle activity. Neurological studies have demonstrated that chronic stress exposure induces neurodegeneration of important neuronal structures and destabilization of the mesocortical dopaminergic pathway. These disruptions impair the abilities to counteract the overactivity of the HPA axis and disinhibit involuntary muscle activity, while at the same time, there is activation of the amygdala. Recent evidence shows that overactivation of the amygdala under stressful stimuli causes rhythmic jaw muscle activity by over activating the mesencephalic and motor trigeminal nuclei. The present review aimed to discuss the negative effects of certain vitamin and mineral deficiencies, such as vitamin D, magnesium, and omega-3 fatty acids, on the central nervous system. It provides evidence on how such insufficiencies may increase stress sensitivity and neuromuscular excitability and thereby reduce the ability to effectively respond to the overactivation of the sympathetic nervous system, and also how stress can in turn lead to these insufficiencies. Finally, the positive effects of individualized supplementation are discussed in the context of diminishing anxiety and oxidative stress, neuroprotection and in the reversal of neurodegeneration, and also in alleviating/reducing neuromuscular symptoms.
Collapse
Affiliation(s)
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| |
Collapse
|
3
|
Nageeb Hasan SM, Clarke CL, McManamon Strand TP, Bambico FR. Putative pathological mechanisms of late-life depression and Alzheimer's Disease. Brain Res 2023:148423. [PMID: 37244602 DOI: 10.1016/j.brainres.2023.148423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is characterized by progressive impairment in cognition and memory. AD is accompanied by several neuropsychiatric symptoms, with depression being the most prominent. Although depression has long been known to be associated with AD, controversial findings from preclinical and clinical studies have obscured the precise nature of this association. However recent evidence suggests that depression could be a prodrome or harbinger of AD. Evidence indicates that the major central serotonergic nucleus-the dorsal raphe nucleus (DRN)-shows very early AD pathology: neurofibrillary tangles made of hyperphosphorylated tau protein and degenerated neurites. AD and depression share common pathophysiologies, including functional deficits of the serotonin (5-HT) system. 5-HT receptors have modulatory effects on the progression of AD pathology i.e., reduction in Aβ load, increased hyper-phosphorylation of tau, decreased oxidative stress etc. Moreover, preclinical models show a role for specific channelopathies that result in abnormal regional activational and neuroplasticity patterns. One of these concerns the pathological upregulation of the small conductance calcium-activated potassium (SK) channel in corticolimbic structure. This has also been observed in the DRN in both diseases. The SKC is a key regulator of cell excitability and long-term potentiation (LTP). SKC over-expression is positively correlated with aging and cognitive decline, and is evident in AD. Pharmacological blockade of SKCs has been reported to reverse symptoms of depression and AD. Thus, aberrant SKC functioning could be related to depression pathophysiology and diverts its late-life progression towards the development of AD. We summarize findings from preclinical and clinical studies suggesting a molecular linkage between depression and AD pathology. We also provide a rationale for considering SKCs as a novel pharmacological target for the treatment of AD-associated symptoms.
Collapse
Affiliation(s)
- S M Nageeb Hasan
- Department of Psychology, Memorial University of Newfoundland and Labrador, Newfoundland and Labrador, A1B3Xs, Canada.
| | - Courtney Leigh Clarke
- Department of Psychology, Memorial University of Newfoundland and Labrador, Newfoundland and Labrador, A1B3Xs, Canada
| | | | - Francis Rodriguez Bambico
- Department of Psychology, Memorial University of Newfoundland and Labrador, Newfoundland and Labrador, A1B3Xs, Canada; Behavioural Neurobiology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T1R8, Canada
| |
Collapse
|
4
|
Interaction of the preferential D3 agonist (+)PHNO with dopamine D3-D2 receptor heterodimers and diverse classes of monoamine receptors: Relevance for PET imaging. Eur J Pharmacol 2022; 925:175016. [DOI: 10.1016/j.ejphar.2022.175016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/21/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022]
|
5
|
Patthy Á, Murai J, Hanics J, Pintér A, Zahola P, Hökfelt TGM, Harkany T, Alpár A. Neuropathology of the Brainstem to Mechanistically Understand and to Treat Alzheimer's Disease. J Clin Med 2021; 10:jcm10081555. [PMID: 33917176 PMCID: PMC8067882 DOI: 10.3390/jcm10081555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disorder as yet without effective therapy. Symptoms of this disorder typically reflect cortical malfunction with local neurohistopathology, which biased investigators to search for focal triggers and molecular mechanisms. Cortex, however, receives massive afferents from caudal brain structures, which do not only convey specific information but powerfully tune ensemble activity. Moreover, there is evidence that the start of AD is subcortical. The brainstem harbors monoamine systems, which establish a dense innervation in both allo- and neocortex. Monoaminergic synapses can co-release neuropeptides either by precisely terminating on cortical neurons or, when being “en passant”, can instigate local volume transmission. Especially due to its early damage, malfunction of the ascending monoaminergic system emerges as an early sign and possible trigger of AD. This review summarizes the involvement and cascaded impairment of brainstem monoaminergic neurons in AD and discusses cellular mechanisms that lead to their dysfunction. We highlight the significance and therapeutic challenges of transmitter co-release in ascending activating system, describe the role and changes of local connections and distant afferents of brainstem nuclei in AD, and summon the rapidly increasing diagnostic window during the last few years.
Collapse
Affiliation(s)
- Ágoston Patthy
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
| | - János Murai
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
| | - János Hanics
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Hungarian Academy of Sciences, H-1094 Budapest, Hungary
| | - Anna Pintér
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
| | - Péter Zahola
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
| | - Tomas G. M. Hökfelt
- Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, 17165 Stockholm, Sweden; (T.G.M.H.); (T.H.)
| | - Tibor Harkany
- Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, 17165 Stockholm, Sweden; (T.G.M.H.); (T.H.)
- Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, 1090 Vienna, Austria
| | - Alán Alpár
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Hungarian Academy of Sciences, H-1094 Budapest, Hungary
- Correspondence:
| |
Collapse
|
6
|
Solís-Guillén R, Leopoldo M, Meneses A, Centurión D. Activation of 5-HT 1A and 5-HT 7 receptors enhanced a positively reinforced long-term memory. Behav Brain Res 2021; 397:112932. [PMID: 32987057 DOI: 10.1016/j.bbr.2020.112932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/27/2020] [Accepted: 09/22/2020] [Indexed: 12/27/2022]
Abstract
Memory is one of the most important capabilities of our mind since it determines our individuality. Memory formation involves different stages: acquisition, consolidation and retrieval. There are many studies about early stages, however little is known about memory retrieval. Retrieval is the use of learned information and represents a big problem in patients with memory deficits where the main issue is that they can learn but cannot remember. Previous findings have demonstrated that 5-hydroxytryptamine (5-HT) is a neurotransmitter involved in memory process. Hence, here we are exploring the role of 5-HT in memory retrieval by using its metabolic precursor l-tryptophan and several ligands at 5-HT1A and 5-HT7 receptors. Experimental protocol consisted of evaluating conditioned responses (%CR) after one week of interruption following autoshaping sessions for memory formation; a decrease of %CR was interpreted as memory decay. Systemic administration of: (1) l-tryptophan (50 and 100 mg/kg), (2) 5-HT1A receptor agonist 8-OH-DPAT (0.031 and 0.062 mg/kg), (3) the selective antagonist 5-HT1A receptor WAY 100635 (0.3 and 0.6 mg/kg), (4) the 5-HT7 receptor agonist, LP 211, in a dose-dependent manner (1, 2.5, 5.0 and 10.0 mg/kg) enhanced memory retrieval. Further, the 5-HT7 receptor antagonist, SB 269970 (10.0 mg/kg), had no effect. Finally, SB 269970 (10.0 mg/kg) significantly blocked memory retrieval enhancement produced by 10.0 mg/kg LP 211, but not that induced by 2.5 mg/kg LP 211.These results, taken together, suggest that activation of 5-HT1A and 5-HT7 receptors enhanced memory retrieval and these receptors may be therapeutic targets to improve long-term memory retrieval.
Collapse
Affiliation(s)
- Rocío Solís-Guillén
- Departamento de Farmacobiología, Cinvestav Unidad Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330, México D.F., Mexico
| | - Marcello Leopoldo
- Dipartimento di Farmacia - Scienze del Farmaco, Universitá degli Studi di Bari "A Moro", Bari, Italy
| | - Alfredo Meneses
- Departamento de Farmacobiología, Cinvestav Unidad Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330, México D.F., Mexico
| | - David Centurión
- Departamento de Farmacobiología, Cinvestav Unidad Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330, México D.F., Mexico.
| |
Collapse
|
7
|
Palomero-Gallagher N, Zilles K. Cyto- and receptor architectonic mapping of the human brain. HANDBOOK OF CLINICAL NEUROLOGY 2018; 150:355-387. [PMID: 29496153 DOI: 10.1016/b978-0-444-63639-3.00024-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mapping of the human brain is more than the generation of an atlas-based parcellation of brain regions using histologic or histochemical criteria. It is the attempt to provide a topographically informed model of the structural and functional organization of the brain. To achieve this goal a multimodal atlas of the detailed microscopic and neurochemical structure of the brain must be registered to a stereotaxic reference space or brain, which also serves as reference for topographic assignment of functional data, e.g., functional magnet resonance imaging, electroencephalography, or magnetoencephalography, as well as metabolic imaging, e.g., positron emission tomography. Although classic maps remain pioneering steps, they do not match recent concepts of the functional organization in many regions, and suffer from methodic drawbacks. This chapter provides a summary of the recent status of human brain mapping, which is based on multimodal approaches integrating results of quantitative cyto- and receptor architectonic studies with focus on the cerebral cortex in a widely used reference brain. Descriptions of the methods for observer-independent and statistically testable cytoarchitectonic parcellations, quantitative multireceptor mapping, and registration to the reference brain, including the concept of probability maps and a toolbox for using the maps in functional neuroimaging studies, are provided.
Collapse
Affiliation(s)
- Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH, Aachen, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH, Aachen, Germany; JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany.
| |
Collapse
|
8
|
Szlachta M, Kuśmider M, Pabian P, Solich J, Kolasa M, Żurawek D, Dziedzicka-Wasylewska M, Faron-Górecka A. Repeated Clozapine Increases the Level of Serotonin 5-HT 1AR Heterodimerization with 5-HT 2A or Dopamine D 2 Receptors in the Mouse Cortex. Front Mol Neurosci 2018; 11:40. [PMID: 29497362 PMCID: PMC5818438 DOI: 10.3389/fnmol.2018.00040] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/29/2018] [Indexed: 12/20/2022] Open
Abstract
G-protein–coupled receptor (GPCR) heterodimers are new targets for the treatment of schizophrenia. Dopamine D2 receptors and serotonin 5-HT1A and 5-HT2A receptors play an important role in neurotransmission and have been implicated in many human psychiatric disorders, including schizophrenia. Therefore, in this study, we investigated whether antipsychotic drugs (clozapine (CLZ) and haloperidol (HAL)) affected the formation of heterodimers of D2–5-HT1A receptors as well as 5-HT1A–5-HT2A receptors. Proximity ligation assay (PLA) was used to accurately visualize, for the first time, GPCR heterodimers both at in vitro and ex vivo levels. In line with our previous behavioral studies, we used ketamine to induce cognitive deficits in mice. Our study confirmed the co-localization of D2/5-HT1A and 5-HT1A/5-HT2A receptors in the mouse cortex. Low-dose CLZ (0.3 mg/kg) administered repeatedly, but not CLZ at 1 mg/kg, increased the level of D2–5-HT1A and 5-HT1A–5-HT2A heterodimers in the mouse prefrontal and frontal cortex. On the other hand, HAL decreased the level of GPCR heterodimers. Ketamine affected the formation of 5-HT1A–5-HT2A, but not D2–5-HT1A, heterodimers.
Collapse
Affiliation(s)
- Marta Szlachta
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Maciej Kuśmider
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Paulina Pabian
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Joanna Solich
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Magdalena Kolasa
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Dariusz Żurawek
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | | | - Agata Faron-Górecka
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
9
|
Verdurand M, Zimmer L. Hippocampal 5-HT1A receptor expression changes in prodromal stages of Alzheimer's disease: Beneficial or deleterious? Neuropharmacology 2017. [DOI: 10.1016/j.neuropharm.2017.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Mutated tau, amyloid and neuroinflammation in Alzheimer disease—A brief review. ACTA ACUST UNITED AC 2016; 51:1-8. [PMID: 26851150 DOI: 10.1016/j.proghi.2016.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/14/2016] [Accepted: 01/14/2016] [Indexed: 01/08/2023]
|
11
|
Revisiting the Serotonin Hypothesis: Implications for Major Depressive Disorders. Mol Neurobiol 2015; 53:2778-2786. [PMID: 25823514 DOI: 10.1007/s12035-015-9152-z] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/19/2015] [Indexed: 02/06/2023]
Abstract
Major depressive disorder (MDD) is a heritable neuropsychiatric disease associated with severe changes at cellular and molecular levels. Its diagnosis mainly relies on the characterization of a wide range of symptoms including changes in mood and behavior. Despite the availability of antidepressant drugs, 10 to 30 % of patients fail to respond after a single or multiple treatments, and the recurrence of depression among responsive patients is very high. Evidence from the past decades suggests that the brain neurotransmitter serotonin (5-HT) is incriminated in MDD, and that a dysfunction of 5-HT receptors may play a role in the genesis of this disease. The 5-HT membrane transporter protein (SERT), which helps regulate the serotonergic transmission, is also implicated in MDD and is one of the main targets of antidepressant therapy. Although a number of behavioral tests and animal models have been developed to study depression, little is known about the neurobiological bases of MDD. Understanding the role of the serotonergic pathway will significantly help improve our knowledge of the pathophysiology of depression and may open up avenues for the development of new antidepressant drugs. The overarching goal of this review is to present recent findings from studies examining the serotonergic pathway in MDD, with a focus on SERT and the serotonin 1A (5-HT1A), serotonin 1B (5-HT1B), and serotonin 2A (5-HT2A) receptors. This paper also describes some of the main molecules involved in the internalization of 5-HT receptors and illustrates the changes in 5-HT neurotransmission in knockout mice and animal model of depression.
Collapse
|
12
|
Jalewa J, Joshi A, McGinnity TM, Prasad G, Wong-Lin K, Hölscher C. Neural circuit interactions between the dorsal raphe nucleus and the lateral hypothalamus: an experimental and computational study. PLoS One 2014; 9:e88003. [PMID: 24516577 PMCID: PMC3916338 DOI: 10.1371/journal.pone.0088003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 01/02/2014] [Indexed: 12/22/2022] Open
Abstract
Orexinergic/hypocretinergic (Ox) neurotransmission plays an important role in regulating sleep, as well as in anxiety and depression, for which the serotonergic (5-HT) system is also involved in. However, little is known regarding the direct and indirect interactions between 5-HT in the dorsal raphe nucleus (DRN) and Ox neurons in the lateral hypothalamus (LHA). In this study, we report the additional presence of 5-HT1BR, 5-HT2AR, 5-HT2CR and fast ligand-gated 5-HT3AR subtypes on the Ox neurons of transgenic Ox-enhanced green fluorescent protein (Ox-EGFP) and wild type C57Bl/6 mice using single and double immunofluorescence (IF) staining, respectively, and quantify the colocalization for each 5-HT receptor subtype. We further reveal the presence of 5-HT3AR and 5-HT1AR on GABAergic neurons in LHA. We also identify NMDAR1, OX1R and OX2R on Ox neurons, but none on adjacent GABAergic neurons. This suggests a one-way relationship between LHA's GABAergic and Ox neurons, wherein GABAergic neurons exerts an inhibitory effect on Ox neurons under partial DRN's 5-HT control. We also show that Ox axonal projections receive glutamatergic (PSD-95 immunopositive) and GABAergic (Gephyrin immunopositive) inputs in the DRN. We consider these and other available findings into our computational model to explore possible effects of neural circuit connection types and timescales on the DRN-LHA system's dynamics. We find that if the connections from 5-HT to LHA's GABAergic neurons are weakly excitatory or inhibitory, the network exhibits slow oscillations; not observed when the connection is strongly excitatory. Furthermore, if Ox directly excites 5-HT neurons at a fast timescale, phasic Ox activation can lead to an increase in 5-HT activity; no significant effect with slower timescale. Overall, our experimental and computational approaches provide insights towards a more complete understanding of the complex relationship between 5-HT in the DRN and Ox in the LHA.
Collapse
Affiliation(s)
- Jaishree Jalewa
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | - Alok Joshi
- Intelligent Systems Research Centre, University of Ulster, Magee Campus, Londonderry, Northern Ireland, United Kingdom
| | - T. Martin McGinnity
- Intelligent Systems Research Centre, University of Ulster, Magee Campus, Londonderry, Northern Ireland, United Kingdom
| | - Girijesh Prasad
- Intelligent Systems Research Centre, University of Ulster, Magee Campus, Londonderry, Northern Ireland, United Kingdom
| | - KongFatt Wong-Lin
- Intelligent Systems Research Centre, University of Ulster, Magee Campus, Londonderry, Northern Ireland, United Kingdom
- * E-mail: (CH); (KW)
| | - Christian Hölscher
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
- * E-mail: (CH); (KW)
| |
Collapse
|
13
|
Improved mapping and quantification of serotonin transporter availability in the human brainstem with the HRRT. Eur J Nucl Med Mol Imaging 2012; 40:228-37. [PMID: 23076621 DOI: 10.1007/s00259-012-2260-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 09/21/2012] [Indexed: 02/06/2023]
Abstract
PURPOSE The serotonin system is involved in many physiological functions and clinical conditions. Serotonergic neurons originate from the raphe nuclei in the brainstem, and reliable estimates of receptor/transporter availability in the raphe in vivo are thus of interest. Though positron emission tomography (PET) can be used to quantify receptor distribution in the brain, high noise levels prevent reliable estimation of radioligand binding in small regions such as the raphe. For this purpose, parametric imaging in combination with high-resolution PET systems may provide images with reduced noise levels and sufficient contrast for reliable quantification. This study examined the potential to evaluate radioligand binding in brainstem nuclei, and assessed the effect of improved resolution on the outcome measures. METHODS For comparative purposes, radioligand binding was measured with an ECAT EXACT HR PET system (resolution about 4.5 mm FWHM) and a high-resolution research tomograph (HRRT) system (resolution about 1.5 mm FWHM). Six subjects were examined with both systems on the same day using the serotonin transporter radioligand [(11)C]MADAM. Parametric images of binding potential (BP (ND)) were obtained using a wavelet-aided approach. Regions of interest (ROIs) were delineated using a threshold-based semiautomatic delineation procedure for five brainstem structures. Regional BP (ND) values were estimated by applying the ROIs to the parametric images, and the percentage difference in BP (ND) between the systems was calculated. RESULTS Signals for [(11)C]MADAM binding were obtained for all five brainstem structures. Overall, the HRRT provided 30-40 % higher BP (ND) values than the HR (p = 0.0017), independent of thresholds used in the ROI delineation procedure. CONCLUSION The methodology used enabled the estimation of [(11)C]MADAM binding in the small nuclei of the brainstem. Differences in the BP (ND) values calculated using data from the two systems were mainly attributable to their differing resolutions. The estimated BP (ND) values provided lower across-subject variability than those previously obtained using compartment analysis. This procedure may therefore facilitate quantitative studies of receptor/transporter availability in the brainstem.
Collapse
|
14
|
Rodríguez JJ, Noristani HN, Verkhratsky A. The serotonergic system in ageing and Alzheimer's disease. Prog Neurobiol 2012; 99:15-41. [DOI: 10.1016/j.pneurobio.2012.06.010] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 05/24/2012] [Accepted: 06/22/2012] [Indexed: 01/11/2023]
|
15
|
Wang C, Bi W, Liang Y, Jing X, Xiao S, Fang Y, Shi Q, Tao E. Paroxetine engenders analgesic effects through inhibition of p38 phosphorylation in a rat migraine model. Neural Regen Res 2012; 7:1006-12. [PMID: 25722689 PMCID: PMC4341271 DOI: 10.3969/j.issn.1673-5374.2012.13.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 02/24/2012] [Indexed: 11/18/2022] Open
Abstract
In this study, a model of migraine was established by electrical stimulation of the superior sagittal sinus in rats. These rats were then treated orally with paroxetine at doses of 2.5, 5, or 10 mg/kg per day for 14 days. Following treatment, mechanical withdrawal thresholds were significantly higher, extracellular concentrations of 5-hydroxytryptamine in the periaqueductal grey matter and nucleus reticularis gigantocellularis were higher, and the expression of phosphorylated p38 in the trigeminal nucleus caudalis was lower. Our experimental findings suggest that paroxetine has analgesic effects in a rat migraine model, which are mediated by inhibition of p38 phosphorylation.
Collapse
Affiliation(s)
- Chuanming Wang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong Province, China
| | - Wei Bi
- Department of Neurology, First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Yanran Liang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong Province, China
| | - Xiuna Jing
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong Province, China
| | - Songhua Xiao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong Province, China
| | - Yannan Fang
- Department of Neurology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Qiaoyun Shi
- Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94304, China
| | - Enxiang Tao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong Province, China,
Corresponding author: Enxiang Tao, Chief physician, Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong Province, China (N20111109006/WJ)
| |
Collapse
|
16
|
Menuet C, Borghgraef P, Matarazzo V, Gielis L, Lajard AM, Voituron N, Gestreau C, Dutschmann M, Van Leuven F, Hilaire G. Raphé tauopathy alters serotonin metabolism and breathing activity in terminal Tau.P301L mice: possible implications for tauopathies and Alzheimer's disease. Respir Physiol Neurobiol 2011; 178:290-303. [PMID: 21763469 DOI: 10.1016/j.resp.2011.06.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/14/2011] [Accepted: 06/30/2011] [Indexed: 11/30/2022]
Abstract
Tauopathies, including Alzheimer's disease are the most frequent neurodegenerative disorders in elderly people. Patients develop cognitive and behaviour defects induced by the tauopathy in the forebrain, but most also display early brainstem tauopathy, with oro-pharyngeal and serotoninergic (5-HT) defects. We studied these aspects in Tau.P301L mice, that express human mutant tau protein and develop tauopathy first in hindbrain, with cognitive, motor and upper airway defects from 7 to 8 months onwards, until premature death before age 12 months. Using plethysmography, immunohistochemistry and biochemistry, we examined the respiratory and 5-HT systems of aging Tau.P301L and control mice. At 8 months, Tau.P301L mice developed upper airway dysfunction but retained normal respiratory rhythm and normal respiratory regulations. In the following weeks, Tau.P301L mice entered terminal stages with reduced body weight, progressive limb clasping and lethargy. Compared to age 8 months, terminal Tau.P301L mice showed aggravated upper airway dysfunction, abnormal respiratory rhythm and abnormal respiratory regulations. In addition, they showed severe tauopathy in Kolliker-Fuse, raphé obscurus and raphé magnus nuclei but not in medullary respiratory-related areas. Although the raphé tauopathy concerned mainly non-5-HT neurons, the 5-HT metabolism of terminal Tau.P301L mice was altered. We propose that the progressive raphé tauopathy affects the 5-HT metabolism, which affects the 5-HT modulation of the respiratory network and therefore the breathing pattern. Then, 5-HT deficits contribute to the moribund phenotype of Tau.P301L mice, and possibly in patients suffering from tauopathies, including Alzheimer's disease.
Collapse
Affiliation(s)
- Clément Menuet
- Maturation, Plasticity, Physiology and Pathology of Respiration (MP3-Respiration), Unité Mixte de Recherche 6231, Centre National de la Recherche Scientifique, Université de la Méditerranée, Université Paul Cézanne, Faculté Saint Jérôme (Service 362), 13397 Marseille Cedex 20, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hilaire G, Voituron N, Menuet C, Ichiyama RM, Subramanian HH, Dutschmann M. The role of serotonin in respiratory function and dysfunction. Respir Physiol Neurobiol 2010; 174:76-88. [PMID: 20801236 PMCID: PMC2993113 DOI: 10.1016/j.resp.2010.08.017] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 08/18/2010] [Accepted: 08/20/2010] [Indexed: 01/11/2023]
Abstract
Serotonin (5-HT) is a neuromodulator-transmitter influencing global brain function. Past and present findings illustrate a prominent role for 5-HT in the modulation of ponto-medullary autonomic circuits. 5-HT is also involved in the control of neurotrophic processes during pre- and postnatal development of neural circuits. The functional implications of 5-HT are particularly illustrated in the alterations to the serotonergic system, as seen in a wide range of neurological disorders. This article reviews the role of 5-HT in the development and control of respiratory networks in the ponto-medullary brainstem. The review further examines the role of 5-HT in breathing disorders occurring at different stages of life, in particular, the neonatal neurodevelopmental diseases such as Rett, sudden infant death and Prader-Willi syndromes, adult diseases such as sleep apnoea and mental illness linked to neurodegeneration.
Collapse
Affiliation(s)
- Gérard Hilaire
- Mp3-respiration team, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), Unité Mixte de Recherche 6231, CNRS - Université Aix-Marseille II & III, Faculté Saint Jérôme 13397 Marseille Cedex 20, France
| | - Nicolas Voituron
- Mp3-respiration team, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), Unité Mixte de Recherche 6231, CNRS - Université Aix-Marseille II & III, Faculté Saint Jérôme 13397 Marseille Cedex 20, France
| | - Clément Menuet
- Mp3-respiration team, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), Unité Mixte de Recherche 6231, CNRS - Université Aix-Marseille II & III, Faculté Saint Jérôme 13397 Marseille Cedex 20, France
| | - Ronaldo M. Ichiyama
- Institute of Membrane and Systems Biology, Garstang Building, University of Leeds, Leeds LS2 9JT
| | - Hari H. Subramanian
- Institute of Membrane and Systems Biology, Garstang Building, University of Leeds, Leeds LS2 9JT
| | - Mathias Dutschmann
- Institute of Membrane and Systems Biology, Garstang Building, University of Leeds, Leeds LS2 9JT
| |
Collapse
|