1
|
Petrie J, Kowallis LR, Kamhout S, Bills KB, Adams D, Fleming DE, Brown BL, Steffensen SC. Gender-Specific Interactions in a Visual Object Recognition Task in Persons with Opioid Use Disorder. Biomedicines 2023; 11:2460. [PMID: 37760905 PMCID: PMC10525754 DOI: 10.3390/biomedicines11092460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Opioid use disorder (OUD)-associated overdose deaths have reached epidemic proportions worldwide over the past two decades, with death rates for men reported at twice the rate for women. Using a controlled, cross-sectional, age-matched (18-56 y) design to better understand the cognitive neuroscience of OUD, we evaluated the electroencephalographic (EEG) responses of male and female participants with OUD vs. age- and gender-matched non-OUD controls during a simple visual object recognition Go/No-Go task. Overall, women had significantly slower reaction times (RTs) than men. In addition, EEG N200 and P300 event-related potential (ERP) amplitudes for non-OUD controls were significantly larger for men, while their latencies were significantly shorter than for women. However, while N200 and P300 amplitudes were not significantly affected by OUD for either men or women in this task, latencies were also affected differentially in men vs. women with OUD. Accordingly, for both N200 and P300, male OUD participants exhibited longer latencies while female OUD participants exhibited shorter ones than in non-OUD controls. Additionally, robust oscillations were found in all participants during a feedback message associated with performance in the task. Although alpha and beta power during the feedback message were significantly greater for men than women overall, both alpha and beta oscillations exhibited significantly lower power in all participants with OUD. Taken together, these findings suggest important gender by OUD differences in cognitive processing and reflection of performance in this simple visual task.
Collapse
Affiliation(s)
- JoAnn Petrie
- Department of Psychology, Brigham Young University, Provo, UT 84602, USA; (J.P.); (K.B.B.)
| | - Logan R. Kowallis
- Department of Psychology, Brigham Young University, Provo, UT 84602, USA; (J.P.); (K.B.B.)
| | - Sarah Kamhout
- Department of Psychology, Brigham Young University, Provo, UT 84602, USA; (J.P.); (K.B.B.)
| | - Kyle B. Bills
- Department of Psychology, Brigham Young University, Provo, UT 84602, USA; (J.P.); (K.B.B.)
- Department of Neuroscience, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA
| | - Daniel Adams
- PhotoPharmics, Inc., 947 So, 500 E, Suite 100, American Fork, UT 84003, USA
| | - Donovan E. Fleming
- Department of Psychology, Brigham Young University, Provo, UT 84602, USA; (J.P.); (K.B.B.)
| | - Bruce L. Brown
- Department of Psychology, Brigham Young University, Provo, UT 84602, USA; (J.P.); (K.B.B.)
| | - Scott C. Steffensen
- Department of Psychology, Brigham Young University, Provo, UT 84602, USA; (J.P.); (K.B.B.)
- Department of Neuroscience, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA
| |
Collapse
|
2
|
Elia A, Fossati S. Autonomic nervous system and cardiac neuro-signaling pathway modulation in cardiovascular disorders and Alzheimer's disease. Front Physiol 2023; 14:1060666. [PMID: 36798942 PMCID: PMC9926972 DOI: 10.3389/fphys.2023.1060666] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
The heart is a functional syncytium controlled by a delicate and sophisticated balance ensured by the tight coordination of its several cell subpopulations. Accordingly, cardiomyocytes together with the surrounding microenvironment participate in the heart tissue homeostasis. In the right atrium, the sinoatrial nodal cells regulate the cardiac impulse propagation through cardiomyocytes, thus ensuring the maintenance of the electric network in the heart tissue. Notably, the central nervous system (CNS) modulates the cardiac rhythm through the two limbs of the autonomic nervous system (ANS): the parasympathetic and sympathetic compartments. The autonomic nervous system exerts non-voluntary effects on different peripheral organs. The main neuromodulator of the Sympathetic Nervous System (SNS) is norepinephrine, while the principal neurotransmitter of the Parasympathetic Nervous System (PNS) is acetylcholine. Through these two main neurohormones, the ANS can gradually regulate cardiac, vascular, visceral, and glandular functions by turning on one of its two branches (adrenergic and/or cholinergic), which exert opposite effects on targeted organs. Besides these neuromodulators, the cardiac nervous system is ruled by specific neuropeptides (neurotrophic factors) that help to preserve innervation homeostasis through the myocardial layers (from epicardium to endocardium). Interestingly, the dysregulation of this neuro-signaling pathway may expose the cardiac tissue to severe disorders of different etiology and nature. Specifically, a maladaptive remodeling of the cardiac nervous system may culminate in a progressive loss of neurotrophins, thus leading to severe myocardial denervation, as observed in different cardiometabolic and neurodegenerative diseases (myocardial infarction, heart failure, Alzheimer's disease). This review analyzes the current knowledge on the pathophysiological processes involved in cardiac nervous system impairment from the perspectives of both cardiac disorders and a widely diffused and devastating neurodegenerative disorder, Alzheimer's disease, proposing a relationship between neurodegeneration, loss of neurotrophic factors, and cardiac nervous system impairment. This overview is conducive to a more comprehensive understanding of the process of cardiac neuro-signaling dysfunction, while bringing to light potential therapeutic scenarios to correct or delay the adverse cardiovascular remodeling, thus improving the cardiac prognosis and quality of life in patients with heart or neurodegenerative disorders.
Collapse
|
3
|
Zandstra TE, Notenboom RGE, Wink J, Kiès P, Vliegen HW, Egorova AD, Schalij MJ, De Ruiter MC, Jongbloed MRM. Asymmetry and Heterogeneity: Part and Parcel in Cardiac Autonomic Innervation and Function. Front Physiol 2021; 12:665298. [PMID: 34603069 PMCID: PMC8481575 DOI: 10.3389/fphys.2021.665298] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
The cardiac autonomic nervous system (cANS) regulates cardiac adaptation to different demands. The heart is an asymmetrical organ, and in the selection of adequate treatment of cardiac diseases it may be relevant to take into account that the cANS also has sidedness as well as regional differences in anatomical, functional, and molecular characteristics. The left and right ventricles respond differently to adrenergic stimulation. Isoforms of nitric oxide synthase, which plays an important role in parasympathetic function, are also distributed asymmetrically across the heart. Treatment of cardiac disease heavily relies on affecting left-sided heart targets which are thought to apply to the right ventricle as well. Functional studies of the right ventricle have often been neglected. In addition, many principles have only been investigated in animals and not in humans. Anatomical and functional heterogeneity of the cANS in human tissue or subjects is highly valuable for understanding left- and right-sided cardiac pathology and for identifying novel treatment targets and modalities. Within this perspective, we aim to provide an overview and synthesis of anatomical and functional heterogeneity of the cANS in tissue or subjects, focusing on the human heart.
Collapse
Affiliation(s)
- Tjitske E. Zandstra
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Jeroen Wink
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands
| | - Philippine Kiès
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Hubert W. Vliegen
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Martin J. Schalij
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Marco C. De Ruiter
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - Monique R. M. Jongbloed
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
4
|
Chadda KR, Ajijola OA, Vaseghi M, Shivkumar K, Huang CLH, Jeevaratnam K. Ageing, the autonomic nervous system and arrhythmia: From brain to heart. Ageing Res Rev 2018; 48:40-50. [PMID: 30300712 DOI: 10.1016/j.arr.2018.09.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/21/2018] [Accepted: 09/30/2018] [Indexed: 02/08/2023]
Abstract
An ageing myocardium possesses significant electrophysiological alterations that predisposes the elderly patient to arrhythmic risk. Whilst these alterations are intrinsic to the cardiac myocytes, they are modulated by the cardiac autonomic nervous system (ANS) and consequently, ageing of the cardiac ANS is fundamental to the development of arrhythmias. A systems-based approach that incorporates the influence of the cardiac ANS could lead to better mechanistic understanding of how arrhythmogenic triggers and substrates interact spatially and temporally to produce sustained arrhythmia and why its incidence increases with age. Despite the existence of physiological oscillations of ANS activity on the heart, pathological oscillations can lead to defective activation and recovery properties of the myocardium. Such changes can be attributable to the decrease in functionality and structural alterations to ANS specific receptors in the myocardium with age. These altered ANS adaptive responses can occur either as a normal ageing process or accelerated in the presence of specific cardiac pathologies, such as genetic mutations or neurodegenerative conditions. Targeted intervention that seek to manipulate the ageing ANS influence on the myocardium may prove to be an efficacious approach for the management of arrhythmia in the ageing population.
Collapse
Affiliation(s)
- Karan R Chadda
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, United Kingdom; Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center, UCLA Health System/David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Marmar Vaseghi
- UCLA Cardiac Arrhythmia Center, UCLA Health System/David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center, UCLA Health System/David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Christopher L-H Huang
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom; Department of Biochemistry, Hopkins Building, University of Cambridge, Cambridge, CB2 1QW, United Kingdom
| | - Kamalan Jeevaratnam
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, United Kingdom; Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom.
| |
Collapse
|
5
|
Said SM, Saygili E, Rana OR, Genz C, Hahn J, Bali R, Varshney S, Albouaini K, Prondzinsky R, Braun-Dullaeus RC. Takotsubo Cardiomyopathy: What we have Learned in the Last 25 Years? (A Comparative Literature Review). Curr Cardiol Rev 2016; 12:297-303. [PMID: 26864096 PMCID: PMC5304252 DOI: 10.2174/1573403x12666160211125601] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 12/01/2015] [Accepted: 12/09/2015] [Indexed: 01/07/2023] Open
Abstract
We performed a comparative literature review, to elucidate the major features of the Takotsubo (stress) cardiomyopathy (TCM) collected in last 25 years. TCM is characterized by left- or biventricular apical ballooning with a clinical presentation, electrocardiographic abnormalities, and biomarker profils similar to those seen in acute myocardial infarction. Epidemiological studies have shown that TCM is more common in postmenopausal women; however exact figures are not available. The underlying aetiology is still largely undetermined. Elevated catecholamine levels, lack of estrogen, disturbed myocardial fatty acid metabolism and plaque rupture with spontaneous thrombolysis are potentially discussed mechanisms responsible for inducing a prolonged stunned myocardium. Strong emotional or physical stress is the most frequently described trigger in the literature. Therapy recommendations include appropriate antiplatelet treatment, β-blockers and ACE inhibitors. The abnormal kinetics usually resolve or improve within a month and carry a favorable prognosis in most cases. However, all the suspected complications of an acute myocardial infarction, including cardiogenic shock or lethal arrhythmias, may still occur.
Collapse
Affiliation(s)
- Samir M Said
- Department of Cardiology, University Hospital Magdeburg, Leipziger Strasse 44, D-39120 Magdeburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
SHP-2 deletion in postmigratory neural crest cells results in impaired cardiac sympathetic innervation. Proc Natl Acad Sci U S A 2014; 111:E1374-82. [PMID: 24706815 DOI: 10.1073/pnas.1319208111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Autonomic innervation is an essential component of cardiovascular regulation that is first established from the neural crest (NC) lineage in utero and continues developing postnatally. Although in vitro studies have indicated that SH2-containing protein tyrosine phosphatase 2 (SHP-2) is a signaling factor critical for regulating sympathetic neuron differentiation, this has yet to be shown in the complex in vivo environment of cardiac autonomic innervation. Targeting SHP-2 within postmigratory NC lineages resulted in a fully penetrant mouse model of diminished sympathetic cardiac innervation and concomitant bradycardia. Immunohistochemistry of the sympathetic nerve marker tyrosine hydroxylase revealed a progressive loss of adrenergic ganglionic neurons and reduction of cardiac sympathetic axon density in Shp2 cKOs. Molecularly, Shp2 cKOs exhibit lineage-specific suppression of activated phospo-ERK1/2 signaling but not of other downstream targets of SHP-2 such as pAKT. Genetic restoration of the phosphorylated-extracellular signal-regulated kinase (pERK) deficiency via lineage-specific expression of constitutively active MEK1 was sufficient to rescue the sympathetic innervation deficit and its physiological consequences. These data indicate that SHP-2 signaling specifically through pERK in postmigratory NC lineages is essential for development and maintenance of sympathetic cardiac innervation postnatally.
Collapse
|
7
|
Podlasek CA, Ghosh R, Onur Cakir O, Bond C, McKenna KE, McVary KT. Nerve growth factor signaling following unilateral pelvic ganglionectomy in the rat ventral prostate is age dependent. Asian J Androl 2013; 15:764-9. [PMID: 23872662 DOI: 10.1038/aja.2013.59] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/12/2013] [Accepted: 04/20/2013] [Indexed: 11/09/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is a serious health concern and is an underlying cause of lower urinary tract symptoms (LUTS) in many men. In affected men, LUTS/BPH is believed to result from benign proliferation of the prostate resulting in bladder outlet obstruction. Postnatal growth of the prostate is controlled via growth factor and endocrine mechanisms. However, little attention had been given to the function of the autonomic nervous system in prostate growth and differentiation. Nerve growth factor (NGF) is a prostatic mitogen that has a trophic role in autonomic sensory end organ interaction. In this study, we examine how the autonomic nervous system influences prostate growth as a function of age by quantifying NGF in the rat ventral prostate (VP) after pelvic ganglionectomy. Unilateral pelvic ganglionectomy was performed on postnatal days 30 (P30), 60 and 120 Sprague-Dawley rats in comparison to sham controls (n=39). Semiquantitative RT-PCR, Western blotting and immunohistochemical analysis for NGF were performed on denervated, intact (contralateral side) and sham control VP 7 days after surgery. Ngf RNA expression was significantly increased in the denervated and intact hyperplastic VP. Western blotting showed age-dependent increases in NGF protein at P60 in the contralateral intact VP. NGF was localized in the nerves, basal cells and columnar epithelium of the prostatic ducts. Denervation causes age-dependent increases in NGF in the VP, which is a potential mechanism by which the autonomic nervous system may regulate prostate growth and lead to BPH/LUTS.
Collapse
Affiliation(s)
- Carol A Podlasek
- Department of Urology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|