1
|
Singhal P, Veturi Y, Dudek SM, Lucas A, Frase A, van Steen K, Schrodi SJ, Fasel D, Weng C, Pendergrass R, Schaid DJ, Kullo IJ, Dikilitas O, Sleiman PMA, Hakonarson H, Moore JH, Williams SM, Ritchie MD, Verma SS. Evidence of epistasis in regions of long-range linkage disequilibrium across five complex diseases in the UK Biobank and eMERGE datasets. Am J Hum Genet 2023; 110:575-591. [PMID: 37028392 PMCID: PMC10119154 DOI: 10.1016/j.ajhg.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/07/2023] [Indexed: 04/09/2023] Open
Abstract
Leveraging linkage disequilibrium (LD) patterns as representative of population substructure enables the discovery of additive association signals in genome-wide association studies (GWASs). Standard GWASs are well-powered to interrogate additive models; however, new approaches are required for invesigating other modes of inheritance such as dominance and epistasis. Epistasis, or non-additive interaction between genes, exists across the genome but often goes undetected because of a lack of statistical power. Furthermore, the adoption of LD pruning as customary in standard GWASs excludes detection of sites that are in LD but might underlie the genetic architecture of complex traits. We hypothesize that uncovering long-range interactions between loci with strong LD due to epistatic selection can elucidate genetic mechanisms underlying common diseases. To investigate this hypothesis, we tested for associations between 23 common diseases and 5,625,845 epistatic SNP-SNP pairs (determined by Ohta's D statistics) in long-range LD (>0.25 cM). Across five disease phenotypes, we identified one significant and four near-significant associations that replicated in two large genotype-phenotype datasets (UK Biobank and eMERGE). The genes that were most likely involved in the replicated associations were (1) members of highly conserved gene families with complex roles in multiple pathways, (2) essential genes, and/or (3) genes that were associated in the literature with complex traits that display variable expressivity. These results support the highly pleiotropic and conserved nature of variants in long-range LD under epistatic selection. Our work supports the hypothesis that epistatic interactions regulate diverse clinical mechanisms and might especially be driving factors in conditions with a wide range of phenotypic outcomes.
Collapse
Affiliation(s)
- Pankhuri Singhal
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yogasudha Veturi
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Scott M Dudek
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anastasia Lucas
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alex Frase
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristel van Steen
- Department of Human Genetics, Katholieke Universiteit Leuven, ON4 Herestraat 49, 3000 Leuven, Belgium
| | - Steven J Schrodi
- Laboratory of Genetics, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - David Fasel
- Columbia University, New York, NY 10027, USA
| | | | | | | | | | | | | | - Hakon Hakonarson
- Children's Hospital of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason H Moore
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Scott M Williams
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Marylyn D Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Shefali S Verma
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Cai Z, He Y, Liu S, Xue Y, Quan H, Zhang L, Gao YQ. Hierarchical dinucleotide distribution in genome along evolution and its effect on chromatin packing. Life Sci Alliance 2021; 4:4/8/e202101028. [PMID: 34168075 PMCID: PMC8321668 DOI: 10.26508/lsa.202101028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/29/2022] Open
Abstract
It describes how hierarchical CpG distribution on the genomes of species change in the evolution and the correlation with the chromatin structure. Dinucleotide densities and their distribution patterns vary significantly among species. Previous studies revealed that CpG is susceptible to methylation, enriched at topologically associating domain boundaries and its distribution along the genome correlates with chromatin compartmentalization. However, the multi-scale organizations of CpG in the linear genome, their role in chromatin organization, and how they change along the evolution are only partially understood. By comparing the CpG distribution at different genomic length scales, we quantify the difference between the CpG distributions of different species and evaluate how the hierarchical uneven CpG distribution appears in evolution. The clustering of species based on the CpG distribution is consistent with the phylogenetic tree. Interestingly, we found the CpG distribution and chromatin structure to be correlated in many different length scales, especially for mammals and avians, consistent with the mosaic CpG distribution in the genomes of these species.
Collapse
Affiliation(s)
- Zhicheng Cai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Biomedical Pioneering Innovation Center, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Yueying He
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Biomedical Pioneering Innovation Center, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Sirui Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Biomedical Pioneering Innovation Center, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Yue Xue
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Biomedical Pioneering Innovation Center, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Hui Quan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Biomedical Pioneering Innovation Center, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Ling Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Yi Qin Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China .,Biomedical Pioneering Innovation Center, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| |
Collapse
|
3
|
Culminskaya I, Kulminski AM, Yashin AI. Coordinated Action of Biological Processes during Embryogenesis Can Cause Genome-Wide Linkage Disequilibrium in the Human Genome and Influence Age-Related Phenotypes. ANNALS OF GERONTOLOGY AND GERIATRIC RESEARCH 2016; 3:1035. [PMID: 28357417 PMCID: PMC5367637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A role of non-Mendelian inheritance in genetics of complex, age-related traits is becoming increasingly recognized. Recently, we reported on two inheritable clusters of SNPs in extensive genome-wide linkage disequilibrium (LD) in the Framingham Heart Study (FHS), which were associated with the phenotype of premature death. Here we address biologically-related properties of these two clusters. These clusters have been unlikely selected randomly because they are functionally and structurally different from matched sets of randomly selected SNPs. For example, SNPs in LD from each cluster are highly significantly enriched in genes (p=7.1×10-22 and p=5.8×10-18), in general, and in short genes (p=1.4×10-47 and p=4.6×10-7), in particular. Mapping of SNPs in LD to genes resulted in two, partly overlapping, networks of 1764 and 4806 genes. Both these networks were gene enriched in developmental processes and in biological processes tightly linked with development including biological adhesion, cellular component organization, locomotion, localization, signaling, (p<10-4, q<10-4 for each category). Thorough analysis suggests connections of these genetic networks with different stages of embryogenesis and highlights biological interlink of specific processes enriched for genes from these networks. The results suggest that coordinated action of biological processes during embryogenesis may generate genome-wide networks of genetic variants, which may influence complex age-related phenotypes characterizing health span and lifespan.
Collapse
Affiliation(s)
- Irina Culminskaya
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, USA
| | - Alexander M. Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, USA
| | - Anatoli I. Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, USA
| |
Collapse
|
4
|
Kulminski A, Culminskaya I, Yashin AI. Letter to the editor: Standardization of genetic association studies, pros and cons, reaffirmed. AGE (DORDRECHT, NETHERLANDS) 2014; 36:945-7. [PMID: 24271844 PMCID: PMC4039267 DOI: 10.1007/s11357-013-9602-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 11/07/2013] [Indexed: 06/02/2023]
Affiliation(s)
- Alexander Kulminski
- Center for Population Health and Aging, Duke University, Trent Hall, Room 002, Box 90408, Durham, NC, 27708, USA,
| | | | | |
Collapse
|
5
|
Paterson AD. Letter to the editor: expression of concern, reaffirmed. AGE (DORDRECHT, NETHERLANDS) 2014; 36:479-82. [PMID: 23975717 PMCID: PMC3889910 DOI: 10.1007/s11357-013-9573-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/22/2013] [Indexed: 06/02/2023]
Affiliation(s)
- Andrew D Paterson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, TMDT East Tower, Room 15-707, 101 College Street, Toronto, ON, M5G 1L7, Canada,
| |
Collapse
|