1
|
Romera C, Riba M, Alsina R, Sartorio M, Vilaplana J, Pelegrí C, Del Valle J. Mouse brain contains age-dependent extraparenchymal granular structures and astrocytes, both reactive to natural IgM antibodies, linked to the fissura magna. Immun Ageing 2024; 21:56. [PMID: 39169358 PMCID: PMC11337560 DOI: 10.1186/s12979-024-00460-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Mouse brains can contain specific polyglucosan aggregates known as Periodic Acid-Schiff (PAS)-granules. Generated in astrocytes, these granules increase with age and exhibit neo-epitopes of carbohydrate nature that are recognized by natural IgM antibodies (IgMs). The existence of neoepitopes on PAS granules suggests the presence of neoepitopes in other brain structures, and this is investigated here. To this end, brain sections from SAMP8 and ICR-CD1 mice were examined at different ages. RESULTS We have identified two novel structures that, apart from PAS granules, are recognized by natural IgMs. On one side, IgM reactive (IgM+) granular structures which are placed in the longitudinal fissure, the quadrigeminal cistern, and a region that extends from the quadrigeminal cistern to the interpeduncular cistern. This last region, located between the telencephalon and both the mesencephalon and diencephalon, is designated henceforth as the fissura magna, as it is indeed a fissure and the largest in the brain. As all these regions are extraparenchymal (EP), the IgM+ granules found in these zones have been named EP granules. These EP granules are mainly associated with fibroblasts and are not stained with PAS. On the other side, some IgM+ astrocytes have been found in the glia limitans, near the above-mentioned fissures. Remarkably, EP granules are more prevalent at younger ages, while the number of IgM+ astrocytes increases with age, similarly to the already described evolution of PAS granules. CONCLUSIONS The present work reports the presence of two brain-related structures that, apart from PAS granules, contain neo-epitopes of carbohydrate nature, namely EP granules and IgM+ astrocytes. We suggest that EP granules, associated to fibroblasts, may be part of a physiological function in brain clearance or brain-CSF immune surveillance, while both PAS granules and IgM+ astrocytes may be related to the increasing accumulation of harmful materials that occurs with age and linked to brain protective mechanisms. Moreover, the specific localisation of these EP granules and IgM+ astrocytes suggest the importance of the fissura magna in these brain-related cleaning and immune functions. The overall results reinforce the possible link between the fissura magna and the functioning of the glymphatic system.
Collapse
Affiliation(s)
- Clara Romera
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de L'Alimentació, Universitat de Barcelona, Barcelona, 08028, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, 08035, Spain
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, 28031, Spain
| | - Marta Riba
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de L'Alimentació, Universitat de Barcelona, Barcelona, 08028, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, 08035, Spain
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, 28031, Spain
| | - Raquel Alsina
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de L'Alimentació, Universitat de Barcelona, Barcelona, 08028, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, 08035, Spain
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, 28031, Spain
| | - Marina Sartorio
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de L'Alimentació, Universitat de Barcelona, Barcelona, 08028, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, 08035, Spain
| | - Jordi Vilaplana
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de L'Alimentació, Universitat de Barcelona, Barcelona, 08028, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, 08035, Spain
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, 28031, Spain
| | - Carme Pelegrí
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de L'Alimentació, Universitat de Barcelona, Barcelona, 08028, Spain.
- Institut de Neurociències, Universitat de Barcelona, Barcelona, 08035, Spain.
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, 28031, Spain.
| | - Jaume Del Valle
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de L'Alimentació, Universitat de Barcelona, Barcelona, 08028, Spain.
- Institut de Neurociències, Universitat de Barcelona, Barcelona, 08035, Spain.
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, 28031, Spain.
| |
Collapse
|
2
|
Wasteosomes ( corpora amylacea) as a hallmark of chronic glymphatic insufficiency. Proc Natl Acad Sci U S A 2022; 119:e2211326119. [PMID: 36409907 PMCID: PMC9860256 DOI: 10.1073/pnas.2211326119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In different organs and tissues, the lymphatic system serves as a drainage system for interstitial fluid and is useful for removing substances that would otherwise accumulate in the interstitium. In the brain, which lacks lymphatic circulation, the drainage and cleaning function is performed by the glymphatic system, called so for its dependence on glial cells and its similar function to that of the lymphatic system. In the present article, we define glymphatic insufficiency as the inability of the glymphatic system to properly perform the brain cleaning function. Furthermore, we propose that corpora amylacea or wasteosomes, which are protective structures that act as waste containers and accumulate waste products, are, in fact, a manifestation of chronic glymphatic insufficiency. Assuming this premise, we provide an explanation that coherently links the formation, distribution, structure, and function of these bodies in the human brain. Moreover, we open up new perspectives in the study of the glymphatic system since wasteosomes can provide information about which variables have the greatest impact on the glymphatic system and which diseases occur with chronic glymphatic insufficiency. For example, based on the presence of wasteosomes, it seems that aging, sleep disorders, and cerebrovascular pathologies have the highest impact on the glymphatic system, whereas neurodegenerative diseases have a more limited impact. Furthermore, as glymphatic insufficiency is a risk factor for neurodegenerative diseases, information provided by wasteosomes could help to define the strategies and actions that can prevent glymphatic disruptions, thus limiting the risk of developing neurodegenerative diseases.
Collapse
|
3
|
Wander CM, Tsujimoto THM, Ervin JF, Wang C, Maranto SM, Bhat V, Dallmeier JD, Wang SHJ, Lin FC, Scott WK, Holtzman DM, Cohen TJ. Corpora amylacea are associated with tau burden and cognitive status in Alzheimer's disease. Acta Neuropathol Commun 2022; 10:110. [PMID: 35941704 PMCID: PMC9361643 DOI: 10.1186/s40478-022-01409-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/16/2022] [Indexed: 02/04/2023] Open
Abstract
Corpora amylacea (CA) and their murine analogs, periodic acid Schiff (PAS) granules, are age-related, carbohydrate-rich structures that serve as waste repositories for aggregated proteins, damaged cellular organelles, and other cellular debris. The structure, morphology, and suspected functions of CA in the brain imply disease relevance. Despite this, the link between CA and age-related neurodegenerative diseases, particularly Alzheimer's disease (AD), remains poorly defined. We performed a neuropathological analysis of mouse PAS granules and human CA and correlated these findings with AD progression. Increased PAS granule density was observed in symptomatic tau transgenic mice and APOE knock-in mice. Using a cohort of postmortem AD brain samples, we examined CA in cognitively normal and dementia patients across Braak stages with varying APOE status. We identified a Braak-stage dependent bimodal distribution of CA in the dentate gyrus, with CA accumulating and peaking by Braak stages II-III, then steadily declining with increasing tau burden. Refined analysis revealed an association of CA levels with both cognition and APOE status. Finally, tau was detected in whole CA present in human patient cerebrospinal fluid, highlighting CA-tau as a plausible prodromal AD biomarker. Our study connects hallmarks of the aging brain with the emergence of AD pathology and suggests that CA may act as a compensatory factor that becomes depleted with advancing tau burden.
Collapse
Affiliation(s)
- Connor M. Wander
- grid.10698.360000000122483208Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Department of Pharmacology, University of North Carolina, Chapel Hill, NC USA
| | | | - John F. Ervin
- grid.26009.3d0000 0004 1936 7961Bryan Brain Bank, Department of Neurology, Duke University School of Medicine, Durham, NC USA
| | - Chanung Wang
- grid.4367.60000 0001 2355 7002Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO USA
| | - Spencer M. Maranto
- grid.10698.360000000122483208Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Vanya Bhat
- grid.10698.360000000122483208Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Julian D. Dallmeier
- grid.26790.3a0000 0004 1936 8606Brain Endowment Bank, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL USA
| | - Shih-Hsiu Jerry Wang
- grid.26009.3d0000 0004 1936 7961Bryan Brain Bank, Department of Neurology, Duke University School of Medicine, Durham, NC USA ,grid.26009.3d0000 0004 1936 7961Department of Pathology, Duke University School of Medicine, Durham, NC USA
| | - Feng-Chang Lin
- grid.410711.20000 0001 1034 1720Department of Biostatistics, University of North Carolina, Chapel Hill, NC USA
| | - William K. Scott
- grid.26790.3a0000 0004 1936 8606Brain Endowment Bank, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL USA ,grid.26790.3a0000 0004 1936 8606John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL USA ,grid.26790.3a0000 0004 1936 8606Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL USA
| | - David M. Holtzman
- grid.4367.60000 0001 2355 7002Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO USA
| | - Todd J. Cohen
- grid.10698.360000000122483208Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC USA
| |
Collapse
|
4
|
Riba M, Augé E, Tena I, Del Valle J, Molina-Porcel L, Ximelis T, Vilaplana J, Pelegrí C. Corpora Amylacea in the Human Brain Exhibit Neoepitopes of a Carbohydrate Nature. Front Immunol 2021; 12:618193. [PMID: 34262556 PMCID: PMC8273382 DOI: 10.3389/fimmu.2021.618193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/10/2021] [Indexed: 11/23/2022] Open
Abstract
Corpora amylacea (CA) in the human brain are polyglucosan bodies that accumulate residual substances originated from aging and both neurodegenerative and infectious processes. These structures, which act as waste containers, are released from the brain to the cerebrospinal fluid, reach the cervical lymph nodes via the meningeal lymphatic system and may be phagocytosed by macrophages. Recent studies indicate that CA present certain neoepitopes (NEs) that can be recognized by natural antibodies of the IgM class, and although evidence of different kinds suggests that these NEs may be formed by carbohydrate structures, their precise nature is unknown. Here, we adapted standard techniques to examine this question. We observed that the preadsorption of IgMs with specific carbohydrates has inhibitory effects on the interaction between IgMs and CA, and found that the digestion of CA proteins had no effect on this interaction. These findings point to the carbohydrate nature of the NEs located in CA. Moreover, the present study indicates that, in vitro, the binding between certain natural IgMs and certain epitopes may be disrupted by certain monosaccharides. We wonder, therefore, whether these inhibitions may also occur in vivo. Further studies should now be carried out to assess the possible in vivo effect of glycemia on the reactivity of natural IgMs and, by extension, on natural immunity.
Collapse
Affiliation(s)
- Marta Riba
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Elisabet Augé
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Iraida Tena
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Barcelona, Spain
| | - Jaume Del Valle
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Laura Molina-Porcel
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain.,Neurological Tissue Bank, Biobanc-Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Teresa Ximelis
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain.,Neurological Tissue Bank, Biobanc-Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Jordi Vilaplana
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Carme Pelegrí
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
5
|
Baglietto-Vargas D, Forner S, Cai L, Martini AC, Trujillo-Estrada L, Swarup V, Nguyen MMT, Do Huynh K, Javonillo DI, Tran KM, Phan J, Jiang S, Kramár EA, Nuñez-Diaz C, Balderrama-Gutierrez G, Garcia F, Childs J, Rodriguez-Ortiz CJ, Garcia-Leon JA, Kitazawa M, Shahnawaz M, Matheos DP, Ma X, Da Cunha C, Walls KC, Ager RR, Soto C, Gutierrez A, Moreno-Gonzalez I, Mortazavi A, Tenner AJ, MacGregor GR, Wood M, Green KN, LaFerla FM. Generation of a humanized Aβ expressing mouse demonstrating aspects of Alzheimer's disease-like pathology. Nat Commun 2021; 12:2421. [PMID: 33893290 PMCID: PMC8065162 DOI: 10.1038/s41467-021-22624-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/15/2021] [Indexed: 11/26/2022] Open
Abstract
The majority of Alzheimer's disease (AD) cases are late-onset and occur sporadically, however most mouse models of the disease harbor pathogenic mutations, rendering them better representations of familial autosomal-dominant forms of the disease. Here, we generated knock-in mice that express wildtype human Aβ under control of the mouse App locus. Remarkably, changing 3 amino acids in the mouse Aβ sequence to its wild-type human counterpart leads to age-dependent impairments in cognition and synaptic plasticity, brain volumetric changes, inflammatory alterations, the appearance of Periodic Acid-Schiff (PAS) granules and changes in gene expression. In addition, when exon 14 encoding the Aβ sequence was flanked by loxP sites we show that Cre-mediated excision of exon 14 ablates hAβ expression, rescues cognition and reduces the formation of PAS granules.
Collapse
Affiliation(s)
- David Baglietto-Vargas
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
- Department of Cell Biology, Genetic and Physiology, Faculty of Sciences, Instituto de Investigacion Biomedica de Malaga-IBIMA, Networking Research Center on Neurodegenerative Diseases (CIBERNED), University of Malaga, Malaga, Spain
| | - Stefania Forner
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Lena Cai
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Alessandra C Martini
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Laura Trujillo-Estrada
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Cell Biology, Genetic and Physiology, Faculty of Sciences, Instituto de Investigacion Biomedica de Malaga-IBIMA, Networking Research Center on Neurodegenerative Diseases (CIBERNED), University of Malaga, Malaga, Spain
| | - Vivek Swarup
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Marie Minh Thu Nguyen
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Kelly Do Huynh
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Dominic I Javonillo
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Kristine Minh Tran
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Jimmy Phan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Shan Jiang
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Enikö A Kramár
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Cristina Nuñez-Diaz
- Department of Cell Biology, Genetic and Physiology, Faculty of Sciences, Instituto de Investigacion Biomedica de Malaga-IBIMA, Networking Research Center on Neurodegenerative Diseases (CIBERNED), University of Malaga, Malaga, Spain
| | | | - Franklin Garcia
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Jessica Childs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Carlos J Rodriguez-Ortiz
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Division of Occupational and Environmental Medicine, Department of Medicine. Center for Occupational and Environmental Health (COEH), University of California, Irvine, CA, USA
| | - Juan Antonio Garcia-Leon
- Department of Cell Biology, Genetic and Physiology, Faculty of Sciences, Instituto de Investigacion Biomedica de Malaga-IBIMA, Networking Research Center on Neurodegenerative Diseases (CIBERNED), University of Malaga, Malaga, Spain
| | - Masashi Kitazawa
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Division of Occupational and Environmental Medicine, Department of Medicine. Center for Occupational and Environmental Health (COEH), University of California, Irvine, CA, USA
| | - Mohammad Shahnawaz
- The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dina P Matheos
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Xinyi Ma
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Celia Da Cunha
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Ken C Walls
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Rahasson R Ager
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Claudio Soto
- The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Antonia Gutierrez
- Department of Cell Biology, Genetic and Physiology, Faculty of Sciences, Instituto de Investigacion Biomedica de Malaga-IBIMA, Networking Research Center on Neurodegenerative Diseases (CIBERNED), University of Malaga, Malaga, Spain
| | - Ines Moreno-Gonzalez
- Department of Cell Biology, Genetic and Physiology, Faculty of Sciences, Instituto de Investigacion Biomedica de Malaga-IBIMA, Networking Research Center on Neurodegenerative Diseases (CIBERNED), University of Malaga, Malaga, Spain
- The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Andrea J Tenner
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Grant R MacGregor
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Marcelo Wood
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Kim N Green
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA.
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA.
| | - Frank M LaFerla
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA.
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA.
| |
Collapse
|
6
|
Wander CM, Tseng JH, Song S, Al Housseiny HA, Tart DS, Ajit A, Ian Shih YY, Lobrovich R, Song J, Meeker RB, Irwin DJ, Cohen TJ. The Accumulation of Tau-Immunoreactive Hippocampal Granules and Corpora Amylacea Implicates Reactive Glia in Tau Pathogenesis during Aging. iScience 2020; 23:101255. [PMID: 32585593 PMCID: PMC7322077 DOI: 10.1016/j.isci.2020.101255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/19/2020] [Accepted: 06/05/2020] [Indexed: 01/26/2023] Open
Abstract
The microtubule-associated tau protein forms pathological inclusions that accumulate in an age-dependent manner in tauopathies including Alzheimer's disease (AD). Since age is the major risk factor for AD, we examined endogenous tau species that evolve during aging in physiological and diseased conditions. In aged mouse brain, we found tau-immunoreactive clusters embedded within structures that are reminiscent of periodic acid-Schiff (PAS) granules. We showed that PAS granules harbor distinct tau species that are more prominent in 3xTg-AD mice. Epitope profiling revealed hypo-phosphorylated rather than hyper-phosphorylated tau commonly observed in tauopathies. High-resolution imaging and 3D reconstruction suggest a link between tau clusters, reactive astrocytes, and microglia, indicating that early tau accumulation may promote neuroinflammation during aging. Using postmortem human brain, we identified tau as a component of corpora amylacea (CA), age-related structures that are functionally analogous to PAS granules. Overall, our study supports neuroimmune dysfunction as a precipitating event in tau pathogenesis. Tau is present in mouse hippocampal granules and human corpora amylacea Tau accumulates with age in hippocampal granules and is accelerated in 3xTg-AD mice Tau immunoreactive corpora amylacea are present in Alzheimer's disease brain Age-related tau deposits are associated with reactive astrocytes
Collapse
Affiliation(s)
- Connor M Wander
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jui-Heng Tseng
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sheng Song
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Heba A Al Housseiny
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dalton S Tart
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Aditi Ajit
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yen-Yu Ian Shih
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rebecca Lobrovich
- Penn Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-4283, USA
| | - Juan Song
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rick B Meeker
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David J Irwin
- Penn Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-4283, USA
| | - Todd J Cohen
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
7
|
Corpora amylacea in human hippocampal brain tissue are intracellular bodies that exhibit a homogeneous distribution of neo-epitopes. Sci Rep 2019; 9:2063. [PMID: 30765834 PMCID: PMC6375970 DOI: 10.1038/s41598-018-38010-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/18/2018] [Indexed: 02/08/2023] Open
Abstract
Corpora amylacea are spherical bodies of unknown origin and function, which accumulate in the human brain during the aging process and neurodegenerative disorders. In recent work, we reported that they contain some neo-epitopes that are recognized by natural IgMs, revealing a possible link between them and the natural immune system. Here, we performed an ultrastructural study complemented with confocal microscopy in order to shed light on the formation of corpora amylacea and to precisely localize the neo-epitopes. We show that immature corpora amylacea are intracellular astrocytic structures formed by profuse cellular debris and membranous blebs entrapped in a scattered mass of randomly oriented short linear fibers. In mature corpora amylacea, the structure becomes compacted and fibrillary material constitutes the principal component. We also determined that the neo-epitopes were uniformly localized throughout the whole structure. All these observations reinforce the idea that corpora amylacea of human brain are equivalent to another type of polyglucosan bodies named PAS granules, present in mouse brain and originated from degenerative processes. All those findings support the hypothesis that corpora amylacea are involved in the entrapment of damaged materials and non-degradable products and have a role in protective or cleaning mechanisms.
Collapse
|
8
|
Augé E, Pelegrí C, Manich G, Cabezón I, Guinovart JJ, Duran J, Vilaplana J. Astrocytes and neurons produce distinct types of polyglucosan bodies in Lafora disease. Glia 2018; 66:2094-2107. [PMID: 30152044 DOI: 10.1002/glia.23463] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 01/07/2023]
Abstract
Lafora disease (LD), the most devastating adolescence-onset epilepsy, is caused by mutations in the EPM2A or EPM2B genes, which encode the proteins laforin and malin, respectively. Loss of function of one of these proteins, which are involved in the regulation of glycogen synthesis, induces the accumulation of polyglucosan bodies (PGBs)-known as Lafora bodies (LBs) and associated with neurons-in the brain. Ageing and some neurodegenerative conditions lead to the appearance of another type of PGB called corpora amylacea, which are associated with astrocytes and contain neo-epitopes that can be recognized by natural antibodies. Here we studied the PGBs in the cerebral cortex and hippocampus of malin knockout mice, a mouse model of LD. These animals presented not only LBs associated with neurons but also a significant number of PGBs associated with astrocytes. These astrocytic PGBs were also increased in mice from senescence-accelerated mouse-prone 8 (SAMP8) strain and mice with overexpression of Protein Targeting to Glycogen (PTGOE ), indicating that they are not exclusive of LD. The astrocytic PGBs, but not neuronal LBs, contained neo-epitopes that are recognized by natural antibodies. The astrocytic PGBs appeared predominantly in the hippocampus but were also present in some cortical brain regions, while neuronal LBs were found mainly in the brain cortex and the pyramidal layer of hippocampal regions CA2 and CA3. Our results indicate that astrocytes, contrary to current belief, are involved in the etiopathogenesis of LD.
Collapse
Affiliation(s)
- Elisabet Augé
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Carme Pelegrí
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Gemma Manich
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Barcelona, Spain
| | - Itsaso Cabezón
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Joan J Guinovart
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.,Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Barcelona, Spain
| | - Jordi Duran
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Jordi Vilaplana
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
9
|
New perspectives on corpora amylacea in the human brain. Sci Rep 2017; 7:41807. [PMID: 28155917 PMCID: PMC5290524 DOI: 10.1038/srep41807] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/28/2016] [Indexed: 02/07/2023] Open
Abstract
Corpora amylacea are structures of unknown origin and function that appear with age in human brains and are profuse in selected brain areas in several neurodegenerative conditions. They are constituted of glucose polymers and may contain waste elements derived from different cell types. As we previously found on particular polyglucosan bodies in mouse brain, we report here that corpora amylacea present some neo-epitopes that can be recognized by natural antibodies, a certain kind of antibodies that are involved in tissue homeostasis. We hypothesize that corpora amylacea, and probably some other polyglucosan bodies, are waste containers in which deleterious or residual products are isolated to be later eliminated through the action of the innate immune system. In any case, the presence of neo-epitopes on these structures and the existence of natural antibodies directed against them could become a new focal point for the study of both age-related and degenerative brain processes.
Collapse
|
10
|
Periodic acid-Schiff granules in the brain of aged mice: From amyloid aggregates to degenerative structures containing neo-epitopes. Ageing Res Rev 2016; 27:42-55. [PMID: 26970374 DOI: 10.1016/j.arr.2016.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 01/22/2016] [Accepted: 03/02/2016] [Indexed: 11/20/2022]
Abstract
Brain ageing in mice leads to the progressive appearance and expansion of degenerative granular structures frequently referred as "PAS granules" because of their positive staining with periodic acid-Schiff (PAS). PAS granules are present mainly in the hippocampus, although they have also been described in other brain areas such as piriform and entorhinal cortices, and have been observed in other mammals than mice, like rats and monkeys. PAS granules have been identified as a wide range of brain deposits related to numerous neurodegenerative diseases, such as amyloid deposits, neurofibrillary tangles, Lafora bodies, corpora amylacea and polyglucosan bodies, and these identifications have generated controversy and particular theories about them. We have recently reported the presence of a neo-epitope in mice hippocampal PAS granules and the existence of natural IgM auto-antibodies directed against the neo-epitope in the plasma of the animals. The significance of the neo-epitope and the autoantibodies is discussed in this review. Moreover, we observed that the IgM anti-neo-epitope is frequently present as a contaminant in numerous commercial antibodies and is responsible of a considerable amount of false positive immunostainings, which may produce misinterpretations in the identification of the granules. Now that this point has been clarified, this article reviews and reconsiders the nature and physiopathological significance of these degenerative granules. Moreover, we suggest that neo-epitopes may turn into a useful brain-ageing biomarker and that autoimmunity could become a new focus in the study of age-related degenerative processes.
Collapse
|
11
|
Manich G, Augé E, Cabezón I, Pallàs M, Vilaplana J, Pelegrí C. Neo-epitopes emerging in the degenerative hippocampal granules of aged mice can be recognized by natural IgM auto-antibodies. IMMUNITY & AGEING 2015; 12:23. [PMID: 26604974 PMCID: PMC4657344 DOI: 10.1186/s12979-015-0050-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/15/2015] [Indexed: 01/03/2023]
Abstract
BACKGROUND Degenerative granular structures appear progressively with age in the hippocampus of most mouse strains. We recently reported that these granules contain a neo-epitope that is recognised by IgM antibodies present as contaminants in many commercial antibodies obtained from mouse ascites and mouse or rabbit serum. We hypothesise that these anti-neo-epitope IgMs are in fact natural auto-antibodies that are generated spontaneously during the foetal stage without previous contact with external antigens and whose repertoire and reactivity pattern have been determined through evolution, being remarkably stable within species and even between species. FINDINGS In the present work we found that mice from the ICR-CD1, BALB/C and SAMP8 strains have anti-neo-epitope IgM antibodies in their plasma at all ages tested and even when maintained under specific opportunistic pathogen-free conditions. Moreover, we determined that these anti-neo-epitope IgMs are also present in rabbit, goat and rat serum. We also found that, in each mouse that presented hippocampal granules, the anti-neo-epitope IgMs contained in its plasma recognised the neo-epitopes in its own granules. CONCLUSIONS This study led to the conclusion that anti-neo-epitope IgMs are widespread natural auto-antibodies contained in the plasma of mice and other species. The presence of these natural auto-antibodies not only explains why they are frequently found as contaminants in commercial antibodies, but also paves the way for a new approach to a treatment and diagnosis of pathological brain processes based on natural IgMs and neo-epitopes.
Collapse
Affiliation(s)
- Gemma Manich
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | - Elisabet Augé
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | - Itsaso Cabezón
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain ; Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | - Mercè Pallàs
- Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain ; CIBERNED Centros de Biomedicina en Red de Enfermedades Neurodegenerativas, Barcelona, Spain
| | - Jordi Vilaplana
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain ; CIBERNED Centros de Biomedicina en Red de Enfermedades Neurodegenerativas, Barcelona, Spain
| | - Carme Pelegrí
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain ; CIBERNED Centros de Biomedicina en Red de Enfermedades Neurodegenerativas, Barcelona, Spain
| |
Collapse
|