1
|
Ruggiero L, Gruber M. Neuromuscular mechanisms for the fast decline in rate of force development with muscle disuse - a narrative review. J Physiol 2024. [PMID: 39467095 DOI: 10.1113/jp285667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
The removal of skeletal muscle tension (unloading or disuse) is followed by many changes in the neuromuscular system, including muscle atrophy and loss of isometric maximal strength (measured by maximal force, Fmax). Explosive strength, i.e. the ability to develop the highest force in the shortest possible time, to maximise rate of force development (RFD), is a fundamental neuromuscular capability, often more functionally relevant than maximal muscle strength. In the present review, we discuss data from studies that looked at the effect of muscle unloading on isometric maximal versus explosive strength. We present evidence that muscle unloading yields a greater decline in explosive relative to maximal strength. The longer the unloading duration, the smaller the difference between the decline in the two measures. Potential mechanisms that may explain the greater decline in measures of RFD relative to Fmax after unloading are higher recruitment thresholds and lower firing rates of motor units, slower twitch kinetics, impaired excitation-contraction coupling, and decreased tendon stiffness. Using a Hill-type force model, we showed that this ensemble of adaptations minimises the loss of force production at submaximal contraction intensities, at the expense of a disproportionately lower RFD. With regard to the high functional relevance of RFD on one hand, and the boosted detrimental effects of inactivity on RFD on the other hand, it seems crucial to implement specific exercises targeting explosive strength in populations that experience muscle disuse over a longer time.
Collapse
Affiliation(s)
- Luca Ruggiero
- Human Performance Research Centre, Department of Sports Science, University of Konstanz, Konstanz, Germany
| | - Markus Gruber
- Human Performance Research Centre, Department of Sports Science, University of Konstanz, Konstanz, Germany
| |
Collapse
|
2
|
Raz D, Joshi V, Umberger BR, Ozay N. Ankle Exoskeletons May Hinder Standing Balance in Simple Models of Older and Younger Adults. ARXIV 2024:arXiv:2408.05418v3. [PMID: 39184537 PMCID: PMC11343240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Humans rely on ankle torque to maintain standing balance, particularly in the presence of small to moderate perturbations. Reductions in maximum torque (MT) production and maximum rate of torque development (MRTD) occur at the ankle with age, diminishing stability. Ankle exoskeletons are powered orthotic devices that may assist older adults by compensating for reduced torque and power production capabilities. They may also be able to assist with ankle strategies used for balance. However, the effect of such devices on standing balance in older adults is not well understood. Here, we model the effects ankle exoskeletons have on stability in physics-based models of healthy young and old adults, focusing on the potential to mitigate age-related deficits in MT and MRTD. Using backward reachability, a mathematical technique for analyzing the behavior of dynamical systems, we compute the set of stable center of mass positions and velocities for sex and age adjusted models of human standing balance with an ankle exoskeleton. We show that an ankle exoskeleton moderately reduces feasible stability boundaries in users who have full ankle strength. For individuals with age-related deficits, there is a trade-off. While exoskeletons augment stability at low center of mass velocities, they reduce stability in some high velocity conditions. Our results suggest that well-established control strategies must still be experimentally validated in older adults.
Collapse
Affiliation(s)
- Daphna Raz
- University of Michigan Robotics Department, Ann Arbor, MI USA
| | - Varun Joshi
- University of Michigan School of Kinesiology, Ann Arbor, MI USA
| | | | - Necmiye Ozay
- University of Michigan Robotics Department, Ann Arbor, MI USA
| |
Collapse
|
3
|
Ando R. Association of the rate of torque development and joint angle with passive muscle stiffness. Eur J Appl Physiol 2024; 124:2665-2673. [PMID: 38630263 DOI: 10.1007/s00421-024-05483-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/03/2024] [Indexed: 09/02/2024]
Abstract
PURPOSE The purpose of this study was to statistically compare the rate of torque development normalized by maximal strength (relative RTD) across ankle angles. Additionally, this study was aimed at exploring the correlation coefficients between relative RTD and passive stiffness of the medial gastrocnemius (MG) at different ankle angles. METHODS Twenty-two healthy men and women (age: 31 ± 4 years) performed randomly-ordered explosive isometric plantar flexions at plantarflexed (15°), neutral (0°), and dorsiflexed (- 15°) angles; relative RTD comprised the slope of the time-torque curve normalized to maximal torque. The shear wave velocity (SWV; index of stiffness) of the MG at rest was measured at each angle using ultrasound shear wave elastography. RESULTS The relative RTD was greater at 15° than - 15° for 0-50, 0-100, and 0-150 ms time-windows and at 15° than 0° for the 0-150 ms time-window (P < 0.05), although peak torque was lower at 15° than 0° and - 15° (P < 0.05). The relative RTD for the 0-50 ms time-window correlated with SWV at - 15° (rs = 0.475, P < 0.05), but not at 15º and 0º. Furthermore, the correlation coefficient of RTD for the 0-100 ms time-window with SWV was significantly greater at - 15° (rs = 0.420) than 0 ° (rs = - 0.109). CONCLUSIONS A greater relative RTD occurs at plantarflexed angles (i.e., the ascending limb of the force-length curve) in the triceps surae, and relative RTD is strongly related to passive MG stiffness at dorsiflexed angles (i.e., longer muscle lengths).
Collapse
Affiliation(s)
- Ryosuke Ando
- Department of Sport Science and Research, Japan Institute of Sports Sciences (JISS), 3-15-1, Nishigaoka, Kita-Ku, Tokyo, 115-0056, Japan.
| |
Collapse
|
4
|
Liu N, Yang C, Song Q, Yang F, Chen Y. Patients with chronic ankle instability exhibit increased sensorimotor cortex activation and correlation with poorer lateral balance control ability during single-leg stance: a FNIRS study. Front Hum Neurosci 2024; 18:1366443. [PMID: 38736530 PMCID: PMC11082417 DOI: 10.3389/fnhum.2024.1366443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction Chronic Ankle Instability (CAI) is a musculoskeletal condition that evolves from acute ankle sprains, and its underlying mechanisms have yet to reach a consensus. Mounting evidence suggests that neuroplastic changes in the brain following ankle injuries play a pivotal role in the development of CAI. Balance deficits are a significant risk factor associated with CAI, yet there is a scarcity of evidence regarding the sensorimotor cortical plasticity related to balance control in affected individuals. This study aims to evaluate the differences in cortical activity and balance abilities between patients with CAI and uninjured individuals during a single-leg stance, as well as the correlation between these factors, in order to elucidate the neurophysiological alterations in balance control among patients with CAI. Methods The study enrolled 24 patients with CAI and 24 uninjured participants. During single-leg stance, cortical activity was measured using a functional near-infrared spectroscopy (fNIRS) system, which included assessments of the pre-motor cortex (PMC), supplementary motor area (SMA), primary motor cortex (M1), and primary somatosensory cortex (S1). Concurrently, balance parameters were tested utilizing a three-dimensional force platform. Results Independent sample t-tests revealed that, compared with the uninjured individuals, the patients with CAI exhibited a significant increase in the changes of oxyhemoglobin concentration (ΔHbO) during single-leg stance within the left S1 at Channel 5 (t = 2.101, p = 0.041, Cohen's d = 0.607), left M1 at Channel 6 (t = 2.363, p = 0.022, Cohen's d = 0.682), right M1 at Channel 15 (t = 2.273, p = 0.029, Cohen's d = 0.656), and right PMC/SMA at Channel 11 (t = 2.467, p = 0.018, Cohen's d = 0.712). Additionally, the center of pressure root mean square (COP-RMS) in the mediolateral (ML) direction was significantly greater (t = 2.630, p = 0.012, Cohen's d = 0.759) in the patients with CAI. Furthermore, a moderate positive correlation was found between ML direction COP-RMS and ΔHbO2 in the M1 (r = 0.436; p = 0.033) and PMC/SMA (r = 0.488, p = 0.016), as well as between anteroposterior (AP) direction COP-RMS and ΔHbO in the M1 (r = 0.483, p = 0.017). Conclusion Patients with CAI demonstrate increased cortical activation in the bilateral M1, ipsilateral PMC/SMA, and contralateral S1. This suggests that patients with CAI may require additional brain resources to maintain balance during single-leg stance, representing a compensatory mechanism to uphold task performance amidst diminished lateral balance ability in the ankle joint.
Collapse
Affiliation(s)
| | | | | | | | - Yan Chen
- College of Sport and Health, Shandong Sport University, Jinan, Shandong, China
| |
Collapse
|
5
|
Sharma T, Copeland PV, Debenham MIB, Bent LR, Dalton BH. Neuromechanical characterization of the abductor hallucis and its potential role in upright postural control. Appl Physiol Nutr Metab 2024; 49:293-305. [PMID: 37913527 DOI: 10.1139/apnm-2023-0226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
There is growing evidence to support a role for the abductor hallucis (AH) in standing balance control; however, functional properties of the muscle that may provide more insight into AH's specific contribution to upright posture have yet to be characterized. This study was conducted to quantify functional neuromechanical properties of the AH and correlate the measures with standing balance variables. We quantified strength and voluntary activation during maximal voluntary isometric contractions of the great toe abductor in nine (3 females and 6 males) healthy, young participants. During electrically evoked twitch and tetanic contractions, we measured great toe abduction peak force and constructed a force-frequency curve. We also evaluated peak abduction force, contraction time (CT), half-relaxation time (HRT), rate of force development (RFD), and relaxation rate (RR) from twitch contractions evoked using doublet stimuli. Strength, VA, CT, HRT, RFD, and RR were correlated to centre of pressure standard deviation (COP SD) and velocity (COP VEL) variables of the traditional COP trace and its rambling and trembling components during single-legged stance. AH twitch properties (e.g., CT: 169.8 ± 32.3 ms; HRT: 124.1 ± 29.2 ms) and force-frequency curve were similar to other slow contractile muscles. Contractile speed related negatively with COP VEL, suggesting AH may be appropriate for slow, prolonged tasks such as ongoing postural balance control. Correlation coefficient outcomes for all variables were similar between rambling and trembling components. Our results provide further evidence for the importance of AH neuromechanical function for standing balance control, at least during a challenging single-legged posture.
Collapse
Affiliation(s)
- Tushar Sharma
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Paige V Copeland
- School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, BC, Canada
| | - Mathew I B Debenham
- School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, BC, Canada
| | - Leah R Bent
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Brian H Dalton
- School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, BC, Canada
| |
Collapse
|
6
|
Guo P, Wang D, Li Y, Wang R, Xu H, Han J, Lyu J. Do visual and step height factors cause imbalance during bipedal and unipedal stances? A plantar pressure perspective. Front Bioeng Biotechnol 2023; 11:1253056. [PMID: 37662431 PMCID: PMC10470124 DOI: 10.3389/fbioe.2023.1253056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Objective: The plantar pressure analysis technique was used to explore the static balance ability and stability of healthy adult males under the influence of visual and step height factors during bipedal and unipedal stances. Methods: Thirty healthy adult males volunteered for the study. Experiments used the F-scan plantar pressure analysis insoles to carry out with eyes open (EO) and eyes closed (EC) at four different step heights. The plantar pressure data were recorded for 10 s and pre-processed to derive kinematic and dynamic parameters. Results: For unipedal stance, most of kinematic parameters of the subjects' right and left feet were significantly greater when the eyes were closed compared to the EO condition and increased with step height. The differences in toe load between right and left feet, open and closed eyes were extremely statistically significant (p < 0.001). The differences in midfoot load between the EO and EC conditions were statistically significant (p = 0.024) and extremely statistically significant between the right and left feet (p < 0.001). The difference in rearfoot load between EO and EC conditions was extremely statistically significant (p < 0.001) and statistically significant (p = 0.002) between the right and left feet. For bipedal stance, most of kinematic parameters of the subjects' EO and EC conditions were statistically significant between the right and left feet and increased with step height. The overall load's difference between EO and EC states was statistically significant (p = 0.003) for both feet. The overall load's difference between the right and left feet was extremely statistically significant (p < 0.001) in the EC state. The differences between the right and left feet of the forefoot and rearfoot load with EO and EC suggested that the right foot had a smaller forefoot load, but a larger rearfoot load than the left foot (p < 0.001). The differences between the forefoot and rearfoot load of the subjects' both feet with EO and EC were extremely statistically significant (p < 0.001). Conclusion: Both visual input and step height factors, even the dominant foot, act on kinematic and dynamic parameters that affect the maintenance of static balance ability.
Collapse
Affiliation(s)
- Panjing Guo
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Duoduo Wang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yumin Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Ruiqin Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Haoran Xu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jia Han
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jie Lyu
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
7
|
Wong AKO, Fung HJW, Pretty SP, Laing AC, Chan AH, Mathur S, Zabjek K, Giangregorio L, Cheung AM. Ankle flexor/extensor strength and muscle density are complementary determinants of balance during dual‐task engagement: The ankle quality study. JCSM CLINICAL REPORTS 2023. [DOI: 10.1002/crt2.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Andy K. O. Wong
- Joint Department of Medical Imaging University Health Network ON Toronto Canada
- Schroeder Arthritis Institute & Toronto General Hospital Research Institute University Health Network ON Toronto Canada
- Division of Epidemiology, Dalla Lana School of Public Health University of Toronto ON Toronto Canada
| | - Hugo J. W. Fung
- Joint Department of Medical Imaging University Health Network ON Toronto Canada
- Department of Exercise Sciences, Faculty of Kinesiology and Physical Education University of Toronto ON Toronto Canada
| | - Steven P. Pretty
- Department of Kinesiology and Health Sciences University of Waterloo ON Waterloo Canada
| | - Andrew C. Laing
- Department of Kinesiology and Health Sciences University of Waterloo ON Waterloo Canada
| | - Adrian H. Chan
- Joint Department of Medical Imaging University Health Network ON Toronto Canada
- Schroeder Arthritis Institute & Toronto General Hospital Research Institute University Health Network ON Toronto Canada
- Temerty Faculty of Medicine University of Toronto ON Toronto Canada
| | - Sunita Mathur
- School of Rehabilitation Therapy Queen's University ON Kingston Canada
| | - Karl Zabjek
- Department of Physical Therapy, Rehabilitation Sciences Institute University of Toronto ON Toronto Canada
| | - Lora Giangregorio
- Department of Kinesiology and Health Sciences University of Waterloo ON Waterloo Canada
- Schlegel‐UW Research Institute for Aging University of Waterloo ON Waterloo Canada
| | - Angela M. Cheung
- Joint Department of Medical Imaging University Health Network ON Toronto Canada
- Schroeder Arthritis Institute & Toronto General Hospital Research Institute University Health Network ON Toronto Canada
- Division of Epidemiology, Dalla Lana School of Public Health University of Toronto ON Toronto Canada
- Temerty Faculty of Medicine University of Toronto ON Toronto Canada
- Centre of Excellence in Skeletal Health Assessment University of Toronto ON Toronto Canada
| |
Collapse
|
8
|
Nakamura M, Kasahara K, Yoshida R, Murakami Y, Koizumi R, Sato S, Takeuchi K, Nishishita S, Ye X, Konrad A. Comparison of The Effect of High- and Low-Frequency Vibration Foam Rolling on The Quadriceps Muscle. J Sports Sci Med 2022; 21:376-382. [PMID: 36157391 PMCID: PMC9459764 DOI: 10.52082/jssm.2022.376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/24/2022]
Abstract
Vibration foam rolling (VFR) intervention has recently gained attention in sports and rehabilitation settings since the superimposed vibration with foam rolling can affect several physiological systems. However, the sustained effect and a comparison of the effects of different VFR vibration frequencies on flexibility and muscle strength have not been examined. Therefore, in this study, we aimed to investigate the acute and sustained effects of three 60-s sets of VFR with different frequencies on knee flexion range of motion (ROM) and muscle strength of the knee extensors. Using a crossover, random allocation design, 16 male university students (21.2 ± 0.6 years) performed under two conditions: VFR with low (35 Hz) and high (67 Hz) frequencies. The acute and sustained effects (20 min after intervention) of VFR on knee flexion ROM, maximum voluntary isometric contraction (MVC-ISO) torque, maximum voluntary concentric contraction (MVC-CON) torque, rate of force development (RFD), and single-leg countermovement jump (CMJ) height were examined. Our results showed that knee flexion ROM increased significantly (p < 0.01) immediately after the VFR intervention and remained elevated up to 20 min, regardless of the vibration frequency. MVC-ISO and MVC-CON torque both decreased significantly (p < 0.01) immediately after the VFR intervention and remained significantly lowered up to 20 min, regardless of the vibration frequency. However, there were no significant changes in RFD or CMJ height. Our results suggest that VFR can increase knee flexion ROM but induces a decrease in muscle strength up to 20 min after VFR at both high and low frequencies.
Collapse
Affiliation(s)
- Masatoshi Nakamura
- Faculty of Rehabilitation Sciences, Nishi Kyushu University, Kanzaki, Saga, Japan, Faculty of Rehabilitation Sciences, Nishi Kyushu University, 4490-9 Ozaki, Kanzaki, Saga, 842-8585, Japan
| | - Kazuki Kasahara
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Riku Yoshida
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Yuta Murakami
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Ryoma Koizumi
- Department of Physical Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, Niigata City, Niigata, Japan
| | - Shigeru Sato
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Kosuke Takeuchi
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe International University, Hyogo, Japan
| | - Satoru Nishishita
- Institute of Rehabilitation Science, Tokuyukai Medical Corporation, Osaka, Japan,Kansai Rehabilitation Hospital, Tokuyukai Medical Corporation, Osaka, Japan
| | - Xin Ye
- Department of Rehabilitation Sciences, University of Hartford, West Hartford, USA
| | - Andreas Konrad
- Institute of Human Movement Science, Sport and Health, Graz University, Mozartgasse 14, Graz, Austria
| |
Collapse
|
9
|
Use of 'wearables' to assess the up-on-the-toes test. J Biomech 2022; 143:111272. [PMID: 36055053 DOI: 10.1016/j.jbiomech.2022.111272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/31/2022] [Accepted: 08/20/2022] [Indexed: 11/24/2022]
Abstract
The mechanical output at the ankle provides key contribution to everyday activities, particularly step/stair ascent and descent. Age-related decline in ankle functioning can lead to an increased risk of falls on steps and stairs. The rising up-on-the-toes (UTT) 30-second test (UTT-30) is used in the clinical assessment of ankle muscle strength/function and endurance; the main outcome being how many repetitive UTT movements are completed. This preliminary study describes how inertial measurement units (IMUs) can be used to assess the UTT-30. Twenty adults (26.2 ± 7.7 years) performed a UTT-30 at a comfortable speed, with IMUs attached to the dorsal aspect of each foot. Use of IMUs' angular velocity signal to detect the peak plantarflexion angular velocity (p-fAngVelpeak) associated with each repeated UTT movement indicated the number of UTT movements attempted by each participant. Any UTT movements that were performed with a p-fAngVelpeak 2SD below the mean were deemed to have not been completed over a sufficiently 'full' range. Findings highlight that use of IMUs can provide valid assessment of the UTT 30-second test. Their use detected the same number of attempted UTT movements as that observed by a researcher (average difference, -0.1 CI, -0.2 - 0.1), and on average 97.6 ± 3.1% of these movements were deemed to have been completed 'fully'. We discuss the limitations of our approach for identifying the movements not completed fully, and how assessing the consistency in the magnitude of the repeated p-fAngVelpeak could be undertaken and what this would indicate about UTT-30 performance.
Collapse
|
10
|
Nakamura M, Suzuki Y, Yoshida R, Kasahara K, Murakami Y, Hirono T, Nishishita S, Takeuchi K, Konrad A. The Time-Course Changes in Knee Flexion Range of Motion, Muscle Strength, and Rate of Force Development After Static Stretching. Front Physiol 2022; 13:917661. [PMID: 35721554 PMCID: PMC9201101 DOI: 10.3389/fphys.2022.917661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022] Open
Abstract
Previous studies have shown that longer-duration static stretching (SS) interventions can cause a decrease in muscle strength, especially explosive muscle strength. Furthermore, force steadiness is an important aspect of muscle force control, which should also be considered. However, the time course of the changes in these variables after an SS intervention remains unclear. Nevertheless, this information is essential for athletes and coaches to establish optimal warm-up routines. The aim of this study was to investigate the time course of changes in knee flexion range of motion (ROM), maximal voluntary isometric contraction (MVIC), rate of force development (RFD), and force steadiness (at 5 and 20% of MVIC) after three 60-s SS interventions. Study participants were sedentary healthy adult volunteers (n = 20) who performed three 60-s SS interventions of the knee extensors, where these variables were measured before and after SS intervention at three different periods, i.e., immediately after, 10 min, and 20 min the SS intervention (crossover design). The results showed an increase in ROM at all time points (d = 0.86-1.01). MVIC was decreased immediately after the SS intervention (d = -0.30), but MVIC showed a recovery trend for both 10 min (d = -0.17) and 20 min (d = -0.20) after the SS intervention. However, there were significant impairments in RFD at 100 m (p = 0.014, F = 6.37, ηp 2 = 0.101) and 200 m (p < 0.01, F = 28.0, ηp 2 = 0.33) up to 20 min after the SS intervention. Similarly, there were significant impairments in force steadiness of 5% (p < 0.01, F = 16.2, ηp 2 = 0.221) and 20% MVIC (p < 0.01, F = 16.0, ηp 2 = 0.219) at 20 min after the SS intervention. Therefore, it is concluded that three 60-s SS interventions could increase knee flexion ROM but impair explosive muscle strength and muscle control function until 20 min after the SS intervention.
Collapse
Affiliation(s)
- Masatoshi Nakamura
- Faculty of Rehabilitation Sciences, Nishi Kyushu University, Kanzaki, Japan,*Correspondence: Masatoshi Nakamura, ; Andreas Konrad,
| | - Yusuke Suzuki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan,S/PARK Business Planning Group, MIRAI Technology Institute, R&D Integrated Operation Department, Shiseido Co, Ltd., Global Innovation Center, Kanagawa, Japan
| | - Riku Yoshida
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Kazuki Kasahara
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Yuta Murakami
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Tetsuya Hirono
- School of Health and Sport Sciences, Chukyo University, Toyota, Japan,Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan
| | - Satoru Nishishita
- Institute of Rehabilitation Science, Tokuyukai Medical Corporation, Osaka, Japan,Kansai Rehabilitation Hospital, Tokuyukai Medical Corporation, Osaka, Japan
| | - Kosuke Takeuchi
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe International University, Hyogo, Japan
| | - Andreas Konrad
- Institute of Human Movement Science, Sport and Health, Graz University, Graz, Austria,*Correspondence: Masatoshi Nakamura, ; Andreas Konrad,
| |
Collapse
|
11
|
Association of age-related decrease in intracellular-to-total water ratio with that in explosive strength of the plantar flexors: a cross-sectional study. J Physiol Anthropol 2022; 41:10. [PMID: 35346376 PMCID: PMC8962585 DOI: 10.1186/s40101-022-00284-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
Background We aimed to investigate the association of age-related differences in the intracellular-to-total water ratio with explosive strength of the plantar flexors. Methods A total of 60 young (21–33 years) and older (64–83 years) individuals were recruited. Intracellular- (ICW) and total-water (TW) content within the right leg was evaluated by bioelectrical impedance spectroscopy as indicators of muscle cell mass and whole muscle mass within the segment, respectively. ICW divided by TW (ICW/TW) was calculated as an index of the occupancy of muscle cells within whole muscle. Rate of torque development (RTD) and electromyography (EMG) activity during maximal voluntary isometric plantar flexion were measured as indicators of explosive muscle strength and neuromuscular activity, respectively. RTD was calculated from three time windows of 0–50, 50–100, and 100–200 ms. Time-to-peak torque (TPT) was assessed from evoked twitch contraction. Results Compared with young participants, older participants showed lower ICW/TW (−7%, P < 0.001), RTD (−25 to −40%, P = 0.003 to 0.001), and longer TPT (+11%, P < 0.001). ICW/TW associated positively with RTD (r = 0.377 to 0.408, P = 0.004 to 0.001) and negatively with TPT (r = −0.392, P = 0.002), but not with EMG activity. RTD was associated positively with EMG for each time window (r = 0.527 to 0.607, P < 0.001). Conclusions These results indicate that ICW/TW may be a useful predictor of the age-related decrease in RTD, and that the decrease in ICW/TW with age may reflect age-associated changes in intrinsic contractile properties.
Collapse
|
12
|
Hirono T, Ikezoe T, Taniguchi M, Yamagata M, Umehara J, Ichihashi N. Acute effects of ankle plantar flexor force-matching exercises on postural strategy during single leg standing in healthy adults. Gait Posture 2022; 92:428-434. [PMID: 34979429 DOI: 10.1016/j.gaitpost.2021.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Ankle plantar flexor force steadiness, assessed by measuring the fluctuation of the force around the submaximal target torque, has been associated with postural stability. RESEARCH QUESTION To investigate whether a force-matching exercise, where submaximal steady torque is maintained at the target torque, can modulate postural strategy immediately. METHODS Twenty-eight healthy young adults performed ankle plantar flexor force-matching exercises at target torques of 5%, 20%, and 50% of maximum voluntary contraction (MVC), in a randomized crossover trial. Participants with their ankle in a neutral position were instructed to maintain isometric contraction at each target torque, as measured by a dynamometer, for 20 s with 3 sets of 5 contractions. Before and after the force-matching exercises, the anterior-posterior velocities and standard deviation of the center of pressure (COP) on the stable platform and the tilt angle of the unstable platform during 20-seconds single-leg standing were measured. The velocities and standard deviations of the COP and tilt angle before and after the exercises were compared using paired t-tests. RESULTS The tilt angle velocity of an unstable platform significantly decreased after the force-matching exercise at a target torque of 5% MVC (p = 0.029), whereas it was unchanged after the exercises at target torques of 20% and 50% MVC. The standard deviations of the tilt angle of unstable platform test did not change significantly after any exercise. Furthermore, no significant differences were observed in the COP velocities or standard deviations on the stable platform test after any exercise. SIGNIFICANCE Our findings suggest that repeated exertion training at low-intensity contractions can affect postural stability in an unstable condition. Particularly, force-matching exercise at very low-intensity torque, such as 5% of MVC, may be an effective method to improve postural control in the unstable condition, but not in a stable condition.
Collapse
Affiliation(s)
- Tetsuya Hirono
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Research Fellow of the Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan; School of Health and Sport Sciences, Chukyo University, 101 Tokodachi, Kaizu-cho, Toyota, Aichi 470-0393 Japan.
| | - Tome Ikezoe
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Department of Physical Medicine and Rehabilitation, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Masashi Taniguchi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Momoko Yamagata
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Research Fellow of the Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan; Department of Human Development, Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada-ku, Kobe, Hyogo 657-0011, Japan
| | - Jun Umehara
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Research Fellow of the Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan; Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, 1-4, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Noriaki Ichihashi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
13
|
Davidson B, Hinks A, Dalton BH, Akagi R, Power GA. Power attenuation from restricting range of motion is minimized in subjects with fast RTD and following isometric training. J Appl Physiol (1985) 2022; 132:497-510. [PMID: 35023762 DOI: 10.1152/japplphysiol.00688.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Time-dependent measures consisting of rate of torque development (RTD), rate of velocity development (RVD), and rate of neuromuscular activation can be used to evaluate explosive muscular performance, which becomes critical when performing movements throughout limited ranges of motion (ROM). Using a HUMAC NORM dynamometer, seven males (27 ± 7 years) and six females (22 ± 3 years) underwent 8 weeks of maximal isometric dorsiflexion training 3 days/week. One leg was trained at 0° (short-muscle tendon unit (MTU) length) and the other at 40° of plantar flexion (long-MTU length). RTD and rate of neuromuscular activation were evaluated during 'fast' maximal isometric contractions. Power, RVD, and rate of neuromuscular activation were assessed during maximal isotonic contractions in four conditions (small (40° to 30° of plantar flexion) ROM at 10 and 50% MVC; large (40° to 0° of plantar flexion) ROM at 10 and 50% MVC) for both legs, pre- and post-training. Despite no change in rate of neuromuscular activation following training, peak power, RTD, and RVD increased at both MTU lengths (p < 0.05). Strong relationships (R2=0.73) were observed between RTD and peak power in the small ROM, indicating that fast time-dependent measures are critical for optimal performance when ROM is constrained. Meanwhile, strong relationships (R2=0.90) between RVD and power were observed at the 50% load, indicating that RVD is critical when limited by load and ROM is not confined. Maximal isometric dorsiflexion training can be used to improve time-dependent measures (RTD, RVD) to minimize power attenuation when ROM is restricted.
Collapse
Affiliation(s)
- Brooke Davidson
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Avery Hinks
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Brian H Dalton
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Ryota Akagi
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada.,College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
14
|
Phillips KC, Noh B, Gage M, Yoon T. Neural and muscular alterations of the plantar flexors in middle-aged women. Exp Gerontol 2021; 159:111674. [PMID: 34954012 DOI: 10.1016/j.exger.2021.111674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Considering the large population of middle-aged adults, it is important to understand the age-related change in lower limb muscles and the possible mechanisms before old age (> 65 years old). The purpose of this study was to investigate age-related neural and muscular alterations of the plantar flexors in young and middle-aged women. METHODS Twenty two middle-aged (54.0 ± 5.8 yrs) and 17 young (21.8 ± 1.4 yrs) recreationally active women performed rapid maximal voluntary isometric contractions (MVIC) of the plantar flexors. Absolute and normalized rate of torque development (RTD) and electromyography (EMG) were examined. Electrical stimulation was used to examine voluntary activation and contractile properties of the muscle. Ultrasonography was used to examine medial and lateral gastrocnemius muscle thickness and pennation angle. A 6-minute walk and sit to stand task were also performed by all participants. RESULTS The middle-aged women had significantly lower MVIC torque (141 ± 49 vs. 109 ± 30 Nm, P = 0.031), absolute RTD (753.0 ± 313.6 vs. 423.0 ± 156.1 Nm/s, P = 0.001), and normalized peak RTD (554.0 ± 191.0 vs. 388.0 ± 91.9% MVIC/s, P = 0.001). Normalized early RTD0-50 and late RTD100-200, voluntary activation, and EMG were similar between groups. Resting twitch data showed that time to peak (124.0 ± 20.4 vs. 143.0 ± 16.7 ms, P = 0.002) and half relaxation time (73.1 ± 15.2 vs. 107.0 ± 28.2 ms, P < 0.001) was significantly faster for the young women. Thickness was greater in the lateral gastrocnemius (1.6 ± 0.2 vs. 1.4 ± 0.2 cm, P = 0.006) for the young women. Pennation angle of both muscles were greater for the young women (15.8 ± 3.9 vs. 13.1 ± 2.7 degrees, P < 0.05). Performance of the 6-minute walk was similar between groups, however, the young women performed more repetitions during the sit to stand task (25.6 ± 6.7 vs. 18.3 ± 4.7 reps, P < 0.001). CONCLUSION Compared to young women, middle-age women were shown to have lower MVIC torque, peak RTD, and functional performance. Muscle architecture and contractile properties are affected by aging.
Collapse
Affiliation(s)
- Kevin C Phillips
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton 49931, USA; Exercise Science Program, Brevard College, Brevard 28712, USA
| | - Byungjoo Noh
- Department of Kinesiology, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Matthew Gage
- Career Program, Gogebic Community College, Houghton 49931, USA
| | - Tejin Yoon
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton 49931, USA; Department of Physical Education, Kangwon National University, Chuncheon 24341, Republic of Korea; Interdisciplinary Program in Biohealth-machinery Convergence Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
15
|
Nakamura M, Sato S, Kiyono R, Yahata K, Yoshida R, Fukaya T, Nishishita S, Knorad A. Relationship between changes in passive properties and muscle strength after static stretching. J Bodyw Mov Ther 2021; 28:535-539. [PMID: 34776191 DOI: 10.1016/j.jbmt.2021.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/18/2021] [Accepted: 09/24/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND The association between decreased muscle strength of rate of force development (RFD) immediately after static stretching (SS) and change in muscle stiffness or muscle slack has remained unclear. OBJECTIVE This study aimed to investigate the association between changes in muscle strength and RFD and muscle stiffness or muscle slack immediately after SS. METHODS Sixteen healthy male non-athlete volunteers participated in this study. The maximal voluntary contraction torque and shear elastic modulus of medial gastrocnemius muscle were measured before and after 300 s of SS intervention. RESULTS The results showed that maximal voluntary contraction torque and RFD at 100, 150, and 200 ms decreased significantly after the 300-s SS (p < 0.01). Additionally, shear elastic modulus at 0° (decrease in muscle stiffness) and slack angle decreased (increase in slack length) significantly after the 300-second SS (p < 0.01). However, no significant association was observed between changes in muscle strength and changes in mechanical properties of the MG. CONCLUSION These results suggested that the decrease in muscle strength and RFD could not be associated with changes in the passive mechanical properties of the medial gastrocnemius muscle.
Collapse
Affiliation(s)
- Masatoshi Nakamura
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan.
| | - Shigeru Sato
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Ryosuke Kiyono
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Kaoru Yahata
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Riku Yoshida
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Taizan Fukaya
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan; Department of Rehabilitation, Kyoto Kujo Hospital, 10 Karahashirajoumoncho, Minami-ku, Kyoto, 601-8453, Japan
| | - Satoru Nishishita
- Institute of Rehabilitation Science, Tokuyukai Medical Corporation, Osaka, Japan; Kansai Rehabilitation Hospital, Tokuyukai Medical Corporation, Osaka, Japan
| | - Andreas Knorad
- Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| |
Collapse
|
16
|
Lanza MB, Rock K, Marchese V, Addison O, Gray VL. Hip Abductor and Adductor Rate of Torque Development and Muscle Activation, but Not Muscle Size, Are Associated With Functional Performance. Front Physiol 2021; 12:744153. [PMID: 34721067 PMCID: PMC8551702 DOI: 10.3389/fphys.2021.744153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
Understanding the physiological variables that contribute to a functional task provides important information for trainers and clinicians to improve functional performance. The hip abductors and adductors muscles appear to be important in determining the performance of some functional tasks; however, little is known about the relationship of the hip abductor/adductors muscle strength, activation, and size with functional performance. This study aimed to investigate the relationship of maximum torque, rate of torque development (RTD), rate of activation (RoA), and muscle thickness of the hip abductors [tensor fascia latae (TFL) and gluteus medius (GM)] and adductor magnus muscle with the Four Square Step Test (FSST) and the two-leg hop test in healthy young adults. Twenty participants (five males) attended one testing session that involved ultrasound image acquisition, maximal isometric voluntary contractions (hip abduction and hip adduction) while surface electromyography (EMG) was recorded, and two functional tests (FSST and two-leg side hop test). Bivariate correlations were performed between maximum voluntary torque (MVT), RTD at 50, 100, 200, and 300ms, RoA at 0-50, 0-100, 0-200, and 0-300, and muscle thickness with the dynamic stability tests. For the hip abduction, MVT (r=-0.455, p=0.044) and RTD300 (r=-0.494, p=0.027) was correlated with the FSST. GM RoA50 (r=-0.481, p=0.032) and RoA100 (r=-0.459, p=0.042) were significantly correlated with the two-leg side hop test. For the hip adduction, there was a significant correlation between the FSST and RTD300 (r=-0.500, p=0.025), while the two-leg side hop test was correlated with RTD200 (r=0.446, p=0.049) and RTD300 (r=0.594, p=0.006). Overall, the ability of the hip abductor and adductor muscles to produce torque quickly, GM rapid activation, and hip abductor MVT is important for better performance on the FSST and two-leg hop tests. However, muscle size appears not to influence the same tests.
Collapse
Affiliation(s)
- Marcel Bahia Lanza
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Kelly Rock
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Victoria Marchese
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Odessa Addison
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Veterans Affairs and Veterans Affairs Medical Center, Geriatric Research, Education and Clinical Centers, Baltimore, Maryland
| | - Vicki L Gray
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
17
|
Paillard T. Methods and Strategies for Reconditioning Motor Output and Postural Balance in Frail Older Subjects Prone to Falls. Front Physiol 2021; 12:700723. [PMID: 34712145 PMCID: PMC8546223 DOI: 10.3389/fphys.2021.700723] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
In frail older subjects, the motor output of the antigravity muscles is fundamental in resisting falls. These muscles undergo accelerated involutions when they are inactive and the risk of falling increases during leisure and domestic physical activity. In order to reduce their risk of falling, frail older subjects limit their physical activities/exercises. The problem is that the less they exercise, the less they are able to exercise and the greater the risk in exercising. Hence, a vicious circle sets up and the antigravity muscles inevitably continue to deteriorate. This vicious circle must be broken by starting a reconditioning program based on developing the strength of antigravity muscles (especially lower-limb muscles). To begin with, for each increase in muscle strength, postural balance is improved. Once this increase reaches the threshold beyond which postural balance no longer improves, it seems appropriate to implement exercises aimed at concomitantly improving motor output and postural balance in order to counteract or even reverse the involution process of the postural balance system. Methods and strategies toward this end are proposed in this present communication. However, the transfer effects between strength increase and postural balance ability are not yet totally known and future research should evaluate the relationship between muscle strength and postural balance throughout rehabilitation programs (i.e., program follow-ups) in frail older subjects in order to advance knowledge of this relationship.
Collapse
Affiliation(s)
- Thierry Paillard
- Laboratoire Mouvement, Equilibre, Performance et Santé (UPRES EA 4445), Département STAPS, Université de Pau et des Pays de l'Adour/E2S, Pau, France
| |
Collapse
|
18
|
Vieira A, Tufano JJ. Reactive strength index-modified: reliability, between group comparison, and relationship between its associated variables. Biol Sport 2021; 38:451-457. [PMID: 34475626 PMCID: PMC8329976 DOI: 10.5114/biolsport.2021.100363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/30/2020] [Accepted: 09/25/2020] [Indexed: 11/18/2022] Open
Abstract
To investigate and compare the reliability of reactive strength index-modified (RSImod) and its associated variables (jump height [JH] and [time to take-off]) 20 combat fighters and 18 physically active men participated in this study. They visited the laboratory three times; firstly, for jump familiarization and two sessions for test-retest (2-7 days apart). For both groups, the between-day changes in performance were trivial to small (≤ 1.1%). The coefficient of variation (CV) comparisons (i.e. CV ratio) demonstrated that combat athletes had a lower test-retest variation for RSImod (0.87) and JH (0.80) than non-athletes. Combat athletes demonstrated a greater JH than physically active men (0.43 vs 0.37; p = 0.03, g = 0.73), but small and non-significant differences were observed for RSImod (0.60 vs 0.55; p = 0.24, g = 0.38) and TTT (0.70 vs 0.72; p = 0.32, g = 0.33). RSImod was more positively correlated with JH (r = 0.75-0.87; p < 0.001) than negatively correlated with TTT (r = 0.45-0.54; p < 0.001). This study suggests that RSImod is a reliable variable obtained during CMJ testing in combat athletes and physically active men, with scores being slightly better for combat athletes. In terms of performance, combat athletes jumped higher than physically active men, but no differences in RSImod or TTT were observed. Lastly, RSImod was more strongly related to JH than TTT, and this was more evident in athletes than nonathletes. This indicates that the combat athletes were able to better utilize their (equal) time spent jumping (higher), possibly via greater utilization of the stretch shortening cycle, faster or more optimal motor unit recruitment, or an array of other factors.
Collapse
Affiliation(s)
- Amilton Vieira
- Strength and Conditioning Laboratory, Faculty of Physical Education, University of Brasilia, Brasilia, Brazil
| | - James J. Tufano
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| |
Collapse
|
19
|
Chan WN, Tsang WWN. Compromised cognition, but not stepping-down performance, when dual-tasking in stroke survivors. J Mot Behav 2021; 55:632-641. [PMID: 34057042 DOI: 10.1080/00222895.2021.1918054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
Descending stairs is an indicator of independence among stroke survivors, but is demanding in terms of both neuromuscular control and cognitive functioning. Previous studies found a compromised performance when stepping down with a concurrent cognitive task among healthy older adults, but whether stroke survivors react similarly is not known. This cross-sectional study thus investigated how stroke survivors responded to a dual-task that involved stepping down and compared their performance with that of control subjects. Thirty-four healthy individuals and 26 stroke survivors reacted to an auditory Stroop test while stepping off a 19-cm high platform. The auditory Stroop test was evaluated with a composite score (dividing accuracy by averaged reaction time). Stepping down performances were quantified with subjects' sway amplitudes in anteroposterior and mediolateral directions after landing and sway velocities of their center of pressure. Stroke survivors demonstrated significantly lower composite scores when dual-tasking (76.4 ± 31.2) than when single-tasking (90.0 ± 25.6), while no significant change in stepping down performance was observed. Stroke survivors also swayed significantly more and with a higher velocity than controls when dual-tasking. The results suggested that stroke survivors adopted a posture-first strategy to deal with this dual-tasking challenge. This study raised the awareness on dual-tasking ability among stroke survivors.
Collapse
Affiliation(s)
- Wing Nga Chan
- Department of Physiotherapy, School of Nursing and Health Studies, The Open University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR
| | - William Wai Nam Tsang
- Department of Physiotherapy, School of Nursing and Health Studies, The Open University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR
| |
Collapse
|
20
|
Tomlinson DJ, Erskine RM, Morse CI, Pappachan JM, Sanderson-Gillard E, Onambélé-Pearson GL. The combined effects of obesity and ageing on skeletal muscle function and tendon properties in vivo in men. Endocrine 2021; 72:411-422. [PMID: 33484409 PMCID: PMC8128745 DOI: 10.1007/s12020-020-02601-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/24/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE We investigated the combined impact of ageing and obesity on Achilles tendon (AT) properties in vivo in men, utilizing three classification methods of obesity. METHOD Forty healthy, untrained men were categorised by age (young (18-49 years); older (50-80 years)), body mass index (BMI; normal weight (≥18.5-<25); overweight (≥25-<30); obese (≥30)), body fat% (normal adipose (<28%); high adiposity (≥28%)) and fat mass index (FMI; normal (3-6); excess fat (>6-9); high fat (>9). Assessment of body composition used dual-energy X-ray absorptiometry, gastrocnemius medialis (GM)/AT properties used dynamometry and ultrasonography and endocrine profiling used multiplex luminometry. RESULTS Older men had lower total range of motion (ROM; -11%; P = 0.020), GM AT force (-29%; P < 0.001), stiffness (-18%; P = 0.041), Young's modulus (-22%; P = 0.011) and AT stress (-28%; P < 0.001). All three methods of classifying obesity revealed obesity to be associated with lower total ROM (P = 0.014-0.039). AT cross sectional area (CSA) was larger with higher BMI (P = 0.030). However, after controlling for age, higher BMI only tended to be associated with greater tendon stiffness (P = 0.074). Interestingly, both AT CSA and stiffness were positively correlated with body mass (r = 0.644 and r = 0.520) and BMI (r = 0.541 and r = 0.493) in the young but not older adults. Finally, negative relationships were observed between AT CSA and pro-inflammatory cytokines TNF-α, IL-6 and IL-1β. CONCLUSIONS This is the first study to provide evidence of positive adaptations in tendon stiffness and size in vivo resulting from increased mass and BMI in young but not older men, irrespective of obesity classification.
Collapse
Affiliation(s)
- David J Tomlinson
- Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, UK.
| | - Robert M Erskine
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
- Institute of Sport, Exercise & Health, University College London, London, UK
| | - Christopher I Morse
- Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, UK
| | - Joseph M Pappachan
- Department of Endocrinology and Metabolism, Royal Preston Hospital, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK
| | - Emmanuel Sanderson-Gillard
- Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, UK
| | - Gladys L Onambélé-Pearson
- Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
21
|
Tavakkoli Oskouei S, Malliaras P, Jansons P, Hill K, Soh SE, Jaberzadeh S, Perraton L. Is Ankle Plantar Flexor Strength Associated With Balance and Walking Speed in Healthy People? A Systematic Review and Meta-Analysis. Phys Ther 2021; 101:6106269. [PMID: 33481996 DOI: 10.1093/ptj/pzab018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate the association between ankle plantar flexor muscle (PF) strength and balance and walking speed in healthy adults. METHODS Four databases (Ovid MEDLINE, Ovid EMBASE, CINAHL Plus, and SPORTDiscus) were searched from inception to December 2019. Studies with any design were included if the association between PF strength and balance and walking speed was investigated among healthy adults. Articles were screened for eligibility independently by 2 reviewers. Study characteristics and Pearson r values derived from the association between PF strength and balance and walking speed were extracted. Thirty-four studies were eligible. The main group of interest in the studies was older adults. Pearson r values were transformed to rz values using Fisher z-transformation. Meta-analysis of rz values was conducted and then back-transformed to r. RESULTS In older adults, PF maximal isometric strength had a positive weak association with static balance (r = 0.20; 95% CI = 0.08-0.32), a positive moderate association with dynamic reactive balance (r = 0.42; 95% CI = 0.32-0.57) and proactive balance (r = 0.55; 95% CI = 0.18-1.06), and a positive weak association with preferred walking speed (r = 0.29; 95% CI = 0.19-0.41) and maximum walking speed (r = 0.34; 95% CI = 0.06-0.63). In younger adults, there was a moderate association between early-phase PF rate of torque development and reactive balance (0.42 < r < 0.52). CONCLUSIONS PF strength appears to be moderately associated with dynamic reactive and proactive balance and weakly associated with static balance and walking speed. This finding highlights the potential role of PF strength in dynamic reactive and proactive balance. IMPACT This meta-analysis showed that ankle PF strength might be important for challenging dynamic balance tasks.
Collapse
Affiliation(s)
- Sanam Tavakkoli Oskouei
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia
| | - Peter Malliaras
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia
| | - Paul Jansons
- Bone and Muscle Health Research Group, School of Clinical Sciences at Monash Health, Monash Medical Centre, Victoria, Australia
| | - Keith Hill
- Ageing and Independent Living (RAIL) Research Centre, Monash University, Victoria, Australia
| | - Sze-Ee Soh
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia.,Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia
| | - Shapour Jaberzadeh
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia
| | - Luke Perraton
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia
| |
Collapse
|
22
|
Yahata K, Konrad A, Sato S, Kiyono R, Yoshida R, Fukaya T, Nunes JP, Nakamura M. Effects of a high-volume static stretching programme on plantar-flexor muscle strength and architecture. Eur J Appl Physiol 2021; 121:1159-1166. [PMID: 33502614 DOI: 10.1007/s00421-021-04608-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/17/2021] [Indexed: 02/04/2023]
Abstract
PURPOSE Static stretching (SS) is performed in various settings, but there is no consensus about the effects of SS programmes on changes in muscle morphofunction. This study aimed to investigate the effects of a high-volume SS programme on muscle strength and architecture. METHODS Sixteen healthy young male adults participated, and the dominant leg was defined as the intervention side, with the non-dominant leg as the control side. Stretching exercises were performed two times per week (6 sets of 5 min, totally 30 min per session,) for 5-week using a stretching board under the supervision of the research team. Before and after SS intervention programme, plantar-flexor strength (maximum voluntary isometric contraction, MVC-ISO; maximum voluntary concentric contraction, MVC-CON) and architecture (muscle thickness, pennation angle, and fascicle length) were measured via dynamometer and ultrasound, respectively. RESULTS Following the SS-training programme, significant increases were observed for stretching side in MVIC-ISO at neutral ankle position (p = 0.02, d = 0.31, Δ = 6.4 ± 9.9%) and MVC-CON at 120°/s (p = 0.02, d = 0.30, Δ = 7.8 ± 9.1%), with no significant change on the control side. There was no significant change in any measure of muscle architecture for both intervention and control sides. CONCLUSION Five-week high-volume SS induced positive changes on some measures of muscle strength but not hypertrophy of plantar-flexor muscles. Even with a volume much greater than already tested, the low strain offered by the SS per set seems be insufficient to induce architectural changes on skeletal muscle.
Collapse
Affiliation(s)
- Kaoru Yahata
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata, 950-3198, Japan
| | - Andreas Konrad
- Institute of Human Movement Science, Sport and Health, University of Graz, Mozartgasse 14, 8010, Graz, Austria
| | - Shigeru Sato
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata, 950-3198, Japan
| | - Ryosuke Kiyono
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata, 950-3198, Japan
| | - Riku Yoshida
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata, 950-3198, Japan
| | - Taizan Fukaya
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata, 950-3198, Japan
- Department of Rehabilitation, Kyoto Kujo Hospital, 10 Karahashirajoumoncho, Minami-ku, Kyoto, 601-8453, Japan
| | - João Pedro Nunes
- Metabolism, Nutrition, and Exercise Laboratory, Physical Education and Sport Center, Londrina State University, Londrina, 86057-970, PR, Brazil
| | - Masatoshi Nakamura
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata, 950-3198, Japan.
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata, 950-3198, Japan.
| |
Collapse
|
23
|
do Couto MC, de Sousa Fernandes MS, Dos Santos TM. Comment: Kay et al.'s (2020) Isokinetic eccentric exercise substantially improves mobility, muscle strength, and size, but not postural sway metrics in older adults with limited regression observed following a detraining period. Eur J Appl Physiol. Eur J Appl Physiol 2021; 121:1795-1796. [PMID: 33751212 DOI: 10.1007/s00421-021-04663-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/04/2021] [Indexed: 11/25/2022]
|
24
|
Hernández-Guillén D, Tolsada-Velasco C, Roig-Casasús S, Costa-Moreno E, Borja-de-Fuentes I, Blasco JM. Association ankle function and balance in community-dwelling older adults. PLoS One 2021; 16:e0247885. [PMID: 33661991 PMCID: PMC7932177 DOI: 10.1371/journal.pone.0247885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/15/2021] [Indexed: 11/19/2022] Open
Abstract
Background and purpose Ankle function declines with age. The objective of this study was to investigate the association between ankle function and balance in older adults, with a focus on range of motion (ROM) and strength. Methods This was a cross-sectional study that included 88 healthy community-dwelling older adults. Ankle mobility was measured while bearing weight (lunge test) and not bearing weight. The plantar-flexor muscle strength was assessed using a hand-held dynamometer. Balance was measured in terms of dynamic balance and mobility (timed up and go test), monopodal and bipodal static balance with open and closed eyes (single-leg stand test and platform measures), and margins of stability (functional reach test). Linear correlation and multiple regression analyses were conducted with a 95% CI. Results and discussion Most participants had limited ankle mobility (n = 75, 86%). Weight-bearing ankle dorsiflexion ROM was the strongest predictor of dynamic balance and included general mobility and stability ( Radj2 = [0.34]; β = [-0.50]). In contrast, plantar-flexor muscle strength was a significant predictor of static standing balance with open eyes ( Radj2 = [0.16–0.2]; β = [0.29–0.34]). Overall, weight-bearing ankle dorsiflexion ROM was a more representative measure of balance and functional performance; however, a non-weight-bearing mobility assessment provides complementary information. Therefore, both measures can be used in clinical practice. Conclusion This study supports the concept that ankle mobility contributes to the performance of dynamic tasks, while the plantar-flexor muscle strength helps to develop a standing static balance. Identification of alterations in ankle function is warranted and may assist in the design of tailored interventions. These interventions can be used in isolation or to augment conventional balance training in order to improve balance performance in community-dwelling older adults.
Collapse
Affiliation(s)
- David Hernández-Guillén
- Group of Physiotherapy in the Ageing Processes, Departament de Fisioteràpia, Universitat de València, Valencia, Spain
- * E-mail:
| | | | - Sergio Roig-Casasús
- Group of Physiotherapy in the Ageing Processes, Departament de Fisioteràpia, Universitat de València, Valencia, Spain
- Hospital Politècnic i Universitari La Fe, Valencia, Spain
| | | | | | - José-María Blasco
- Group of Physiotherapy in the Ageing Processes, Departament de Fisioteràpia, Universitat de València, Valencia, Spain
| |
Collapse
|
25
|
Nakamura M, Kiyono R, Sato S, Yahata K, Fukaya T, Nishishita S, Konrad A. The Associations between Rapid Strength Development and Muscle Stiffness in Older Population. Healthcare (Basel) 2021; 9:80. [PMID: 33467735 PMCID: PMC7830458 DOI: 10.3390/healthcare9010080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Previous studies suggest that the capacity for rapid force production of ankle plantar flexors is essential for the prevention of falls in the elderly. In healthy young adults, there were significant associations between rate of force development and muscle stiffness measured by shear wave elastography. However, there has been no study investigating the association of rate of force development with shear elastic modulus in older adults. METHODS The muscle strength and shear elastic modulus of the medial gastrocnemius muscle in both legs were measured in 17 elderly men and 10 elderly women (mean ± SD; 70.7 ± 4.1 years; 160.6 ± 8.0 cm; 58.7 ± 9.5 kg). We investigated the rate of force development of plantar flexors and shear elastic modulus of medial gastrocnemius muscle using by shear wave elastography. RESULTS Our results showed that there were no significant associations between normalized rate of force development and shear elastic modulus of medial gastrocnemius muscle. CONCLUSION This suggests that the capacity of rapid force production could be related not to muscle stiffness of the medial gastrocnemius muscle, but to neuromuscular function in older individuals.
Collapse
Affiliation(s)
- Masatoshi Nakamura
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan; (M.N.); (R.K.); (S.S.); (K.Y.); (T.F.)
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Ryosuke Kiyono
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan; (M.N.); (R.K.); (S.S.); (K.Y.); (T.F.)
| | - Shigeru Sato
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan; (M.N.); (R.K.); (S.S.); (K.Y.); (T.F.)
| | - Kaoru Yahata
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan; (M.N.); (R.K.); (S.S.); (K.Y.); (T.F.)
| | - Taizan Fukaya
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan; (M.N.); (R.K.); (S.S.); (K.Y.); (T.F.)
- Department of Rehabilitation, Kyoto Kujo Hospital, Kyoto 601-8453, Japan
| | - Satoru Nishishita
- Institute of Rehabilitation Science, Tokuyukai Medical Corporation, Osaka 560-0054, Japan;
- Kansai Rehabilitation Hospital, Tokuyukai Medical Corporation, Osaka 560-0054, Japan
| | - Andreas Konrad
- Institute of Human Movement Science, Sport and Health, University of Graz, Graz A-8010, Austria
| |
Collapse
|
26
|
Majstorović N, Nešić G, Grbić V, Savić Z, Živković M, Aničić Z, Marković S, Dopsaj M. RELIABILITY OF A SIMPLE NOVEL FIELD TEST FOR THE MEASUREMENT OF PLANTAR FLEXOR MUSCLE STRENGTH. REV BRAS MED ESPORTE 2021. [DOI: 10.1590/1517-8692202127012019_0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Introduction When a person is in a standing position, the plantar flexor muscles are involved in most static and dynamic body movements. Objectives The aim of this study was to investigate the trial to trial and factorial reliability of measuring the contractile characteristics of PF muscles using a simple novel field test. Methods The sample consisted of 452 healthy subjects, 120 male and 332 female. The research was conducted by means of the trial to trial testing method, using isometric dynamometry performed in field conditions. ANOVA was used to estimate the differences among the trials, Cronbach’s alpha and interclass correlation to estimate the correlations among the trials, and principal component analysis to evaluate the contribution of each trial to overall variability. Results The main findings of this study are that trials differed significantly (p<0.000) for maximal force (Fmax) and maximal rate of force development (RFDmax), indicating that the three procedural trials were necessary. The trials were highly correlated (Fmax, RFDmax, r>0.9), proving that measuring was reliable, and the factorial analysis separated the second and third trials, the second trial accounting for most of the total variability. Conclusions The simple novel field test for the measurement of plantar flexor contractile characteristics recommended by this study proved to be as highly reliable as laboratory testing, but was easy to perform in conditions outside of scientific or diagnostic institutions, which greatly facilitates the work of scientists, coaches and professionals. Level of Evidence II; Diagnostic Studies – Investigating a diagnostics test.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Milivoj Dopsaj
- Belgrade University, Serbia; South Ural State University, Russia
| |
Collapse
|
27
|
Test-Retest Reliability of Plantar Flexion Torque Generation During a Functional Knee Extended Position in Older and Younger Men. J Aging Phys Act 2020; 29:626-631. [PMID: 33361497 DOI: 10.1123/japa.2020-0288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 11/18/2022]
Abstract
Measuring ankle torque is of paramount importance. This study compared the test-retest reliability of the plantar flexion torque-generating capacity between older and younger men. Twenty-one older (68 ± 6 years) and 22 younger (25 ± 5 years) men were tested twice for maximal isometric plantar flexion. Peak torque (PT), rate of torque development, and contractile impulses (CI) were obtained from 0 to 50 ms (rate of torque development0-50; CI0-50) and from 100 to 200 ms (rate of torque development100-200; CI100-200). Typical error as the coefficient of variation (CVTE) and intraclass correlation coefficient were used to assess test-retest reliability. Student's t test was applied to investigate systematic errors. The CVTE ratio was used for between-group comparisons. Only PT demonstrated acceptable reliability (intraclass correlation coefficient ≥ .75 and CV ≤ 10%). Older men demonstrated greater CVTE than younger men for PT (ratio = 2.24), but lesser for rapid torque (ratio ≤ 0.84). Younger men demonstrated systematic error for PT (6.5%) and CI100-200 (-8.9%). In conclusion, older men demonstrated greater variability for maximal torque output, but lesser for rapid torque.
Collapse
|
28
|
Ema R, Kawaguchi E, Suzuki M, Akagi R. Plantar flexor strength at different knee positions in older and young males and females. Exp Gerontol 2020; 142:111148. [PMID: 33171277 DOI: 10.1016/j.exger.2020.111148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION This study examined the effects of age and knee position (fully extended, K0; 90° flexed, K90) on plantar flexor maximal voluntary contraction (MVC) torque and the rate of torque development (RTD) in both sexes. METHODS The following parameters were measured in 32 older (66-81 yr, 17 males and 15 females) and 37 young (20-30 yr, 18 males and 19 females) adults: evoked peak twitch torque, time to peak twitch torque, RTD of the twitch torque, MVC torque, RTD at early (0-50 ms, RTD0-50) and later (100-200 ms, RTD100-200) time intervals during explosive contractions, voluntary activation (VA%) during MVC, root mean square of the electromyogram (RMS-EMG) during MVC and explosive contractions, thickness of the triceps surae, and pennation angle of the medial gastrocnemius. The magnitudes of the differences were interpreted based on Cohen's d (d). RESULTS Age-related difference in RTD0-50 was greater for females (d = 1.36) than males (d = 1.03) and vice versa for MVC torque and RTD100-200. For young adults, MVC torque, RTDs, and RMS-EMGs of the gastrocnemius but not the soleus were significantly higher in K0 than in K90. For older adults, no differences in voluntary RTDs were observed between K0 and K90, and RMS-EMGs of the gastrocnemius were higher in K90 than in K0, except for that of the lateral gastrocnemius in the early time intervals during explosive contraction. The age-related difference in the effect of knee position for RTD0-50 was higher in females than males, and vice versa for MVC torque and RTD100-200. CONCLUSION The results suggested that the effects of age and knee joint angle on the plantar flexor performance were more prominent in the early phase of force production for females and were more apparent in the later phase and maximal force for males.
Collapse
Affiliation(s)
- Ryoichi Ema
- School of Management, Shizuoka Sangyo University, 1572-1 Owara, Iwata, Shizuoka 438-0043, Japan.
| | - Emi Kawaguchi
- College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama 337-8570, Japan
| | - Momoka Suzuki
- College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama 337-8570, Japan
| | - Ryota Akagi
- College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama 337-8570, Japan; Graduate School of Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama 337-8570, Japan
| |
Collapse
|
29
|
Ema R, Kanda A, Shoji M, Iida N, Akagi R. Age-Related Differences in the Effect of Prolonged Vibration on Maximal and Rapid Force Production and Balance Ability. Front Physiol 2020; 11:598996. [PMID: 33192615 PMCID: PMC7659521 DOI: 10.3389/fphys.2020.598996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/09/2020] [Indexed: 11/16/2022] Open
Abstract
We tested the hypothesis that older adults would not likely experience deficits in maximal and explosive plantar flexion strength and standing balance performance induced by prolonged Achilles tendon vibration compared with young adults. Fifteen older men (OM, 73 ± 5 years) and 15 young men (YM, 24 ± 4 years) participated in two interventions on different days: lying in a quiet supine position for 30 min with or without prolonged vibration to the Achilles tendon. Before and after the interventions, maximal voluntary contraction (MVC) torque during plantar flexion, rate of torque development (RTD), and center of pressure (COP) speed during single-leg standing were measured. The root mean square of the electromyogram (RMS-EMG) during performance and V-wave and voluntary activation during MVC were assessed. The MVC torque (7 ± 7%) and RTD (16 ± 15%) of YM but not OM significantly decreased after vibration. In addition, the relative changes observed in YM positively correlated with changes in RMS-EMG of the medial gastrocnemius (MG) (MVC torque and RTD) and in MG V-wave and voluntary activation (MVC torque). COP speed significantly increased (16 ± 20%) in YM only after vibration and was accompanied by increased activation of the lateral gastrocnemius. This is the first study to show that the effects of prolonged Achilles tendon vibration on strength and balance performances were apparent in young adults only. The differences between the age groups may be related to the attenuated gastrocnemius neuromuscular function in older adults.
Collapse
Affiliation(s)
- Ryoichi Ema
- School of Management, Shizuoka Sangyo University, Iwata, Japan
| | - Akihiro Kanda
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
- Mizuno Corporation, Osaka, Japan
| | - Mikio Shoji
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Natsuki Iida
- College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Ryota Akagi
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
- College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| |
Collapse
|
30
|
Hirono T, Ikezoe T, Taniguchi M, Yamagata M, Miyakoshi K, Umehara J, Ichihashi N. Relationship between ankle plantar flexor force steadiness and postural stability on stable and unstable platforms. Eur J Appl Physiol 2020; 120:1075-1082. [DOI: 10.1007/s00421-020-04346-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/10/2020] [Indexed: 01/06/2023]
|
31
|
Comparison of age-specific leg extensor muscle function torque-time and rapid velocity attributes across the adult lifespan: A relative deficiency investigation. Exp Gerontol 2019; 131:110819. [PMID: 31870890 DOI: 10.1016/j.exger.2019.110819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 11/23/2022]
Abstract
The purposes of this study were to examine the age-related differences in absolute and normalized torque-time parameters in five distinct groups across the adult lifespan, and the relationship between rapid strength and limb acceleration capacities across the lifespan. One-hundred and thirty-six healthy men were categorized as young athletes (n = 27; age = 20.7 yrs), young controls (n = 32; 21.9 yrs), middle young (n = 32; 49.8 yrs), middle old (n = 15; 58.9 yrs), and old (n = 30; 71.3 yrs) cohorts. Participants performed maximal voluntary contractions (MVCs) of the leg extensors under isometric and isokinetic (240 deg.·s-1) conditions. Outcome measures included peak torque (PT), absolute and MVC normalized (norm) rate of torque development (RTD) at 50 and 200 ms, RTD50/PT ratio, and rate of velocity development (RVD). The PT and absolute RTD at 200 ms declined from young to old age (P < .05). The middle age groups exhibited an overall preservation of early RTD, and a potential enhancement of early normalized RTD (P = .06 for middle young vs. controls, for RTDnorm50). The RTD50/PT ratio was higher in the middle young (P < .05) compared to both the young groups. Generally, the RVD declined more linearly and exhibited worse preservation at mid-life than the early absolute or normalized RTD variables. All absolute torque-time variables were correlated (r = 0.43-0.73, P < .001) to the RVD for all groups combined. These findings showed distinct age-related declines occurred for different muscle function parameters unique to specific stages of the lifespan. Normalized RTD variables may reveal plausible mechanisms of age-related neuromuscular changes and the RTD50/PT ratio may be a useful tool for determining relative deficiencies, such that mid-life adults (45-64 yrs) should address their relative limitation of PT by enhancing strength at mid-life, whereas older adults (65+ yrs) may need more emphasis on RTD improvements. In addition, both mid-life and older men should seek to improve rapid limb velocity capacities due to the susceptibility of RVD to decline more incrementally across the lifespan. Such information may help to improve anti-aging strategies by countering age-specific muscle function deficiencies and may improve mid-life adults' ability to transition better functionally into old age.
Collapse
|
32
|
Ando R, Suzuki Y. Positive relationship between passive muscle stiffness and rapid force production. Hum Mov Sci 2019; 66:285-291. [PMID: 31082668 DOI: 10.1016/j.humov.2019.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/02/2019] [Accepted: 05/02/2019] [Indexed: 01/08/2023]
Abstract
We aimed to examine the relationship among the muscle shear modulus at rest, maximal joint torque, and rate of torque development (RTD). Twenty-seven participants (28 ± 5 years, 13 women) were recruited in the study. The cross-sectional area (CSA) of the medial gastrocnemius (MG) muscle belly and shear modulus at an ankle joint angle of 0° were calculated using magnetic resonance imaging and ultrasound shear wave elastography, respectively. Subsequently, participants performed maximal isometric plantar flexion at 0° ankle joint angle [maximal voluntary contraction (MVC) test] as fast and hard as possible (RTD test). RTD was calculated from the time-torque curve over time intervals of 0-30, 0-50, 0-100, 0-150, and 0-200 ms from the onset of plantar flexion during the RTD test and was normalized by MVC torque to exclude muscle strength. MG CSA correlated significantly with MVC torque (r = 0.572), whereas MG shear modulus did not. In contrast, MG shear modulus correlated significantly with normalized RTD at all time intervals (r = 0.460-0.496). These results suggest that passive muscle stiffness is not associated with muscle force; however, higher passive muscle stiffness at a given joint angle may contribute to rapid force production.
Collapse
|
33
|
Optimization of the Effects of Physical Activity on Plantar Sensation and Postural Control With Barefoot Exercises in Institutionalized Older Adults: A Pilot Study. J Aging Phys Act 2019; 27:452-465. [DOI: 10.1123/japa.2018-0016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Increasing somatosensory information from the foot by exercising barefoot can potentially optimize the effectiveness of physical exercise interventions on falls prevention in the older adults. This pilot study was then undertaken to explore the effects of increased somatosensory information from the foot by exercising barefoot on balance, gait, and plantar cutaneous sensitivity in institutionalized older adults involved in multimodal exercise intervention. Participants were assigned to three groups: a control group which did not perform any physical exercise and two groups in which they were involved in a multimodal exercise program performed barefoot or shod. Postural, gait, and plantar cutaneous sensitivity parameters were collected. The results showed that the exercise program produced larger effects on balance and plantar cutaneous sensitivity when exercises were performed barefoot, without any noticeable effect on gait. Hence, barefoot exercising could be a relevant means to optimize the fall-prevention exercise programs in institutionalized older adults.
Collapse
|
34
|
Behan FP, Pain MTG, Folland JP. Explosive voluntary torque is related to whole-body response to unexpected perturbations. J Biomech 2018; 81:86-92. [PMID: 30268357 DOI: 10.1016/j.jbiomech.2018.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/03/2018] [Accepted: 09/15/2018] [Indexed: 11/19/2022]
Abstract
Explosive torque has been demonstrated to relate to static balance. However, sports injuries occur dynamically and unpredictably, yet the relationship between explosive torque and balance response to dynamic perturbations is unknown. This study investigated the relationship between explosive torque of the plantar flexors and knee extensors and the centre of mass (COM) response to unexpected perturbations. Thirty-three healthy subjects (17 females, 16 males) were assessed for maximal and explosive isometric knee extension (KE) and plantar flexion (PF) torque and COM response (velocity (COMV), displacement (COMD)) to unexpected platform translations. Relationships between explosive torque and balance measures were investigated using Pearson's correlation and multiple regression. A negative relationship between PF explosive torque at 50, 100, and 150 ms and COMV at 300, 400, and 500 ms (r = -0.363 to -0.508, p ≤ 0.049), and COMD at 400 and 500 ms (r = -0.349 to -0.416, p ≤ 0.046) was revealed. A negative relationship between KE explosive torque at 50, 100, and 150 ms and COMV at 400 ms (r = -0.381 to -0.411, p ≤ 0.029) but not COMD was also revealed. Multiple regression found PF 100 ms predicted 17.3% of variability in COMD at 500 ms and 25.8% of variability in COMV at 400 ms. These results suggest that producing torque rapidly may improve COM response to unexpected perturbation.
Collapse
Affiliation(s)
- Fearghal P Behan
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Loughborough University, Leicestershire, UK; School of Sport, Exercise, and Health Sciences, Loughborough University, Leicestershire, UK; Research Department, Aspetar Sports Medicine Hospital, Doha, Qatar.
| | - Matt T G Pain
- School of Sport, Exercise, and Health Sciences, Loughborough University, Leicestershire, UK
| | - Jonathan P Folland
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Loughborough University, Leicestershire, UK; School of Sport, Exercise, and Health Sciences, Loughborough University, Leicestershire, UK
| |
Collapse
|
35
|
Lima AB, de Souza Bezerra E, da Rosa Orssatto LB, de Paiva Vieira E, Picanço LAA, dos Santos JOL. Functional resistance training can increase strength, knee torque ratio, and functional performance in elderly women. J Exerc Rehabil 2018; 14:654-659. [PMID: 30276189 PMCID: PMC6165983 DOI: 10.12965/jer.1836250.125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 06/14/2018] [Indexed: 11/22/2022] Open
Abstract
Functional resistance training can increase strength, knee torque ratio, and functional performance in elderly women. The aim of the present study was to understand the effects of closed kinetic chain exercises with constant load on muscular strength, the knee torque conventional ratio (hamstring:quadriceps - H:Q), and functional capacity in the elderly. Nine untrained healthy elderly women participated in experimental resistance training. Ten-repetition maximum (10RM) for the deadlift, isokinetic maximum voluntary concentric contraction, and functional capacity were assessed before and after the 7-week resistance-training program. Magnitude based inference analysis was used to examine the differences in muscle strength and functional performance. Therefore, the smallest worthwhile change was calculated and 90% confidence intervals were also determined to characterize muscle strength and functional performance. The analysis demonstrated an increase in the deadlift and knee flexor torque (60o/sec) after the experimental intervention. Furthermore, stair ascent, knee extensor torque (120o/sec), knee flexor torque (120o/sec), and knee ratio (60o/sec) also presented a positive effect in the same training period. Conversely, knee extensor torque (60o/sec), and knee ratio (120o/sec) did not show conclusive responses. In conclusion, resistance training with functional closed kinetic chain exercises and constant volume load (i.e., 65% of 1-repetition maximum) can increase deadlift 10RM, isokinetic concentric torque, the conventional H:Q ratio, and stair ascent performance in elderly women.
Collapse
Affiliation(s)
- Ahlan Benezar Lima
- Human Performance Laboratory, Faculty of Physical Education and Physiotherapy, Federal University of Amazonas, Manaus, Brazil
| | - Ewertton de Souza Bezerra
- Human Performance Laboratory, Faculty of Physical Education and Physiotherapy, Federal University of Amazonas, Manaus, Brazil
| | | | - Ericles de Paiva Vieira
- Human Performance Laboratory, Faculty of Physical Education and Physiotherapy, Federal University of Amazonas, Manaus, Brazil
| | - Luhan Ammy Andrade Picanço
- Human Performance Laboratory, Faculty of Physical Education and Physiotherapy, Federal University of Amazonas, Manaus, Brazil
| | | |
Collapse
|
36
|
Orssatto LBDR, Wiest MJ, Diefenthaeler F. Neural and musculotendinous mechanisms underpinning age-related force reductions. Mech Ageing Dev 2018; 175:17-23. [PMID: 29997056 DOI: 10.1016/j.mad.2018.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/21/2018] [Accepted: 06/28/2018] [Indexed: 01/02/2023]
Abstract
Ageing leads to substantial force production capacity reductions, which is an indicator of frailty and disability, and a mortality predictor in elders. Understanding the age-dependent neuromuscular mechanisms underlying force reductions can optimize healthcare professionals' exercise protocol choices for patients and allows researchers to investigate new interventions to mitigate these reductions. Our primary goal was to provide an updated review about the main neural and musculotendinous mechanisms underpinning age-related reductions in force capacity. Our secondary goal was to summarize how aerobic and strength training can lessen these age-related reductions. This review suggests that several steps in the force production pathway, from cortical to muscular mechanisms, are negatively affected by ageing. However, combining aerobic and strength training can attenuate these effects. Strength training (i.e. moderate to high- intensity, progressive volume, accentuated eccentric loading and fast concentric contraction velocity) can increase overall force production capacity by producing beneficial neural and musculotendinous adaptations. Additionally, aerobic training (i.e. moderate and high intensities) plays an essential role in preserving the structure and function of the neuromuscular system.
Collapse
Affiliation(s)
- Lucas Bet da Rosa Orssatto
- Laboratório de Biomecânica, Centro de Desportos, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Matheus Joner Wiest
- Toronto Rehabilitation Institute - UHN. Neural Engineering & Therapeutic Team, Toronto, Ontario, Canada
| | - Fernando Diefenthaeler
- Laboratório de Biomecânica, Centro de Desportos, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
37
|
Orssatto LBR, Moura BM, Bezerra ES, Andersen LL, Oliveira SN, Diefenthaeler F. Influence of strength training intensity on subsequent recovery in elderly. Exp Gerontol 2018. [PMID: 29540305 DOI: 10.1016/j.exger.2018.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the influence of strength training intensity on subsequent recovery in elderly is important to avoid reductions in physical function during the days following training. Twenty-two elderly were randomized in two groups: G70 (65.9 ± 4.8 years, n = 11) and G95 (66.9 ± 5.1, n = 11). Baseline tests included maximum voluntary isometric contraction (peak torque and rate of torque development - RTD), countermovement jump, and functional capacity (timed up and go, stairs ascent and descent). Then, both groups performed a single strength training session with intensities of 70% (G70) or 95% (G95) of five repetition maximum. The same tests were repeated immediately, 24 h, 48 h, and 72 h after the session. Peak torque was lower than baseline immediately after for both groups and at 24 h for G95. Compared with G70, G95 had lower peak torque at 24 h and 48 h. Countermovement jump, timed up and go, stairs ascent, and RTD at 0-50 ms only differed from baseline immediately after for both groups. RTD at 0-200 ms was lower than baseline immediately after and 24 h after the session for both groups. In conclusion, reduced physical function immediately after strength training can last for 1-2 days in elderly depending on the type of physical function and intensity of training. Higher intensity resulted in greater impairment. Exercise prescription in elderly should take this into account, e.g., by gradually increasing intensity during the first months of strength training. These results have relevance for elderly who have to be fit for work or other activities in the days following strength training.
Collapse
Affiliation(s)
- L B R Orssatto
- Laboratório de Biomecânica, Centro de Desportos, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - B M Moura
- Laboratório de Biomecânica, Centro de Desportos, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - E S Bezerra
- Laboratório de Biomecânica, Centro de Desportos, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil; Laboratório de Estudos do Desempenho Humano, Faculdade de Educação Física e Fisioterapia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - L L Andersen
- National Research Centre for the Working Environment, Copenhagen, Denmark; Sport Sciences, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - S N Oliveira
- Laboratório de Biomecânica, Centro de Desportos, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - F Diefenthaeler
- Laboratório de Biomecânica, Centro de Desportos, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
38
|
Akagi R, Suzuki M, Kawaguchi E, Miyamoto N, Yamada Y, Ema R. Muscle size-strength relationship including ultrasonographic echo intensity and voluntary activation level of a muscle group. Arch Gerontol Geriatr 2017; 75:185-190. [PMID: 29316518 DOI: 10.1016/j.archger.2017.12.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 11/06/2017] [Accepted: 12/19/2017] [Indexed: 01/15/2023]
Abstract
This study aimed to investigate the relationship between muscle volume (MV) and joint torque for the plantar flexors (PF) in 40 young (20 men and 20 women) and 33 elderly (19 men and 14 women) individuals in consideration of the voluntary activation (VA) of PF and ratio of intramuscular adipose tissue within PF assessed by ultrasonographic echo intensity (EI). MV was estimated from the thickness of PF on ultrasonography and the lower leg length using a prediction equation previously reported. The maximal voluntary contraction torque of isometric plantar flexion was measured as TQMVC. VA (%) was assessed using the twitch interpolation technique, and maximal joint torque calculated by TQMVC/VA × 100 was adopted as TQ100%. The correlation coefficients between MV and TQMVC (r = 0.518) and between MV and TQ100% (r = 0.602) were both significant, with the latter being significantly higher than the former. When a stepwise multiple regression analysis using MV and EI as independent variables and TQ100% as the dependent variable was performed, MV (β = 0.554) and EI (β = -0.203) were both selected as significant contributors for estimating TQ100%. Additionally, the residual errors of TQ100% using the multiple regression equation (independent variables: MV and EI; 18.6 ± 14.4 Nm) were significantly lower than those using the simple regression equation (independent variable: MV; 36.6 ± 28.0 Nm). These results suggest that the consideration of VA and EI with muscle size results in a closer muscle size-strength relationship than previously achieved.
Collapse
Affiliation(s)
- Ryota Akagi
- College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama, 337-8570, Japan; Graduate School of Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama, 337-8570, Japan.
| | - Momoka Suzuki
- College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama, 337-8570, Japan.
| | - Emi Kawaguchi
- College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama, 337-8570, Japan; Graduate School of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa-shi, Saitama, 359-1192, Japan.
| | - Naokazu Miyamoto
- National Institute of Fitness and Sports in Kanoya, 1 Shiromizu, Kanoya-shi, Kagoshima, 891-2393, Japan.
| | - Yosuke Yamada
- Department of Nutritional Science, National Institute of Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan.
| | - Ryoichi Ema
- Graduate School of Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama, 337-8570, Japan; Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan.
| |
Collapse
|
39
|
Ema R, Ohki S, Takayama H, Kobayashi Y, Akagi R. Effect of calf-raise training on rapid force production and balance ability in elderly men. J Appl Physiol (1985) 2017; 123:424-433. [PMID: 28572499 PMCID: PMC5583613 DOI: 10.1152/japplphysiol.00539.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 11/22/2022] Open
Abstract
This study examined whether home-based, high-speed calf-raise training changes the rate of torque development (RTD) during plantar flexion contractions and balance performance in elderly men. Thirty-four healthy elderly men (73 ± 5 yr) were randomly assigned to a training or control group (n = 17 in each group). The subjects in the training group completed 8 wk (3 times/wk) of home-based bilateral calf-raise training using body mass. Before and after the intervention, RTD during plantar flexion contractions and center-of-pressure (COP) displacement during single-leg standing were measured. Surface electromyographic amplitude of the triceps surae and tibialis anterior during the strength and single-leg standing was measured. Clinical magnitude-based inferences were used to interpret the training effect, with the smallest worthwhile effect assumed to be 0.2 of the baseline SD. The peak RTD increased 21% (90% confidence limits, ±19%) relative to the control group, which was accompanied by corresponding changes of the medial gastrocnemius (MG) and soleus (SOL) activations. The effect on COP displacement was possibly trivial (0%, ±13%), whereas substantial reduction in the MG (-19%, ±15%) and SOL (-25%, ±13%) activations during standing was observed. Our findings indicate that calf-raise training at home, performed without special equipment or venue, induces a substantial increase in the plantar flexors' rapid force-generating capability and triceps surae activations. Although the training effect on standing balance performance was not substantial, observed changes in the triceps surae activations during standing are expected to contribute to future balance performance improvement.NEW & NOTEWORTHY Calf-raise training with the intent to move rapidly, without special equipment or venue, induces an improvement of explosive plantar flexion force, which is attributable to neuromuscular rather than musculotendinous adaptations. Although the training effect on balance performance was trivial, we found a sign of improvement (i.e., neuromuscular adaptations during standing). In conclusion, functional neuromuscular capacity can be enhanced by home-based calf-raise exercise in elderly men, which may protect against mobility loss with aging.
Collapse
Affiliation(s)
- Ryoichi Ema
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Shunsuke Ohki
- College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan; and
| | - Hirokazu Takayama
- College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan; and
| | - Yuji Kobayashi
- Institute for Education and Student Services, Okayama University, Okayama, Japan
| | - Ryota Akagi
- College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan; and
| |
Collapse
|