1
|
Campbell MD, Djukovic D, Raftery D, Marcinek DJ. Age-related changes of skeletal muscle metabolic response to contraction are also sex-dependent. J Physiol 2025; 603:69-86. [PMID: 37742081 PMCID: PMC10959763 DOI: 10.1113/jp285124] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023] Open
Abstract
Mitochondria adapt to increased energy demands during muscle contraction by acutely altering metabolite fluxes and substrate oxidation. With age, an impaired mitochondrial metabolic response may contribute to reduced exercise tolerance and decreased skeletal muscle mass, specific force, increased overall fatty depositions in the skeletal muscle, frailty and depressed energy maintenance. We hypothesized that elevated energy stress in mitochondria with age alters the capacity of mitochondria to utilize different substrates following muscle contraction. To test this hypothesis, we used in vivo electrical stimulation to simulate high-intensity intervals (HII) or low intensity steady-state (LISS) exercise in young (5-7 months) and aged (27-29 months) male and female mice to characterize effects of age and sex on mitochondrial substrate utilization in skeletal muscle following contraction. Mitochondrial respiration using glutamate decreased in aged males following HII and glutamate oxidation was inhibited following HII in both the contracted and non-stimulated muscle of aged female muscle. Analyses of the muscle metabolome of female mice indicated that changes in metabolic pathways induced by HII and LISS contractions in young muscle are absent in aged muscle. To test improved mitochondrial function on substrate utilization following HII, we treated aged females with elamipretide (ELAM), a mitochondrially-targeted peptide shown to improve mitochondrial bioenergetics and restore redox status in aged muscle. ELAM removed inhibition of glutamate oxidation and showed increased metabolic pathway changes following HII, suggesting rescuing redox status and improving bioenergetic function in mitochondria from aged muscle increases glutamate utilization and enhances the metabolic response to muscle contraction in aged muscle. KEY POINTS: Acute local contraction of gastrocnemius can systemically alter mitochondrial respiration in non-stimulated muscle. Age-related changes in mitochondrial respiration using glutamate or palmitoyl carnitine following contraction are sex-dependent. Respiration using glutamate after high-intensity contraction is inhibited in aged female muscle. Metabolite level and pathway changes following muscle contraction decrease with age in female mice. Treatment with the mitochondrially-targeted peptide elamipretide can partially rescue metabolite response to muscle contraction.
Collapse
Affiliation(s)
| | - Danijel Djukovic
- Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
| | - Daniel Raftery
- Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
| | | |
Collapse
|
2
|
Paraskevaidis I, Kourek C, Farmakis D, Tsougos E. Heart Failure: A Deficiency of Energy-A Path Yet to Discover and Walk. Biomedicines 2024; 12:2589. [PMID: 39595155 PMCID: PMC11592498 DOI: 10.3390/biomedicines12112589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Heart failure is a complex syndrome and our understanding and therapeutic approach relies mostly on its phenotypic presentation. Notably, the heart is characterized as the most energy-consuming organ, being both a producer and consumer, in order to satisfy multiple cardiac functions: ion exchange, electromechanical coordination, excitation-contraction coupling, etc. By obtaining further knowledge of the cardiac energy field, we can probably better characterize the basic pathophysiological events occurring in heart disease patients and understand the metabolic substance changes, the relationship between the alteration of energy production/consumption, and hence energetic deficiency not only in the heart as a whole but in every single cardiac territory, which will hopefully provide us with the opportunity to uncover the beginning of the heart failure process. In this respect, using (a) newer imaging techniques, (b) biomedicine, (c) nanotechnology, and (d) artificial intelligence, we can gain a deeper understanding of this complex syndrome. This, in turn, can lead to earlier and more effective therapeutic approaches, ultimately improving human health. To date, the scientific community has not given sufficient attention to the energetic starvation model. In our view, this review aims to encourage scientists and the medical community to conduct studies for a better understanding and treatment of this syndrome.
Collapse
Affiliation(s)
- Ioannis Paraskevaidis
- 6th Department of Cardiology, Hygeia Hospital, 151 23 Athens, Greece; (I.P.); (E.T.)
| | - Christos Kourek
- Department of Cardiology, 417 Army Share Fund Hospital of Athens (NIMTS), 115 21 Athens, Greece;
| | - Dimitrios Farmakis
- Heart Failure Unit, Department of Cardiology, Attikon University Hospital, Medical School, National and Kapodistiran University of Athens, 124 62 Athens, Greece
| | - Elias Tsougos
- 6th Department of Cardiology, Hygeia Hospital, 151 23 Athens, Greece; (I.P.); (E.T.)
| |
Collapse
|
3
|
Ye P, Liu H, Qin Y, Li Z, Huang Z, Bu X, Peng Q, Duan N, Wang W, Wang X. SS-31 mitigates oxidative stress and restores mitochondrial function in cigarette smoke-damaged oral epithelial cells via PINK1-mediated mitophagy. Chem Biol Interact 2024; 400:111166. [PMID: 39069114 DOI: 10.1016/j.cbi.2024.111166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Smoking is a well-established risk factor for several oral diseases, including oral cancer, oral leukoplakia and periodontitis, primarily related to reactive oxygen species (ROS). SS-31, a mitochondria-targeting tetrapeptide, has exhibited demonstrable efficacy in medical conditions by attenuating mitochondrial ROS production. However, its potential in the treatment of oral diseases remains underexplored. The aim of this study was to investigate the therapeutic potential of SS-31 in mitigating smoking-induced oral epithelial injury. Through in vitro experiments, our results indicate that SS-31 plays a protective role against cigarette smoke extract (CSE) by reducing oxidative stress, attenuating inflammatory response, and restoring mitochondrial function. Furthermore, we found that mitophagy, regulated by PINK1 (PTEN-induced putative kinase 1)/Parkin (Parkin RBR E3 ubiquitin-protein ligase), was critical for the protective role of SS-31. Our findings offer valuable insights into SS-31's therapeutic potential in mitigating CSE-induced oxidative stress, inflammatory response, and mitochondrial dysfunction in oral epithelial cells. This study provides novel intervention targets for smoking-related oral diseases.
Collapse
Affiliation(s)
- Pei Ye
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Hong Liu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Yao Qin
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Zhiyuan Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Zhuwei Huang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Xiangwen Bu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Qiao Peng
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Ning Duan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Wenmei Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Xiang Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China.
| |
Collapse
|
4
|
Fekete M, Major D, Feher A, Fazekas-Pongor V, Lehoczki A. Geroscience and pathology: a new frontier in understanding age-related diseases. Pathol Oncol Res 2024; 30:1611623. [PMID: 38463143 PMCID: PMC10922957 DOI: 10.3389/pore.2024.1611623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/07/2024] [Indexed: 03/12/2024]
Abstract
Geroscience, a burgeoning discipline at the intersection of aging and disease, aims to unravel the intricate relationship between the aging process and pathogenesis of age-related diseases. This paper explores the pivotal role played by geroscience in reshaping our understanding of pathology, with a particular focus on age-related diseases. These diseases, spanning cardiovascular and cerebrovascular disorders, malignancies, and neurodegenerative conditions, significantly contribute to the morbidity and mortality of older individuals. We delve into the fundamental cellular and molecular mechanisms underpinning aging, including mitochondrial dysfunction and cellular senescence, and elucidate their profound implications for the pathogenesis of various age-related diseases. Emphasis is placed on the importance of assessing key biomarkers of aging and biological age within the realm of pathology. We also scrutinize the interplay between cellular senescence and cancer biology as a central area of focus, underscoring its paramount significance in contemporary pathological research. Moreover, we shed light on the integration of anti-aging interventions that target fundamental aging processes, such as senolytics, mitochondria-targeted treatments, and interventions that influence epigenetic regulation within the domain of pathology research. In conclusion, the integration of geroscience concepts into pathological research heralds a transformative paradigm shift in our understanding of disease pathogenesis and promises breakthroughs in disease prevention and treatment.
Collapse
Affiliation(s)
- Monika Fekete
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - David Major
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Agnes Feher
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | | | - Andrea Lehoczki
- Department of Public Health, Semmelweis University, Budapest, Hungary
- Departments of Hematology and Stem Cell Transplantation, South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Saint Ladislaus Campus, Budapest, Hungary
| |
Collapse
|
5
|
Pharaoh G, Kamat V, Kannan S, Stuppard RS, Whitson J, Martín-Pérez M, Qian WJ, MacCoss MJ, Villén J, Rabinovitch P, Campbell MD, Sweet IR, Marcinek DJ. The mitochondrially targeted peptide elamipretide (SS-31) improves ADP sensitivity in aged mitochondria by increasing uptake through the adenine nucleotide translocator (ANT). GeroScience 2023; 45:3529-3548. [PMID: 37462785 PMCID: PMC10643647 DOI: 10.1007/s11357-023-00861-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/23/2023] [Indexed: 07/28/2023] Open
Abstract
Aging muscle experiences functional decline in part mediated by impaired mitochondrial ADP sensitivity. Elamipretide (ELAM) rapidly improves physiological and mitochondrial function in aging and binds directly to the mitochondrial ADP transporter ANT. We hypothesized that ELAM improves ADP sensitivity in aging leading to rescued physiological function. We measured the response to ADP stimulation in young and old muscle mitochondria with ELAM treatment, in vivo heart and muscle function, and compared protein abundance, phosphorylation, and S-glutathionylation of ADP/ATP pathway proteins. ELAM treatment increased ADP sensitivity in old muscle mitochondria by increasing uptake of ADP through the ANT and rescued muscle force and heart systolic function. Protein abundance in the ADP/ATP transport and synthesis pathway was unchanged, but ELAM treatment decreased protein s-glutathionylation incuding of ANT. Mitochondrial ADP sensitivity is rapidly modifiable. This research supports the hypothesis that ELAM improves ANT function in aging and links mitochondrial ADP sensitivity to physiological function. ELAM binds directly to ANT and ATP synthase and ELAM treatment improves ADP sensitivity, increases ATP production, and improves physiological function in old muscles. ADP (adenosine diphosphate), ATP (adenosine triphosphate), VDAC (voltage-dependent anion channel), ANT (adenine nucleotide translocator), H+ (proton), ROS (reactive oxygen species), NADH (nicotinamide adenine dinucleotide), FADH2 (flavin adenine dinucleotide), O2 (oxygen), ELAM (elamipretide), -SH (free thiol), -SSG (glutathionylated protein).
Collapse
Affiliation(s)
- Gavin Pharaoh
- Department of Radiology, University of Washington, Seattle, WA, 98195, USA
| | - Varun Kamat
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Sricharan Kannan
- Department of Radiology, University of Washington, Seattle, WA, 98195, USA
| | - Rudolph S Stuppard
- Department of Radiology, University of Washington, Seattle, WA, 98195, USA
| | - Jeremy Whitson
- Department of Biology, High Point University, High Point, NC, 27268, USA
| | - Miguel Martín-Pérez
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, 08028, Barcelona, Spain
| | - Wei-Jun Qian
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Peter Rabinovitch
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Matthew D Campbell
- Department of Radiology, University of Washington, Seattle, WA, 98195, USA
| | - Ian R Sweet
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, WA, 98195, USA.
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.
| |
Collapse
|
6
|
Knoke LR, Leichert LI. Global approaches for protein thiol redox state detection. Curr Opin Chem Biol 2023; 77:102390. [PMID: 37797572 DOI: 10.1016/j.cbpa.2023.102390] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/14/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023]
Abstract
Due to its nucleophilicity, the thiol group of cysteine is chemically very versatile. Hence, cysteine often has important functions in a protein, be it as the active site or, in extracellular proteins, as part of a structural disulfide. Within the cytosol, cysteines are typically reduced. But the nucleophilicity of its thiol group makes it also particularly prone to post-translational oxidative modifications. These modifications often lead to an alteration of the function of the affected protein and are reversible in vivo, e.g. by the thioredoxin and glutaredoxin system. The in vivo-reversible nature of these modifications and their genesis in the presence of localized high oxidant levels led to the paradigm of thiol-based redox regulation, the adaptation, and modulation of the cellular metabolism in response to oxidative stimuli by thiol oxidation in regulative proteins. Consequently, the proteomic study of these oxidative posttranslational modifications of cysteine plays an indispensable role in redox biology.
Collapse
Affiliation(s)
- Lisa R Knoke
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Lars I Leichert
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Universitätsstrasse 150, 44780 Bochum, Germany.
| |
Collapse
|
7
|
Chen Q, Kovilakath A, Allegood J, Thompson J, Hu Y, Cowart LA, Lesnefsky EJ. Endoplasmic reticulum stress and mitochondrial dysfunction during aging: Role of sphingolipids. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159366. [PMID: 37473835 PMCID: PMC11154090 DOI: 10.1016/j.bbalip.2023.159366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/24/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
The endoplasmic reticulum (ER) plays a key role in the regulation of protein folding, lipid synthesis, calcium homeostasis, and serves as a primary site of sphingolipid biosynthesis. ER stress (ER dysfunction) participates in the development of mitochondrial dysfunction during aging. Mitochondria are in close contact with the ER through shared mitochondria associated membranes (MAM). Alteration of sphingolipids contributes to mitochondria-driven cell injury. Cardiolipin is a phospholipid that is critical to maintain enzyme activity in the electron transport chain. The aim of the current study was to characterize the changes in sphingolipids and cardiolipin in ER, MAM, and mitochondria during the progression of aging in young (3 mo.), middle (18 mo.), and aged (24 mo.) C57Bl/6 mouse hearts. ER stress increased in hearts from 18 mo. mice and mice exhibited mitochondrial dysfunction by 24 mo. Hearts were pooled to isolate ER, MAM, and subsarcolemmal mitochondria (SSM). LC-MS/MS quantification of lipid content showed that aging increased ceramide content in ER and MAM. In addition, the contents of sphingomyelin and monohexosylceramides are also increased in the ER from aged mice. Aging increased the total cardiolipin content in the ER. Aging did not alter the total cardiolipin content in mitochondria or MAM yet altered the composition of cardiolipin with aging in line with increased oxidative stress compared to young mice. These results indicate that alteration of sphingolipids can contribute to the ER stress and mitochondrial dysfunction that occurs during aging.
Collapse
Affiliation(s)
- Qun Chen
- Department of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Anna Kovilakath
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Jeremy Thompson
- Department of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Ying Hu
- Department of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, United States of America; Richmond Department of Veterans Affairs Medical Center, Richmond, VA 23249, United States of America
| | - Edward J Lesnefsky
- Department of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298, United States of America; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, United States of America; Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, United States of America; Richmond Department of Veterans Affairs Medical Center, Richmond, VA 23249, United States of America.
| |
Collapse
|
8
|
Chen Q, Thompson J, Hu Y, Lesnefsky EJ. Endoplasmic reticulum stress and alterations of peroxiredoxins in aged hearts. Mech Ageing Dev 2023; 215:111859. [PMID: 37661065 PMCID: PMC11103240 DOI: 10.1016/j.mad.2023.111859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/20/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Aging-related cardiovascular disease is influenced by multiple factors, with oxidative stress being a key contributor. Aging-induced endoplasmic reticulum (ER) stress exacerbates oxidative stress by impairing mitochondrial function. Furthermore, a decline in antioxidants, including peroxiredoxins (PRDXs), augments the oxidative stress during aging. To explore if ER stress leads to PRDX degradation during aging, young adult (3 mo.) and aged (24 mo.) male mice were studied. Treatment with 4-phenylbutyrate (4-PBA) was used to alleviate ER stress in young adult and aged mice. Aged hearts showed elevated oxidative stress levels compared to young hearts. However, treatment with 4-PBA to attenuate ER stress reduced oxidative stress in aged hearts, indicating that ER stress contributes to increased oxidative stress in aging. Moreover, aging resulted in reduced levels of peroxiredoxin 3 (PRDX3) in mitochondria and peroxiredoxin 4 (PRDX4) in myocardium. While 4-PBA treatment improved PRDX3 content in aged hearts, it did not restore PRDX4 content in aged mice. These findings suggest that ER stress not only leads to mitochondrial dysfunction and increased oxidant stress but also impairs a vital antioxidant defense through decreased PRDX3 content. Additionally, the results suggest that PRDX4 may contribute an upstream role in inducing ER stress during aging.
Collapse
Affiliation(s)
- Qun Chen
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jeremy Thompson
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ying Hu
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Edward J Lesnefsky
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298, USA; Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA; Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA; Richmond Department of Veterans Affairs Medical Center, Richmond, VA 23249, USA.
| |
Collapse
|
9
|
Shan Z, Wang Y, Qiu T, Zhou Y, Zhang Y, Hu L, Zhang L, Liang J, Ding M, Fan S, Xiao Z. SS-31 alleviated nociceptive responses and restored mitochondrial function in a headache mouse model via Sirt3/Pgc-1α positive feedback loop. J Headache Pain 2023; 24:65. [PMID: 37271805 DOI: 10.1186/s10194-023-01600-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/23/2023] [Indexed: 06/06/2023] Open
Abstract
Migraine is the second highest cause of disability worldwide, bringing a huge socioeconomic burden. Improving mitochondrial function has promise as an effective treatment strategy for migraine. Szeto-Schiller peptide (SS-31) is a new mitochondria-targeted tetrapeptide molecule that has been shown to suppress the progression of diseases by restoring mitochondrial function, including renal disease, cardiac disease, and neurodegenerative disease. However, whether SS-31 has a therapeutic effect on migraine remains unclear. The aim of this study is to clarify the treatment of SS-31 for headache and its potential mechanisms. Here we used a mouse model induced by repeated dural infusion of inflammatory soup (IS), and examined roles of Sirt3/Pgc-1α positive feedback loop in headache pathogenesis and mitochondrial function. Our results showed that repeated IS infusion impaired mitochondrial function, mitochondrial ultrastructure and mitochondrial homeostasis in the trigeminal nucleus caudalis (TNC). These IS-induced damages in TNC were reversed by SS-31. In addition, IS-induced nociceptive responses were simultaneously alleviated. The effects of SS-31 on mitochondrial function and mitochondrial homeostasis (mainly mitochondrial biogenesis) were attenuated partially by the inhibitor of Sirt3/Pgc-1α. Overexpression of Sirt3/Pgc-1α increased the protein level of each other. These results indicated that SS-31 alleviated nociceptive responses and restored mitochondrial function in an IS-induced headache mouse model via Sirt3/Pgc-1α positive feedback loop. SS-31 has the potential to be an effective drug candidate for headache treatment.
Collapse
Affiliation(s)
- Zhengming Shan
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, 9 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Yajuan Wang
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, 9 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Tao Qiu
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, 9 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Yanjie Zhou
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, 9 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Yu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, 9 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Luyu Hu
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, 9 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Lili Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, 9 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Jingjing Liang
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Man Ding
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Shanghua Fan
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Zheman Xiao
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
10
|
Zhu H, Yan C, Yao P, Li P, Li Y, Yang H. Ginsenoside Rg1 protects cardiac mitochondrial function via targeting GSTP1 to block S-glutathionylation of optic atrophy 1. Free Radic Biol Med 2023; 204:54-67. [PMID: 37105420 DOI: 10.1016/j.freeradbiomed.2023.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
Mitochondrial dysfunction is a fundamental challenge in myocardial injury. Ginsenoside Rg1 (Rg1) is a bioactive compound with pharmacological potential for cardiac protection. Optic atrophy 1 (OPA1) acts as a mitochondrial inner membrane protein that contributes to the structural integrity and function of mitochondria. This study investigated the protective role of Rg1 in septic cardiac injury from the perspective of OPA1 stability. Rg1 protected cardiac contractive function against endotoxin injury in mice by maintaining mitochondrial cristae structure. In cardiomyocytes, lipopolysaccharide (LPS) evoked mitochondrial fragmentation and destruction of mitochondrial biogenesis, which were prevented by Rg1, possibly due to the preservation of the integrity of cristae structure. In support, the beneficial effects of Rg1 on cardioprotection and mitochondrial biogenesis were diminished by OPA1 deficiency subjected to the LPS challenge. Mechanistically, LPS stimulation triggered intracellular glutathione destabilization that promoted S-glutathionylation of OPA1 at Cys551, leading to the dissociation of OPA1-Mitofilin. Rg1 interacted with GSTP1 to inhibit its S-glutathionylation of OPA1, thereby promoting OPA1-Mitofilin interaction and protecting mitochondrial cristae structure. These findings suggest that GSTP1/OPA1 axis may be a beneficial strategy for the treatment of myocardial injury, and expand the clinical application of Rg1.
Collapse
Affiliation(s)
- Huimin Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Xiang, Nanjing, 210009, China
| | - Changyang Yan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Xiang, Nanjing, 210009, China
| | - Peng Yao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Xiang, Nanjing, 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Xiang, Nanjing, 210009, China
| | - Yi Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Xiang, Nanjing, 210009, China.
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Xiang, Nanjing, 210009, China.
| |
Collapse
|
11
|
Perazza LR, Wei G, Thompson LV. Fast and slow skeletal myosin binding protein-C and aging. GeroScience 2023; 45:915-929. [PMID: 36409445 PMCID: PMC9886727 DOI: 10.1007/s11357-022-00689-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022] Open
Abstract
Aging is associated with skeletal muscle strength decline and cardiac diastolic dysfunction. The structural arrangements of the sarcomeric proteins, such as myosin binding protein-C (MyBP-C) are shown to be pivotal in the pathogenesis of diastolic dysfunction. Yet, the role of fast (fMyBP-C) and slow (sMyBP-C) skeletal muscle MyBP-C remains to be elucidated. Herein, we aimed to characterize MyBP-C and its paralogs in the fast tibialis anterior (TA) muscle from adult and old mice. Immunoreactivity preparations showed that the relative abundance of the fMyBP-C paralog was greater in the TA of both adult and old, but no differences were noted between groups. We further found that the expression level of cardiac myosin binding protein-C (cMyBP-C), an important modulator of cardiac output, was lowered by age. Standard SDS-PAGE along with Pro-Q Diamond phosphoprotein staining did not identify age-related changes in phosphorylated MyBP-C proteins from TA and cardiac muscles; however, it revealed that MyBP-C paralogs in fast skeletal and cardiac muscle were highly phosphorylated. Mass spectrometry further identified glycogen phosphorylase, desmin, actin, troponin T, and myosin regulatory light chain 2 as phosphorylated myofilament proteins in both ages. MyBP-C protein-bound carbonyls were determined using anti-DNP immunostaining and found the carbonyl level of fMyBP-C, sMyBP-C, and cMyBP-C to be similar between old and adult animals. In summary, our data showed some differences regarding the MyBP-C paralog expression and identified an age-related reduction of cMyBP-C expression. Future studies are needed to elucidate which are the age-driven post-translational modifications in the MyBP-C paralogs.
Collapse
Affiliation(s)
- L. R. Perazza
- Department of Physical Therapy, College of Health & Rehabilitation Sciences: Sargent College, Boston University, 635 Commonwealth Ave, Boston, MA 02215 USA
| | - G. Wei
- Department of Physical Therapy, College of Health & Rehabilitation Sciences: Sargent College, Boston University, 635 Commonwealth Ave, Boston, MA 02215 USA
| | - L. V. Thompson
- Department of Physical Therapy, College of Health & Rehabilitation Sciences: Sargent College, Boston University, 635 Commonwealth Ave, Boston, MA 02215 USA
| |
Collapse
|
12
|
Pharaoh G, Kamat V, Kannan S, Stuppard RS, Whitson J, Martin-Perez M, Qian WJ, MacCoss MJ, Villen J, Rabinovitch P, Campbell MD, Sweet IR, Marcinek DJ. Elamipretide Improves ADP Sensitivity in Aged Mitochondria by Increasing Uptake through the Adenine Nucleotide Translocator (ANT). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.525989. [PMID: 36778398 PMCID: PMC9915686 DOI: 10.1101/2023.02.01.525989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aging muscle experiences functional decline in part mediated by impaired mitochondrial ADP sensitivity. Elamipretide (ELAM) rapidly improves physiological and mitochondrial function in aging and binds directly to the mitochondrial ADP transporter ANT. We hypothesized that ELAM improves ADP sensitivity in aging leading to rescued physiological function. We measured the response to ADP stimulation in young and old muscle mitochondria with ELAM treatment, in vivo heart and muscle function, and compared protein abundance, phosphorylation, and S-glutathionylation of ADP/ATP pathway proteins. ELAM treatment increased ADP sensitivity in old muscle mitochondria by increasing uptake of ADP through the ANT and rescued muscle force and heart systolic function. Protein abundance in the ADP/ATP transport and synthesis pathway was unchanged, but ELAM treatment decreased protein s-glutathionylation incuding of ANT. Mitochondrial ADP sensitivity is rapidly modifiable. This research supports the hypothesis that ELAM improves ANT function in aging and links mitochondrial ADP sensitivity to physiological function. Abstract Figure
Collapse
Affiliation(s)
- Gavin Pharaoh
- Department of Radiology, University of Washington, Seattle, Washington, 98195, USA
| | - Varun Kamat
- Department of Medicine, University of Washington, Seattle, Washington, 98195, USA
| | - Sricharan Kannan
- Department of Radiology, University of Washington, Seattle, Washington, 98195, USA
| | - Rudolph S. Stuppard
- Department of Radiology, University of Washington, Seattle, Washington, 98195, USA
| | - Jeremy Whitson
- Department of Biology, High Point University, High Point, NC, 27268, USA
| | - Miguel Martin-Perez
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, 08028, Spain
| | - Wei-Jun Qian
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Judit Villen
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Peter Rabinovitch
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Matthew D. Campbell
- Department of Radiology, University of Washington, Seattle, Washington, 98195, USA
| | - Ian R. Sweet
- Department of Medicine, University of Washington, Seattle, Washington, 98195, USA
| | - David J. Marcinek
- Department of Radiology, University of Washington, Seattle, Washington, 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| |
Collapse
|
13
|
Regulation of Mitochondrial Hydrogen Peroxide Availability by Protein S-glutathionylation. Cells 2022; 12:cells12010107. [PMID: 36611901 PMCID: PMC9818751 DOI: 10.3390/cells12010107] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND It has been four decades since protein S-glutathionylation was proposed to serve as a regulator of cell metabolism. Since then, this redox-sensitive covalent modification has been identified as a cell-wide signaling platform required for embryonic development and regulation of many physiological functions. SCOPE OF THE REVIEW Mitochondria use hydrogen peroxide (H2O2) as a second messenger, but its availability must be controlled to prevent oxidative distress and promote changes in cell behavior in response to stimuli. Experimental data favor the function of protein S-glutathionylation as a feedback loop for the inhibition of mitochondrial H2O2 production. MAJOR CONCLUSIONS The glutathione pool redox state is linked to the availability of H2O2, making glutathionylation an ideal mechanism for preventing oxidative distress whilst playing a part in desensitizing mitochondrial redox signals. GENERAL SIGNIFICANCE The biological significance of glutathionylation is rooted in redox status communication. The present review critically evaluates the experimental evidence supporting its role in negating mitochondrial H2O2 production for cell signaling and prevention of electrophilic stress.
Collapse
|
14
|
Nutrition Strategies Promoting Healthy Aging: From Improvement of Cardiovascular and Brain Health to Prevention of Age-Associated Diseases. Nutrients 2022; 15:nu15010047. [PMID: 36615705 PMCID: PMC9824801 DOI: 10.3390/nu15010047] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND An increasing number of studies suggest that diet plays an important role in regulating aging processes and modulates the development of the most important age-related diseases. OBJECTIVE The aim of this review is to provide an overview of the relationship between nutrition and critical age-associated diseases. METHODS A literature review was conducted to survey recent pre-clinical and clinical findings related to the role of nutritional factors in modulation of fundamental cellular and molecular mechanisms of aging and their role in prevention of the genesis of the diseases of aging. RESULTS Studies show that the development of cardiovascular and cerebrovascular diseases, neurodegenerative diseases, cognitive impairment and dementia can be slowed down or prevented by certain diets with anti-aging action. The protective effects of diets, at least in part, may be mediated by their beneficial macro- (protein, fat, carbohydrate) and micronutrient (vitamins, minerals) composition. CONCLUSIONS Certain diets, such as the Mediterranean diet, may play a significant role in healthy aging by preventing the onset of certain diseases and by improving the aging process itself. This latter can be strengthened by incorporating fasting elements into the diet. As dietary recommendations change with age, this should be taken into consideration as well, when developing a diet tailored to the needs of elderly individuals. Future and ongoing clinical studies on complex anti-aging dietary interventions translating the results of preclinical investigations are expected to lead to novel nutritional guidelines for older adults in the near future.
Collapse
|
15
|
Huang X, Zeng Z, Li S, Xie Y, Tong X. The Therapeutic Strategies Targeting Mitochondrial Metabolism in Cardiovascular Disease. Pharmaceutics 2022; 14:pharmaceutics14122760. [PMID: 36559254 PMCID: PMC9788260 DOI: 10.3390/pharmaceutics14122760] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) is a group of systemic disorders threatening human health with complex pathogenesis, among which mitochondrial energy metabolism reprogramming has a critical role. Mitochondria are cell organelles that fuel the energy essential for biochemical reactions and maintain normal physiological functions of the body. Mitochondrial metabolic disorders are extensively involved in the progression of CVD, especially for energy-demanding organs such as the heart. Therefore, elucidating the role of mitochondrial metabolism in the progression of CVD is of great significance to further understand the pathogenesis of CVD and explore preventive and therapeutic methods. In this review, we discuss the major factors of mitochondrial metabolism and their potential roles in the prevention and treatment of CVD. The current application of mitochondria-targeted therapeutic agents in the treatment of CVD and advances in mitochondria-targeted gene therapy technologies are also overviewed.
Collapse
Affiliation(s)
- Xiaoyang Huang
- Department of Pharmacology and Pharmacy, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Zhenhua Zeng
- Biomedical Research Center, Hunan University of Medicine, Huaihua 418000, China
| | - Siqi Li
- Department of Pharmacology and Pharmacy, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Yufei Xie
- Department of Pharmacology and Pharmacy, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoyong Tong
- Department of Pharmacology and Pharmacy, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Jinfeng Laboratory, Chongqing 401329, China
- Correspondence:
| |
Collapse
|
16
|
Campbell MD, Martín-Pérez M, Egertson JD, Gaffrey MJ, Wang L, Bammler T, Rabinovitch PS, MacCoss M, Qian WJ, Villen J, Marcinek D. Elamipretide effects on the skeletal muscle phosphoproteome in aged female mice. GeroScience 2022; 44:2913-2924. [PMID: 36322234 PMCID: PMC9768078 DOI: 10.1007/s11357-022-00679-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/20/2022] [Indexed: 12/24/2022] Open
Abstract
The age-related decline in skeletal muscle mass and function is known as sarcopenia. Sarcopenia progresses based on complex processes involving protein dynamics, cell signaling, oxidative stress, and repair. We have previously found that 8-week treatment with elamipretide improves skeletal muscle function, reverses redox stress, and restores protein S-glutathionylation changes in aged female mice. This study tested whether 8-week treatment with elamipretide also affects global phosphorylation in skeletal muscle consistent with functional improvements and S-glutathionylation. Using female 6-7-month-old mice and 28-29-month-old mice, we found that phosphorylation changes did not relate to S-glutathionylation modifications, but that treatment with elamipretide did partially reverse age-related changes in protein phosphorylation in mouse skeletal muscle.
Collapse
Affiliation(s)
- Matthew D Campbell
- Department of Radiology, University of Washington, South Lake Union Campus, 850 Republican St., Brotman D142, Box 358050, Seattle, WA, 98109, USA
| | | | - Jarrett D Egertson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Matthew J Gaffrey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Theo Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Peter S Rabinovitch
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Michael MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Judit Villen
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - David Marcinek
- Department of Radiology, University of Washington, South Lake Union Campus, 850 Republican St., Brotman D142, Box 358050, Seattle, WA, 98109, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
17
|
Wang K, Hirschenson J, Moore A, Mailloux RJ. Conditions Conducive to the Glutathionylation of Complex I Subunit NDUFS1 Augment ROS Production following the Oxidation of Ubiquinone Linked Substrates, Glycerol-3-Phosphate and Proline. Antioxidants (Basel) 2022; 11:2043. [PMID: 36290766 PMCID: PMC9598259 DOI: 10.3390/antiox11102043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 08/15/2023] Open
Abstract
Mitochondrial complex I can produce large quantities of reactive oxygen species (ROS) by reverse electron transfer (RET) from the ubiquinone (UQ) pool. Glutathionylation of complex I does induce increased mitochondrial superoxide/hydrogen peroxide (O2●-/H2O2) production, but the source of this ROS has not been identified. Here, we interrogated the glutathionylation of complex I subunit NDUFS1 and examined if its modification can result in increased ROS production during RET from the UQ pool. We also assessed glycerol-3-phosphate dehydrogenase (GPD) and proline dehydrogenase (PRODH) glutathionylation since both flavoproteins have measurable rates for ROS production as well. Induction of glutathionylation with disulfiram induced a significant increase in O2●-/H2O2 production during glycerol-3-phosphate (G3P) and proline (Pro) oxidation. Treatment of mitochondria with inhibitors for complex I (rotenone and S1QEL), complex III (myxothiazol and S3QEL), glycerol-3-phosphate dehydrogenase (iGP), and proline dehydrogenase (TFA) confirmed that the sites for this increase were complexes I and III, respectively. Treatment of liver mitochondria with disulfiram (50-1000 nM) did not induce GPD or PRODH glutathionylation, nor did it affect their activities, even though disulfiram dose-dependently increased the total number of protein glutathione mixed disulfides (PSSG). Immunocapture of complex I showed disulfiram incubations resulted in the modification of NDUFS1 subunit in complex I. Glutathionylation could be reversed by reducing agents, restoring the deglutathionylated state of NDUFS1 and the activity of the complex. Reduction of glutathionyl moieties in complex I also significantly decreased ROS production by RET from GPD and PRODH. Overall, these findings demonstrate that the modification of NDUFS1 can result in increased ROS production during RET from the UQ pool, which has implications for understanding the relationship between mitochondrial glutathionylation reactions and induction of oxidative distress in several pathologies.
Collapse
Affiliation(s)
| | | | | | - Ryan J. Mailloux
- The School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Montreal, QC H9X 3V9, Canada
| |
Collapse
|
18
|
Whitson JA, Johnson R, Wang L, Bammler TK, Imai SI, Zhang H, Fredrickson J, Latorre-Esteves E, Bitto A, MacCoss MJ, Rabinovitch PS. Age-related disruption of the proteome and acetylome in mouse hearts is associated with loss of function and attenuated by elamipretide (SS-31) and nicotinamide mononucleotide (NMN) treatment. GeroScience 2022; 44:1621-1639. [PMID: 35416576 PMCID: PMC9213586 DOI: 10.1007/s11357-022-00564-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/04/2022] [Indexed: 11/04/2022] Open
Abstract
We analyzed the effects of aging on protein abundance and acetylation, as well as the ability of the mitochondrial-targeted drugs elamipretide (SS-31) and nicotinamide mononucleotide (NMN) to reverse aging-associated changes in mouse hearts. Both drugs had a modest effect on restoring the abundance and acetylation of proteins that are altered with age, while also inducing additional changes. Age-related increases in protein acetylation were predominantly in mitochondrial pathways such as mitochondrial dysfunction, oxidative phosphorylation, and TCA cycle signaling. We further assessed how these age-related changes associated with diastolic function (Ea/Aa) and systolic function (fractional shortening under higher workload) measurements from echocardiography. These results identify a subset of protein abundance and acetylation changes in muscle, mitochondrial, and structural proteins that appear to be essential in regulating diastolic function in old hearts.
Collapse
Affiliation(s)
- Jeremy A Whitson
- Department of Biology, Davidson College, 405 N Main St, Davidson, NC, 28035, USA
| | - Richard Johnson
- Department of Genome Sciences, University of Washington, 3720 15th Street NE, Seattle, WA, 98195, USA
| | - Lu Wang
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Seattle, WA, 98105, USA
| | - Theo K Bammler
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Seattle, WA, 98105, USA
| | - Shin-Ichiro Imai
- Department of Developmental Biology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Huiliang Zhang
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR, 72205, USA
| | - Jeanne Fredrickson
- Department of Pathology, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Elena Latorre-Esteves
- Department of Pathology, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Alessandro Bitto
- Department of Pathology, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Michael J MacCoss
- Department of Pathology, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Peter S Rabinovitch
- Department of Pathology, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA.
| |
Collapse
|