1
|
Bognár Z, Szabó D, Turcsán B, Kubinyi E. The behavioural effect of short-term cognitive and physical intervention therapies in old dogs. GeroScience 2024; 46:5409-5429. [PMID: 38568435 PMCID: PMC11493909 DOI: 10.1007/s11357-024-01122-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/06/2024] [Indexed: 10/23/2024] Open
Abstract
Efforts to counteract age-related decline have resulted in the emergence of various interventions. However, everyday benefits are rarely reported in elderly people. Dogs provide an excellent model for studying aging and interventions due to their similarities to humans. Our aim was to investigate whether a combined physical and cognitive intervention (most effective in humans) could enhance the performance of pet dogs and lead to far transfer effects (improvement in not just the trained specific task). We examined the impact of three-month-long intervention therapies (cognitive, physical, combined) on the cognitive performance and behaviour of old, healthy dogs (N = 72; aged 7.68-14.54 years) using a 12-subtest behavioural test battery. We did not find the combined intervention group outperforming either the cognitive-only or physical-only therapy groups. Physical interventions, either alone or in combination, improved dogs' behavioural flexibility and social behaviour. Cognitive interventions, either alone or in combination, increased neophilia. Furthermore, all intervention therapies made dogs more engaged with their environment. Moreover, less old, around eight years old dogs, exhibited improved social behaviour, problem solving ability, and increased neophilia by their second test occasion. Additionally, dogs' performance was influenced by their health, training, daily play with the owner, and activity/excitability traits. In sum, both cognitive and physical intervention therapies can have an impact on the behaviour of old, healthy pet dogs. However, these therapies may be more effective when longer or applied at a younger age, as the healthy older dogs were less likely to show improvement.
Collapse
Affiliation(s)
- Zsófia Bognár
- MTA-ELTE Lendület Momentum Companion Animal Research Group, Budapest, 1117, Hungary.
- Department of Ethology, ELTE Eötvös Loránd University, Budapest, 1117, Hungary.
- Senior Family Dog Project, Budapest, 1117, Hungary.
| | - Dóra Szabó
- Department of Ethology, ELTE Eötvös Loránd University, Budapest, 1117, Hungary
- Senior Family Dog Project, Budapest, 1117, Hungary
| | - Borbála Turcsán
- MTA-ELTE Lendület Momentum Companion Animal Research Group, Budapest, 1117, Hungary
- Department of Ethology, ELTE Eötvös Loránd University, Budapest, 1117, Hungary
- Senior Family Dog Project, Budapest, 1117, Hungary
| | - Enikő Kubinyi
- MTA-ELTE Lendület Momentum Companion Animal Research Group, Budapest, 1117, Hungary
- Department of Ethology, ELTE Eötvös Loránd University, Budapest, 1117, Hungary
- Senior Family Dog Project, Budapest, 1117, Hungary
- ELTE NAP Canine Brain Research Group, Budapest, 1117, Hungary
| |
Collapse
|
2
|
Grzeczka A, Graczyk S, Kordowitzki P. Pleiotropic Effects of Resveratrol on Aging-Related Cardiovascular Diseases-What Can We Learn from Research in Dogs? Cells 2024; 13:1732. [PMID: 39451250 PMCID: PMC11505706 DOI: 10.3390/cells13201732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Resveratrol (RES) is a polyphenol with natural anti-inflammatory and antioxidant properties. It is found in abundance in plants, i.e., grapes and mulberry fruit. In addition, synthetic forms of RES exist. Since the discovery of its specific biological properties, RES has emerged as a candidate substance not only with modeling effects on the immune response but also as an important factor in preventing the onset and progression of cardiovascular disease (CVD). Previous research provided strong evidence of the effects of RES on platelets, mitochondria, cardiomyocytes, and vascular endothelial function. In addition, RES positively affects the coagulation system and vasodilatory function and improves blood flow. Not only in humans but also in veterinary medicine, cardiovascular diseases have one of the highest incidence rates. Canine and human species co-evolved and share recent evolutionary selection processes, and interestingly, numerous pathologies of companion dogs have a human counterpart. Knowledge of the impact of RES on the cardiovascular system of dogs is becoming clearer in the literature. Dogs have long been recognized as valuable animal models for the study of various human diseases as they share many physiological and genetic similarities with humans. In this review, we aim to shed light on the pleiotropic effects of resveratrol on cardiovascular health in dogs as a translational model for human cardiovascular diseases.
Collapse
Affiliation(s)
| | | | - Pawel Kordowitzki
- Department for Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland; (A.G.)
| |
Collapse
|
3
|
Bermingham EN, Patterson KA, Shoveller AK, Fraser K, Butowski CF, Thomas DG. Nutritional needs and health outcomes of ageing cats and dogs: is it time for updated nutrient guidelines? Anim Front 2024; 14:5-16. [PMID: 38910950 PMCID: PMC11188961 DOI: 10.1093/af/vfae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Affiliation(s)
| | - Keely A Patterson
- AgResearch, Palmerston North, New Zealand
- Massey University, Palmerston North, New Zealand
| | | | - Karl Fraser
- AgResearch, Palmerston North, New Zealand
- Riddet Institute, Palmerston North, New Zealand
| | | | | |
Collapse
|
4
|
Simon KE, Russell K, Mondino A, Yang CC, Case BC, Anderson Z, Whitley C, Griffith E, Gruen ME, Olby NJ. A randomized, controlled clinical trial demonstrates improved owner-assessed cognitive function in senior dogs receiving a senolytic and NAD+ precursor combination. Sci Rep 2024; 14:12399. [PMID: 38811634 PMCID: PMC11137034 DOI: 10.1038/s41598-024-63031-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
Age-related decline in mobility and cognition are associated with cellular senescence and NAD + depletion in dogs and people. A combination of a novel NAD + precursor and senolytic, LY-D6/2, was examined in this randomized controlled trial. Seventy dogs with mild to moderate cognitive impairment were enrolled and allocated into placebo, low or full dose groups. Primary outcomes were change in cognitive impairment measured with the owner-reported Canine Cognitive Dysfunction Rating (CCDR) scale and change in activity measured with physical activity monitors. Fifty-nine dogs completed evaluations at the 3-month primary endpoint, and 51 reached the 6-month secondary endpoint. There was a significant difference in CCDR score across treatment groups from baseline to the primary endpoint (p = 0.02) with the largest decrease in the full dose group. No difference was detected between groups using in house cognitive testing. There were no significant differences between groups in changes in measured activity. The proportion of dogs that improved in frailty and owner-reported activity levels and happiness was higher in the full dose group than other groups, however this difference was not significant. Adverse events occurred equally across groups. All groups showed improvement in cognition, frailty, and activity suggesting placebo effect and benefits of trial participation. We conclude that LY-D6/2 improves owner-assessed cognitive function over a 3-month period and may have broader, but more subtle effects on frailty, activity and happiness as reported by owners.
Collapse
Affiliation(s)
- Katherine E Simon
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Katharine Russell
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
- Southeast Veterinary Neurology, Miami, FL, USA
| | - Alejandra Mondino
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Chin-Chieh Yang
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Beth C Case
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Zachary Anderson
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Christine Whitley
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Emily Griffith
- Department of Statistics, College of Sciences, North Carolina State University, Raleigh, NC, USA
| | - Margaret E Gruen
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Natasha J Olby
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
- Comparative Medicine Institute, NC State University, Raleigh, NC, USA.
| |
Collapse
|
5
|
Hall KE, Tucker C, Dunn JA, Webb T, Watts SA, Kirkman E, Guillaumin J, Hoareau GL, Pidcoke HF. Breaking barriers in trauma research: A narrative review of opportunities to leverage veterinary trauma for accelerated translation to clinical solutions for pets and people. J Clin Transl Sci 2024; 8:e74. [PMID: 38715566 PMCID: PMC11075112 DOI: 10.1017/cts.2024.513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 08/10/2024] Open
Abstract
Trauma is a common cause of morbidity and mortality in humans and companion animals. Recent efforts in procedural development, training, quality systems, data collection, and research have positively impacted patient outcomes; however, significant unmet need still exists. Coordinated efforts by collaborative, translational, multidisciplinary teams to advance trauma care and improve outcomes have the potential to benefit both human and veterinary patient populations. Strategic use of veterinary clinical trials informed by expertise along the research spectrum (i.e., benchtop discovery, applied science and engineering, large laboratory animal models, clinical veterinary studies, and human randomized trials) can lead to increased therapeutic options for animals while accelerating and enhancing translation by providing early data to reduce the cost and the risk of failed human clinical trials. Active topics of collaboration across the translational continuum include advancements in resuscitation (including austere environments), acute traumatic coagulopathy, trauma-induced coagulopathy, traumatic brain injury, systems biology, and trauma immunology. Mechanisms to improve funding and support innovative team science approaches to current problems in trauma care can accelerate needed, sustainable, and impactful progress in the field. This review article summarizes our current understanding of veterinary and human trauma, thereby identifying knowledge gaps and opportunities for collaborative, translational research to improve multispecies outcomes. This translational trauma group of MDs, PhDs, and DVMs posit that a common understanding of injury patterns and resulting cellular dysregulation in humans and companion animals has the potential to accelerate translation of research findings into clinical solutions.
Collapse
Affiliation(s)
- Kelly E. Hall
- Department of Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Translational Trauma Research Alliance (TeTRA-Med), Fort Collins, CO, USA
| | - Claire Tucker
- Department of Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Translational Trauma Research Alliance (TeTRA-Med), Fort Collins, CO, USA
- One Health Institute, Office of the Vice President of Research and Department of Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Julie A. Dunn
- Translational Trauma Research Alliance (TeTRA-Med), Fort Collins, CO, USA
- Medical Center of the Rockies, University of Colorado Health North, Loveland, CO, USA
| | - Tracy Webb
- Department of Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Translational Trauma Research Alliance (TeTRA-Med), Fort Collins, CO, USA
| | - Sarah A. Watts
- Translational Trauma Research Alliance (TeTRA-Med), Fort Collins, CO, USA
- CBR Division, Medical and Trauma Sciences Porton Down, Salisbury, WI, UK
| | - Emrys Kirkman
- Translational Trauma Research Alliance (TeTRA-Med), Fort Collins, CO, USA
- CBR Division, Dstl Porton Down, Salisbury, WI, UK
| | - Julien Guillaumin
- Department of Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Translational Trauma Research Alliance (TeTRA-Med), Fort Collins, CO, USA
| | - Guillaume L. Hoareau
- Translational Trauma Research Alliance (TeTRA-Med), Fort Collins, CO, USA
- Emergency Medicine Department and Nora Eccles-Harrison Cardiovascular Research and Training Institute and Biomedical Engineering Department, University of Utah, Salt Lake City, UT, USA
| | - Heather F. Pidcoke
- Department of Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Translational Trauma Research Alliance (TeTRA-Med), Fort Collins, CO, USA
| |
Collapse
|
6
|
Smith JG, Krichbaum S, Montgomery L, Cox E, Katz JS. A preliminary analysis of the effect of individual differences on cognitive performance in young companion dogs. Anim Cogn 2024; 27:30. [PMID: 38557907 PMCID: PMC10984887 DOI: 10.1007/s10071-024-01868-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Many factors influence cognitive performance in dogs, including breed, temperament, rearing history, and training. Studies in working dog populations have demonstrated age-related improvements in cognitive task performance across the first years of development. However, the effect of certain factors, such as age, sex, and temperament, on cognitive performance in puppies has yet to be evaluated in a more diverse population of companion dogs. In this study, companion dogs under 12 months of age were tested once on two tasks purported to measure aspects of executive function: the delayed-search task (DST) and the detour reversal task (DRT). Owners also filled out the Canine Behavioral Assessment and Research Questionnaire (C-BARQ) to evaluate how temperament influenced task performance. Contrary to prior research, performance did not improve with age on either task. However, the lack of age effects was likely the result of small sample sizes and individual differences across other factors influencing performance. Specifically, temperament differences as measured by the C-BARQ subscales for nonsocial fear and excitability predicted task performance on the DST, but the effect of temperament on task performance differed between males and females. Excitability also predicted performance on the DRT, but the effect depended on the age of the dog. In addition, no correlations were observed between task measures, indicating a lack of construct validity. Overall, these findings provide a preliminary analysis of factors that appear to influence cognitive task performance in young companion dogs and highlight suggestions for future research evaluating the impact of individual differences on cognitive performance.
Collapse
Affiliation(s)
- Jordan G Smith
- Department of Psychological Sciences, Auburn University, Auburn, AL, USA.
- Canine Performance Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.
- Auburn University, 104 Greene Hall, Auburn, AL, 36849, USA.
| | - Sarah Krichbaum
- Canine Performance Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Lane Montgomery
- Department of Psychological Sciences, Auburn University, Auburn, AL, USA
| | - Emma Cox
- Department of Psychological Sciences, Auburn University, Auburn, AL, USA
| | - Jeffrey S Katz
- Department of Psychological Sciences, Auburn University, Auburn, AL, USA
| |
Collapse
|
7
|
Turcsán B, Kubinyi E. Differential behavioral aging trajectories according to body size, expected lifespan, and head shape in dogs. GeroScience 2024; 46:1731-1754. [PMID: 37740140 PMCID: PMC10828231 DOI: 10.1007/s11357-023-00945-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
The twofold life expectancy difference between dog breeds predicts differential behavioral and cognitive aging patterns between short- and long-lived dogs. To investigate this prediction, we conducted a cross-sectional analysis using survey data from over 15,000 dogs. We examined the effect of expected lifespan and three related factors (body size, head shape, and purebred status) on the age trajectory of various behavioral characteristics and the prevalence of canine cognitive dysfunction (CCD). Our findings reveal that, although age-related decline in most behavioral characteristics began around 10.5 years of age, the proportion of dogs considered "old" by their owners began to increase uniformly around 6 years of age. From the investigated factors, only body size had a systematic, although not gradual, impact on the aging trajectories of all behavioral characteristics. Dogs weighing over 30 kg exhibited an earlier onset of decline by 2-3 years and a slower rate of decline compared to smaller dogs, probably as a byproduct of their faster age-related physical decline. Larger sized dogs also showed a lower prevalence of CCD risk in their oldest age group, whereas smaller-sized dogs, dolichocephalic breeds, and purebreds had a higher CCD risk prevalence. The identification of differential behavioral and cognitive aging trajectories across dog groups, and the observed associations between body size and the onset, rate, and degree of cognitive decline in dogs have significant translational implications for human aging research, providing valuable insights into the interplay between morphology, physiological ageing, and cognitive decline, and unravelling the trade-off between longevity and relative healthspan.
Collapse
Affiliation(s)
- Borbála Turcsán
- MTA-ELTE Lendület "Momentum" Companion Animal Research Group, Department of Ethology, Eötvös Loránd University, Budapest, Hungary.
- Senior Family Dog Project, Department of Ethology, Eötvös Loránd University, Budapest, Hungary.
| | - Enikő Kubinyi
- MTA-ELTE Lendület "Momentum" Companion Animal Research Group, Department of Ethology, Eötvös Loránd University, Budapest, Hungary
- Senior Family Dog Project, Department of Ethology, Eötvös Loránd University, Budapest, Hungary
- ELTE NAP Canine Brain Research Group, Budapest, Hungary
| |
Collapse
|
8
|
Ebert SM, Nicolas CS, Schreiber P, Lopez JG, Taylor AT, Judge AR, Judge SM, Rasmussen BB, Talley JJ, Rème CA, Adams CM. Ursolic Acid Induces Beneficial Changes in Skeletal Muscle mRNA Expression and Increases Exercise Participation and Performance in Dogs with Age-Related Muscle Atrophy. Animals (Basel) 2024; 14:186. [PMID: 38254356 PMCID: PMC10812546 DOI: 10.3390/ani14020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/22/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Muscle atrophy and weakness are prevalent and debilitating conditions in dogs that cannot be reliably prevented or treated by current approaches. In non-canine species, the natural dietary compound ursolic acid inhibits molecular mechanisms of muscle atrophy, leading to improvements in muscle health. To begin to translate ursolic acid to canine health, we developed a novel ursolic acid dietary supplement for dogs and confirmed its safety and tolerability in dogs. We then conducted a randomized, placebo-controlled, proof-of-concept efficacy study in older beagles with age-related muscle atrophy, also known as sarcopenia. Animals received placebo or ursolic acid dietary supplements once a day for 60 days. To assess the study's primary outcome, we biopsied the quadriceps muscle and quantified atrophy-associated mRNA expression. Additionally, to determine whether the molecular effects of ursolic acid might have functional correlates consistent with improvements in muscle health, we assessed secondary outcomes of exercise participation and T-maze performance. Importantly, in canine skeletal muscle, ursolic acid inhibited numerous mRNA expression changes that are known to promote muscle atrophy and weakness. Furthermore, ursolic acid significantly improved exercise participation and T-maze performance. These findings identify ursolic acid as a natural dietary compound that inhibits molecular mechanisms of muscle atrophy and improves functional performance in dogs.
Collapse
Affiliation(s)
- Scott M. Ebert
- Emmyon, Inc., Rochester, MN 55902, USA; (S.M.E.); (A.R.J.); (S.M.J.); (J.J.T.); (C.M.A.)
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Medicine, and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Paul Schreiber
- Research & Development—Biopharmacy Department, Virbac SA, 06511 Carros, France
| | - Jaime G. Lopez
- US Petcare Innovation, Virbac NA, Westlake, TX 76262, USA
| | - Alan T. Taylor
- Innovation, Business Development, Virbac NA, Westlake, TX 76262, USA
| | - Andrew R. Judge
- Emmyon, Inc., Rochester, MN 55902, USA; (S.M.E.); (A.R.J.); (S.M.J.); (J.J.T.); (C.M.A.)
- Department of Physical Therapy and Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Sarah M. Judge
- Emmyon, Inc., Rochester, MN 55902, USA; (S.M.E.); (A.R.J.); (S.M.J.); (J.J.T.); (C.M.A.)
- Department of Physical Therapy and Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Blake B. Rasmussen
- Emmyon, Inc., Rochester, MN 55902, USA; (S.M.E.); (A.R.J.); (S.M.J.); (J.J.T.); (C.M.A.)
- Department of Biochemistry and Structural Biology and Center for Metabolic Health, University of Texas Health Science Center, San Antonio, TX 77021, USA
| | - John J. Talley
- Emmyon, Inc., Rochester, MN 55902, USA; (S.M.E.); (A.R.J.); (S.M.J.); (J.J.T.); (C.M.A.)
| | | | - Christopher M. Adams
- Emmyon, Inc., Rochester, MN 55902, USA; (S.M.E.); (A.R.J.); (S.M.J.); (J.J.T.); (C.M.A.)
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Medicine, and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
9
|
Provoost L. Cognitive Changes Associated with Aging and Physical Disease in Dogs and Cats. Vet Clin North Am Small Anim Pract 2024; 54:101-119. [PMID: 37722947 DOI: 10.1016/j.cvsm.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Behavior changes may indicate primary physical disease or primary behavioral disorders in veterinary patients. It is imperative to recognize that secondary behavioral problems can develop due to medical causes. The incidence of systemic disease increases with age and behavior manifestations can be similar to those expected with cognitive dysfunction syndrome. In this article, we review basic concepts of cognition, aging, and cognitive dysfunction syndrome. Additionally, we provide information regarding factors that influence cognition, and the role medical conditions have on the behavior of aging pets.
Collapse
Affiliation(s)
- Lena Provoost
- Clinical Sciences & Advanced Medicine, University of Pennsylvania, 3900 Delancey Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Hunter P. Learning tricks from old dogs: Dog studies shed new light on ageing and cognitive decline. EMBO Rep 2023; 24:e57706. [PMID: 37395712 PMCID: PMC10398640 DOI: 10.15252/embr.202357706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/04/2023] Open
Abstract
A variety of lifespans, faster ageing processes, and shared social spaces with humans mean studies of our canine friends hold great potential for shining light on ageing and cognitive decline.
Collapse
|
11
|
Sexton CL, Buckley C, Lieberfarb J, Subiaul F, Hecht EE, Bradley BJ. What Is Written on a Dog's Face? Evaluating the Impact of Facial Phenotypes on Communication between Humans and Canines. Animals (Basel) 2023; 13:2385. [PMID: 37508162 PMCID: PMC10376741 DOI: 10.3390/ani13142385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Facial phenotypes are significant in communication with conspecifics among social primates. Less is understood about the impact of such markers in heterospecific encounters. Through behavioral and physical phenotype analyses of domesticated dogs living in human households, this study aims to evaluate the potential impact of superficial facial markings on dogs' production of human-directed facial expressions. That is, this study explores how facial markings, such as eyebrows, patches, and widow's peaks, are related to expressivity toward humans. We used the Dog Facial Action Coding System (DogFACS) as an objective measure of expressivity, and we developed an original schematic for a standardized coding of facial patterns and coloration on a sample of more than 100 male and female dogs (N = 103), aged from 6 months to 12 years, representing eight breed groups. The present study found a statistically significant, though weak, correlation between expression rate and facial complexity, with dogs with plainer faces tending to be more expressive (r = -0.326, p ≤ 0.001). Interestingly, for adult dogs, human companions characterized dogs' rates of facial expressivity with more accuracy for dogs with plainer faces. Especially relevant to interspecies communication and cooperation, within-subject analyses revealed that dogs' muscle movements were distributed more evenly across their facial regions in a highly social test condition compared to conditions in which they received ambiguous cues from their owners. On the whole, this study provides an original evaluation of how facial features may impact communication in human-dog interactions.
Collapse
Affiliation(s)
- Courtney L Sexton
- Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC 20052, USA
| | - Colleen Buckley
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC 20052, USA
| | | | - Francys Subiaul
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC 20052, USA
- Department of Speech, Language and Hearing Sciences, The George Washington University, Washington, DC 20052, USA
| | - Erin E Hecht
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Brenda J Bradley
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
12
|
Mondino A, Khan M, Case B, Giovagnoli S, Thomson A, Lascelles BDX, Gruen M, Olby N. Activity patterns are associated with fractional lifespan, memory, and gait speed in aged dogs. Sci Rep 2023; 13:2588. [PMID: 36788306 PMCID: PMC9929073 DOI: 10.1038/s41598-023-29181-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Maintaining an active lifestyle is considered a hallmark of successful aging. Physical activity significantly reduces the risk of cognitive decline and Alzheimer's disease in humans. However, pain and lack of motivation are important barriers to exercise. Dogs are a remarkable model for translational studies in aging and cognition as they are prone to Canine Cognitive Dysfunction syndrome, which has many similarities with Alzheimer's disease. According to owner reports, changes in activity levels are characteristic of this syndrome, with decreased daytime activity, but also excessive pacing, especially at sleep time. We used physical activity monitors to record the activity of 27 senior dogs and evaluated the association between activity level and age, fractional lifespan, cognitive status measured by an owner questionnaire and cognitive tests. We also assessed the relationship between activity and joint/spinal pain, and the off/on leash gait speed ratio (a potential marker of gait speed reserve and motivation). We found that activity patterns in dogs are associated with fractional lifespan and working memory. Additionally, dogs with higher on/off leash gait speed are more active in the afternoon of weekdays. These results encourage future studies evaluating how physical activity can improve or delay cognitive impairment in senior dogs.
Collapse
Affiliation(s)
- Alejandra Mondino
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Michael Khan
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Beth Case
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Sara Giovagnoli
- Department of Psychology "Renzo Canestrari", University of Bologna, Bologna, Italy
| | - Andrea Thomson
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - B Duncan X Lascelles
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
- Translational Research in Pain, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
- Comparative Pain Research and Education Centre, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
- Thurston Arthritis Center, UNC School of Medicine, Chapel Hill, NC, USA
- Department of Anesthesiology, Center for Translational Pain Research, Duke University, Durham, NC, USA
| | - Margaret Gruen
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Natasha Olby
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|