1
|
Zheng Y, Li X, Kuang L, Wang Y. New insights into the characteristics of DRAK2 and its role in apoptosis: From molecular mechanisms to clinically applied potential. Front Pharmacol 2022; 13:1014508. [PMID: 36386181 PMCID: PMC9649744 DOI: 10.3389/fphar.2022.1014508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/12/2022] [Indexed: 11/27/2022] Open
Abstract
As a member of the death-associated protein kinase (DAPK) family, DAP kinase-associated apoptosis-inducing kinase 2 (DRAK2) performs apoptosis-related functions. Compelling evidence suggests that DRAK2 is involved in regulating the activation of T lymphocytes as well as pancreatic β-cell apoptosis in type I diabetes. In addition, DRAK2 has been shown to be involved in the development of related tumor and non-tumor diseases through a variety of mechanisms, including exacerbation of alcoholic fatty liver disease (NAFLD) through SRSF6-associated RNA selective splicing mechanism, regulation of chronic lymphocytic leukemia and acute myeloid leukemia, and progression of colorectal cancer. This review focuses on the structure, function, and upstream pathways of DRAK2 and discusses the potential and challenges associated with the clinical application of DRAK2-based small-molecule inhibitors, with the aim of advancing DRAK2 research.
Collapse
Affiliation(s)
| | | | | | - Yong Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Death-Associated Protein Kinase 1 Phosphorylation in Neuronal Cell Death and Neurodegenerative Disease. Int J Mol Sci 2019; 20:ijms20133131. [PMID: 31248062 PMCID: PMC6651373 DOI: 10.3390/ijms20133131] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
Regulated neuronal cell death plays an essential role in biological processes in normal physiology, including the development of the nervous system. However, the deregulation of neuronal apoptosis by various factors leads to neurodegenerative diseases such as ischemic stroke and Alzheimer’s disease (AD). Death-associated protein kinase 1 (DAPK1) is a calcium/calmodulin (Ca2+/CaM)-dependent serine/threonine (Ser/Thr) protein kinase that activates death signaling and regulates apoptotic neuronal cell death. Although DAPK1 is tightly regulated under physiological conditions, DAPK1 deregulation in the brain contributes to the development of neurological disorders. In this review, we describe the molecular mechanisms of DAPK1 regulation in neurons under various stresses. We also discuss the role of DAPK1 signaling in the phosphorylation-dependent and phosphorylation-independent regulation of its downstream targets in neuronal cell death. Moreover, we focus on the major impact of DAPK1 deregulation on the progression of neurodegenerative diseases and the development of drugs targeting DAPK1 for the treatment of diseases. Therefore, this review summarizes the DAPK1 phosphorylation signaling pathways in various neurodegenerative diseases.
Collapse
|
3
|
Zhou B, Liu J, Kang R, Klionsky DJ, Kroemer G, Tang D. Ferroptosis is a type of autophagy-dependent cell death. Semin Cancer Biol 2019; 66:89-100. [PMID: 30880243 DOI: 10.1016/j.semcancer.2019.03.002] [Citation(s) in RCA: 580] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 02/07/2023]
Abstract
Macroautophagy (hereafter referred to as autophagy) involves an intracellular degradation and recycling system that, in a context-dependent manner, can either promote cell survival or accelerate cellular demise. Ferroptosis was originally defined in 2012 as an iron-dependent form of cancer cell death different from apoptosis, necrosis, and autophagy. However, this latter assumption came into question because, in response to ferroptosis activators (e.g., erastin and RSL3), autophagosomes accumulate, and because components of the autophagy machinery (e.g., ATG3, ATG5, ATG4B, ATG7, ATG13, and BECN1) contribute to ferroptotic cell death. In particular, NCOA4-facilitated ferritinophagy, RAB7A-dependent lipophagy, BECN1-mediated system xc- inhibition, STAT3-induced lysosomal membrane permeabilization, and HSP90-associated chaperone-mediated autophagy can promote ferroptosis. In this review, we summarize current knowledge on the signaling pathways involved in ferroptosis, while focusing on the regulation of autophagy-dependent ferroptotic cell death. The molecular comprehension of these phenomena may lead to the development of novel anticancer therapies.
Collapse
Affiliation(s)
- Borong Zhou
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510150, China.
| | - Jiao Liu
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Guido Kroemer
- Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France; Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale, U1138, Paris, France; Université Pierre et Marie Curie, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94800 Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France; Department of Women's and Children's Health, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
4
|
Fontana R, Vivo M. Dynamics of p14ARF and Focal Adhesion Kinase-Mediated Autophagy in Cancer. Cancers (Basel) 2018; 10:cancers10070221. [PMID: 29966311 PMCID: PMC6071150 DOI: 10.3390/cancers10070221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 12/23/2022] Open
Abstract
It has been widely shown that the focal adhesion kinase (FAK) is involved in nearly every aspect of cancer, from invasion to metastasis to epithelial–mesenchymal transition and maintenance of cancer stem cells. FAK has been shown to interact with p14ARF (alternative reading frame)—a well-established tumor suppressor—and functions in the negative regulation of cancer through both p53-dependent and -independent pathways. Interestingly, both FAK and ARF (human and mouse counterpart) proteins, as well as p53, are involved in autophagy—a process of “self-digestion”—whose main function is the recycling of cellular components and quality control of proteins and organelles. In the last years, an unexpected role of p14ARF in the survival of cancer cells has been underlined in different cellular contexts, suggesting a novel pro-oncogenic function of this protein. In this review, the mechanisms whereby ARF and FAK control autophagy are presented, as well as the role of autophagy in cell migration and spreading. Integrated investigation of these cell functions is extremely important to understand the mechanism of the basis of cell transformation and migration and thus cancer development.
Collapse
Affiliation(s)
- Rosa Fontana
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy.
| | - Maria Vivo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy.
| |
Collapse
|
5
|
p14ARF interacts with the focal adhesion kinase and protects cells from anoikis. Oncogene 2017; 36:4913-4928. [PMID: 28436949 PMCID: PMC5582215 DOI: 10.1038/onc.2017.104] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 03/01/2017] [Accepted: 03/06/2017] [Indexed: 12/13/2022]
Abstract
The ARF protein functions as an important sensor of hyper-proliferative stimuli restricting cell proliferation through both p53-dependent and -independent pathways. Although to date the majority of studies on ARF have focused on its anti-proliferative role, few studies have addressed whether ARF may also have pro-survival functions. Here we show for the first time that during the process of adhesion and spreading ARF re-localizes to sites of active actin polymerization and to focal adhesion points where it interacts with the phosphorylated focal adhesion kinase. In line with its recruitment to focal adhesions, we observe that hampering ARF function in cancer cells leads to gross defects in cytoskeleton organization resulting in apoptosis through a mechanism dependent on the Death-Associated Protein Kinase. Our data uncover a novel function for p14ARF in protecting cells from anoikis that may reflect its role in anchorage independence, a hallmark of malignant tumor cells.
Collapse
|
6
|
Tian X, Shi Y, Liu N, Yan Y, Li T, Hua P, Liu B. Upregulation of DAPK contributes to homocysteine-induced endothelial apoptosis via the modulation of Bcl2/Bax and activation of caspase 3. Mol Med Rep 2016; 14:4173-4179. [PMID: 27633052 PMCID: PMC5101913 DOI: 10.3892/mmr.2016.5733] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/19/2016] [Indexed: 11/05/2022] Open
Abstract
Hyperhomocysteinemia is characterized by an abnormally high level of homocysteine (Hcy) in the blood and is associated with cardiovascular diseases such as atherosclerosis. Endothelial dysfunction may lead to the pro-atherogenic effects associated with hyperhomocysteinemia. Endothelial dysfunction induced by Hcy has been previously investigated; however, the underlying molecular mechanism remains to be fully elucidated. The present study investigated whether death-associated protein kinase (DAPK) is involved in Hcy‑induced apoptosis in human umbilical vein endothelial cells (HUVECs). It was determined that Hcy treatment upregulated the mRNA and protein expression levels of DAPK in HUVECs. Additionally, it was identified that the knockdown of DAPK using small interfering RNA may attenuate the Hcy-induced apoptosis and dissipation of mitochondrial membrane potential. DAPK inhibition may also reverse the effect of Hcy by the upregulation of B cell leukemia/lymphoma 2 (Bcl2) and poly ADP‑ribose polymerase, and the downregulation of Bcl2‑associated X protein (Bax) and of caspase 3. In conclusion, the present study demonstrated that DAPK contributed to the Hcy‑induced endothelial apoptosis via modulation of Bcl2/Bax expression levels and activation of caspase 3.
Collapse
Affiliation(s)
- Xin Tian
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yongfeng Shi
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Ning Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Youyou Yan
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Tianyi Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Peiyan Hua
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
7
|
Rennier K, Ji JY. Shear stress attenuates apoptosis due to TNFα, oxidative stress, and serum depletion via death-associated protein kinase (DAPK) expression. BMC Res Notes 2015; 8:85. [PMID: 25890206 PMCID: PMC4374420 DOI: 10.1186/s13104-015-1037-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 02/25/2015] [Indexed: 01/13/2023] Open
Abstract
Background Misdirected apoptosis in endothelial cells participates in the development of pathological conditions such as atherosclerosis. Tight regulation of apoptosis is necessary to ensure normal cell function. The rate of cell turnover is increased at sites prone to lesion development. Laminar shear stress is protective against atherosclerosis, and helps suppress apoptosis induced by cytokines, oxidative stress, and serum depletion. Current Studies have shown that the pro-apoptotic DAPK expression and function to be regulated in part by shear stress, and that shearing cells already treated with cytokine tumor necrosis factor (TNF) α significantly reduced apoptosis. We investigate further the suppression of endothelial apoptosis by shear stress with other apoptotic triggers, and the involvement of DAPK and caspase 3/7. Results We have shown that exposure to shear stress (12 dynes/cm2 for 6 hrs) suppressed endothelial apoptosis triggered by cytokine (TNFα), oxidative stress (H2O2), and serum depletion, either before or after a long term (18 hr) induction. This is correlated with a parallel decrease of DAPK expression and caspase activity compared to non-sheared cells. We found similar modulation of DAPK and apoptosis by shear stress with other pro-apoptotic signals. Changes in DAPK and caspase 3/7 are directly correlated to changes in apoptosis. Interestingly, shear stress applied to cells prior to induction with apoptosis agents resulted in a higher suppression of apoptosis and DAPK and caspase activity, compared to applying shear stress post induction. This is correlated with a higher expression and activation of DAPK in cells sheared at the end of 24-hr experiment. Also, shear stress alone also induced higher apoptosis and DAPK expression, and the effect is sustained even after 18 hrs incubation in static condition, compared to non-sheared cells. Conclusions Overall, we show that laminar shear stress inhibits various apoptosis pathways by modulating DAPK activity, as well as caspase activation, in a time-dependent manner. Shear stress could target DAPK as a converging point to exert its effects of suppressing endothelial apoptosis. The temporal shear stress stimulation of DAPK and its role in different apoptosis pathways may help identify key mechanisms of the endothelial mechanotransduction pathway.
Collapse
Affiliation(s)
- Keith Rennier
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, 723 West Michigan Street, SL-220 J, Indianapolis, IN, 46202, USA.
| | - Julie Y Ji
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, 723 West Michigan Street, SL-220 J, Indianapolis, IN, 46202, USA.
| |
Collapse
|
8
|
Celik S, Akcora D, Ozkan T, Varol N, Aydos S, Sunguroglu A. Methylation analysis of the DAPK1 gene in imatinib-resistant chronic myeloid leukemia patients. Oncol Lett 2014; 9:399-404. [PMID: 25435999 PMCID: PMC4246661 DOI: 10.3892/ol.2014.2677] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 10/20/2014] [Indexed: 12/16/2022] Open
Abstract
Death-associated protein kinase-1 (DAPK1) is a pro-apoptotic gene that induces cellular apoptosis in response to internal and external apoptotic stimulants. The silencing of DAPK1 can result in uncontrolled cell proliferation, indicating that it may have a role in tumor suppression. DAPK1 activity can be inhibited by the cytosine methylation that occurs in its promoter region. These methylation changes in the promoter region of DAPK1 have been reported in a range of solid and hematological malignancies. In the present study, DAPK1 methylation was investigated in chronic myeloid leukemia patients (n=43) using bisulfite conversion followed by methylation-specific polymerase chain reaction. The present study included a number of patients who were identified to be resistant to the common chemotherapeutic agent imatinib (STI571, Gleevec®, Glivec®), exhibiting at least one mutation in the breakpoint cluster region-Abelson murine leukemia (BCR-ABL) gene. Thus, the patients in the present study were divided into two groups according to their response to imatinib therapy: Non-resistant (n=26) and resistant (n=17) to imatinib. Resistant patients were characterized by the presence of single or multiple mutations of the BCR-ABL gene: i) T315I, ii) M351T, iii) E255K, iv) T315I and M351T or v) T315I, M351T and E255K. The present study identified that: i) The incidence of DAPK1 methylation was significantly higher in the resistant patients compared with the non-resistant patients; ii) the extent of resistance varied between mutation types; and iii) there was no DAPK1 methylation in any of the healthy controls. These findings indicate that DAPK1 methylation may be associated with a signaling pathway for imatinib resistance in chronic myeloid leukemia.
Collapse
Affiliation(s)
- Selcen Celik
- Department of Basic Biotechnology, Institute of Biotechnology, Ankara University, Golbasi, Ankara 06830, Turkey
| | - Dilara Akcora
- Department of Medical Biology, Faculty of Medicine, Ankara University, Sihhiye, Ankara 06100, Turkey ; Department of Biology, Faculty of Arts and Sciences, Mehmet Akif Ersoy University, Burdur 15100, Turkey
| | - Tulin Ozkan
- Department of Basic Biotechnology, Institute of Biotechnology, Ankara University, Golbasi, Ankara 06830, Turkey
| | - Nuray Varol
- Department of Medical Biology, Faculty of Medicine, Ankara University, Sihhiye, Ankara 06100, Turkey
| | - Sena Aydos
- Department of Medical Biology, Faculty of Medicine, Ankara University, Sihhiye, Ankara 06100, Turkey
| | - Asuman Sunguroglu
- Department of Medical Biology, Faculty of Medicine, Ankara University, Sihhiye, Ankara 06100, Turkey
| |
Collapse
|
9
|
Lei P, Xie J, Wang L, Yang X, Dai Z, Hu Y. microRNA-145 inhibits osteosarcoma cell proliferation and invasion by targeting ROCK1. Mol Med Rep 2014; 10:155-60. [PMID: 24789502 DOI: 10.3892/mmr.2014.2195] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 03/12/2014] [Indexed: 11/05/2022] Open
Abstract
Osteosarcoma (OS), a malignant mesenchymal sarcoma, is the most frequent primary bone tumor, with a peak incidence in young children and adolescents. The downregulation of microRNA‑145 (miRNA/miR‑145) has previously been identified to be associated with the aggressiveness and metastasis of OS. However, the detailed regulatory mechanism by which miR‑145 inhibits OS remains largely unknown. The present study demonstrated that miR‑145 was significantly downregulated in OS tissues and KHOS and U2OS cell lines. Rho‑associated protein kinase 1 (ROCK1), a key regulator of actin cytoskeleton reorganization, was identified as a novel target of miR‑145. Ectopic expression of miR‑145 notably suppressed the protein expression of ROCK1 without affecting its mRNA level. Furthermore, the expression of ROCK1 was significantly increased in the OS tissues and in the KHOS and U2OS cells. It was further demonstrated that the overexpression of miR‑145 downregulated KHOS and U2OS cell proliferation and invasion, which was reversed by restoration of ROCK1. To the best of our knowledge, the present study demonstrates for the first time that, as a tumor suppressor, miRNA‑145 inhibits OS cell proliferation and invasion, at least in part by directly targeting ROCK1. These results indicate that miR‑145 may be a potential candidate for the diagnosis and treatment of OS.
Collapse
Affiliation(s)
- Pengfei Lei
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Jie Xie
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Long Wang
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Xucheng Yang
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Zixun Dai
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Yihe Hu
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
10
|
Wan X, Cheng Q, Peng R, Ma Z, Chen Z, Cao Y, Jiang B. ROCK1, a novel target of miR-145, promotes glioma cell invasion. Mol Med Rep 2014; 9:1877-82. [PMID: 24573110 DOI: 10.3892/mmr.2014.1982] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 02/07/2014] [Indexed: 12/13/2022] Open
Abstract
Malignant glioma is the most common type of cancer in the central nervous system, with highly invasive characteristics. The Rho-associated protein kinase (ROCK1) has been found to act as key regulator of actin cytoskeleton reorganization, a process closely associated with cancer cell invasion. microRNA-145 (miRNA-145) has been recently shown to act as a suppressor in several types of tumor, including glioma. However, the exact regulatory mechanism by which miR-145 inhibits glioma still remains to be uncovered. In this study, we report that the miR-145 level was significantly reduced in glioma tissues and in the human glioma cell lines U87 and U251, as compared to matched adjacent and normal brain tissues. We then identified the ROCK1 gene as a novel target of miR-145. The expression of ROCK1 was markedly upregulated in glioma tissues, as well as in U87 and U251 cells. Moreover, miR-145 significantly inhibited ROCK1 protein expression in U87 cells. We further show that miR-145 transfection considerably reduced the invasive ability of U87 cells, and was accompanied by the downregulation of matrix metalloproteinase 2 and 9, an effect which could be attenuated by overexpression of ROCK1. In conclusion, the present study suggests that miR-145 can inhibit U87 glioma cell invasion, at least partially via downregulation of the RhoA/ROCK1 pathway. In conclusion, this is the first study to report that ROCK1, as a novel target of miR-145, acts as a positive regulator of glioma cell invasion. Therefore, ROCK1 may constitute a promising target for glioma treatment.
Collapse
Affiliation(s)
- Xin Wan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Renjun Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhiming Ma
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zigui Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yiqiang Cao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Bing Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
11
|
Rennier K, Ji JY. The role of death-associated protein kinase (DAPK) in endothelial apoptosis under fluid shear stress. Life Sci 2013; 93:194-200. [DOI: 10.1016/j.lfs.2013.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/30/2013] [Accepted: 06/13/2013] [Indexed: 01/13/2023]
|
12
|
Rennier K, Ji JY. Effect of shear stress and substrate on endothelial DAPK expression, caspase activity, and apoptosis. BMC Res Notes 2013; 6:10. [PMID: 23305096 PMCID: PMC3599066 DOI: 10.1186/1756-0500-6-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 01/08/2013] [Indexed: 01/23/2023] Open
Abstract
Background In the vasculature, misdirected apoptosis in endothelial cells leads to pathological conditions such as inflammation. Along with biochemical and molecular signals, the hemodynamic forces that the cells experience are also important regulators of endothelial functions such as proliferation and apoptosis. Laminar shear stress inhibits apoptosis induced by serum depletion, oxidative stress, and tumor necrosis factor α (TNFα). Death associated protein kinase (DAPK) is a positive regulator of TNFα induced apoptotic pathway. Here we investigate the effect of shear stress on DAPK in endothelial cells on glass or silicone membrane substrate. We have already shown a link between shear stress and DAPK expression and apoptosis in cells on glass. Here we transition our study to endothelial cells on non-glass substrates, such as flexible silicone membrane used for cyclic strain studies. Results We modified the classic parallel plate flow chamber to accommodate silicone membrane as substrate for cells, and validated the chamber for cell viability in shear stress experiments. We found that adding shear stress significantly suppressed TNFα induced apoptosis in cells; while shearing cells alone also increased apoptosis on either substrate. We also found that shearing cells at 12 dynes/cm2 for 6 hours resulted in increased apoptosis on both substrates. This shear-induced apoptosis correlated with increased caspase 3/7 activities and DAPK expression and activation via dephosphorylation of serine 308. Conclusion These data suggest that shear stress induced apoptosis in endothelial cells via increased DAPK expression and activation as well as caspase-3/7 activity. Most in vitro shear stress studies utilize the conventional parallel plate flow chamber where cells are cultured on glass, which is much stiffer than what cells encounter in vivo. Other mechanotransduction studies have utilized the flexible silicone membrane as substrate, for example, in cyclic stretch studies. Thus, this study bridges the gap between shear stress studies on cells plated on glass to studies on different stiffness of substrates or mechanical stimulation such as cyclic strain. We continue to explore the mechanotransduction role of DAPK in endothelial apoptosis, by using substrates of physiological stiffness for shear stress studies, and by using silicone substrate in cyclic stretch devices.
Collapse
Affiliation(s)
- Keith Rennier
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, 723 West Michigan Street, SL-220J, Indianapolis, IN 46202, USA
| | | |
Collapse
|
13
|
CCN2 inhibits lung cancer metastasis through promoting DAPK-dependent anoikis and inducing EGFR degradation. Cell Death Differ 2012; 20:443-55. [PMID: 23175185 PMCID: PMC3569983 DOI: 10.1038/cdd.2012.136] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
CCN family protein 2 (CCN2), also known as connective tissue growth factor, is a secreting protein that modulates multiple cellular events. We previously demonstrated the metastasis-suppressive effect of CCN2 in lung cancer cells. In this study, we investigate the role of CCN2 in anoikis, a form of programmed cell death that is critical in suppressing cancer metastasis. CCN2 binds to the epidermal growth factor receptor (EGFR) and triggers ubiquitination by inhibiting the formation of the β-pix/Cbl complex, resulting in the degradation of EGFR. Binding of CCN2 to EGFR suppresses the phosphorylation of c-Src and extracellular signal-regulated kinase but increases the expression of death-associated protein kinase, which leads to anoikis. Overall, our findings provide evidence validating the use of CCN2 as an anti-metastatic therapy in lung cancer patients, and prospect a potential therapeutic synergy between CCN2 and the anti-EGFR antibody for the treatment of lung cancer.
Collapse
|
14
|
Rennier K, Ji JY. Shear stress regulates expression of death-associated protein kinase in suppressing TNFα-induced endothelial apoptosis. J Cell Physiol 2012; 227:2398-411. [PMID: 21826654 DOI: 10.1002/jcp.22975] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Death associated protein kinase (DAPK) is a positive regulator in tumor necrosis factor α (TNFα)-induced apoptotic pathway, and DAPK expression is lost in cancer cells. In the vasculature, misdirected apoptosis in endothelial cells leads to pathological conditions such as inflammation and physiological shear stress is protective against apoptosis. Using bovine aortic endothelial cells, we found that DAPK expression increased, while the auto-inhibitory phosphorylation of serine 308 decreased with shear stress at 12 dynes/cm(2) for 6 h. Quantitative RT-PCR revealed a corresponding increase in DAPK mRNA [P < 0.01]. We found that after 18-h TNFα induction, shearing cells for another 6 h significantly reduced apoptosis based on TUNEL staining [P < 0.05], although cell necrosis was not affected. Under the same conditions, we observed significantly decreased overall DAPK, as well as phospho-serine 308 DAPK [P < 0.05] compared to TNFα treatment alone. Caspase-3 and -7 activities downstream of DAPK were also attenuated. Shearing cells alone resulted in enhanced apoptosis, likely due to increased DAPK activity. Our findings were further supported by DAPK siRNA, which yielded contrary results. We present conclusive evidence for the first time that shear stress of up to 6 h up-regulates DAPK expression and activation. However, in the presence of apoptotic stimuli such as TNFα, shear stress caused decrease in DAPK activity. In fact, long-term shear stress of 24 h significantly reduced overall DAPK expression. Our findings strongly support a novel role for DAPK in mediating effects of shear stress in suppressing cytokine-activated apoptosis.
Collapse
Affiliation(s)
- Keith Rennier
- Department of Biomedical Engineering, Purdue School of Engineering and Technology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202, USA
| | | |
Collapse
|
15
|
Shoval Y, Berissi H, Kimchi A, Pietrokovski S. New modularity of DAP-kinases: alternative splicing of the DRP-1 gene produces a ZIPk-like isoform. PLoS One 2011; 6:e17344. [PMID: 21408167 PMCID: PMC3050894 DOI: 10.1371/journal.pone.0017344] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 01/29/2011] [Indexed: 11/19/2022] Open
Abstract
DRP-1 and ZIPk are two members of the Death Associated Protein Ser/Thr Kinase (DAP-kinase) family, which function in different settings of cell death including autophagy. DAP kinases are very similar in their catalytic domains but differ substantially in their extra-catalytic domains. This difference is crucial for the significantly different modes of regulation and function among DAP kinases. Here we report the identification of a novel alternatively spliced kinase isoform of the DRP-1 gene, termed DRP-1β. The alternative splicing event replaces the whole extra catalytic domain of DRP-1 with a single coding exon that is closely related to the sequence of the extra catalytic domain of ZIPk. As a consequence, DRP-1β lacks the calmodulin regulatory domain of DRP-1, and instead contains a leucine zipper-like motif similar to the protein binding region of ZIPk. Several functional assays proved that this new isoform retained the biochemical and cellular properties that are common to DRP-1 and ZIPk, including myosin light chain phosphorylation, and activation of membrane blebbing and autophagy. In addition, DRP-1β also acquired binding to the ATF4 transcription factor, a feature characteristic of ZIPk but not DRP-1. Thus, a splicing event of the DRP-1 produces a ZIPk like isoform. DRP-1β is highly conserved in evolution, present in all known vertebrate DRP-1 loci. We detected the corresponding mRNA and protein in embryonic mouse brains and in human embryonic stem cells thus confirming the in vivo utilization of this isoform. The discovery of module conservation within the DAPk family members illustrates a parsimonious way to increase the functional complexity within protein families. It also provides crucial data for modeling the expansion and evolution of DAP kinase proteins within vertebrates, suggesting that DRP-1 and ZIPk most likely evolved from their ancient ancestor gene DAPk by two gene duplication events that occurred close to the emergence of vertebrates.
Collapse
Affiliation(s)
- Yishay Shoval
- Department of Molecular Biology, Weizmann Institute of Science, Rehovot,
Israel
| | - Hanna Berissi
- Department of Molecular Biology, Weizmann Institute of Science, Rehovot,
Israel
| | - Adi Kimchi
- Department of Molecular Biology, Weizmann Institute of Science, Rehovot,
Israel
- * E-mail: (AK); (SP)
| | - Shmuel Pietrokovski
- Department of Molecular Biology, Weizmann Institute of Science, Rehovot,
Israel
- * E-mail: (AK); (SP)
| |
Collapse
|
16
|
Zhang L, Nephew KP, Gallagher PJ. Regulation of death-associated protein kinase. Stabilization by HSP90 heterocomplexes. J Biol Chem 2007; 282:11795-804. [PMID: 17324930 PMCID: PMC2823631 DOI: 10.1074/jbc.m610430200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Death-associated protein kinase (DAPK) has been found associated with HSP90, and inhibition of HSP90 with 17-alkylamino-17-demethoxygeldanamycin reduced expression of DAPK. These results were extended to determine whether the degradation of DAPK in the absence of HSP90 activity is dependent on the ubiquitin-proteasome pathway. Our results show that treatment of cells with geldanamycin (GA) leads to degradation of DAPK, and this degradation is attenuated by the proteasome inhibitor, lactacystin. GA-induced DAPK degradation is also dependent on phosphorylation of DAPK at Ser(308), and the cellular levels of phospho(Ser(308))-DAPK dramatically increase in response to GA treatment. Expression of two distinct ubiquitin E3 ligases, carboxyl terminus of HSC70-interacting protein (CHIP) or DIP1/Mib1, enhanced DAPK degradation, and conversely, short interfering RNA depletion of either CHIP or DIP1/Mib1 attenuated DAPK degradation. In vitro ubiquitination assays confirmed that DAPK is targeted for ubiquitination by both CHIP and DIP. Consistent with these results, DAPK is found in two distinct immune complexes, one containing HSP90 and CHIP and a second complex containing only DIP1/Mib. Collectively, these results indicate that strict modulation of DAPK activities is critical for regulation of apoptosis and cellular homeostasis.
Collapse
Affiliation(s)
- Liguo Zhang
- Department of Cellular and Integrated Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Kenneth P. Nephew
- Department of Cellular and Integrated Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana 47405
| | - Patricia J. Gallagher
- Department of Cellular and Integrated Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|