1
|
Hypoxia Tolerant Species: The Wisdom of Nature Translated into Targets for Stroke Therapy. Int J Mol Sci 2021; 22:ijms222011131. [PMID: 34681788 PMCID: PMC8537001 DOI: 10.3390/ijms222011131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Human neurons rapidly die after ischemia and current therapies for stroke management are limited to restoration of blood flow to prevent further brain damage. Thrombolytics and mechanical thrombectomy are the available reperfusion treatments, but most of the patients remain untreated. Neuroprotective therapies focused on treating the pathogenic cascade of the disease have widely failed. However, many animal species demonstrate that neurons can survive the lack of oxygen for extended periods of time. Here, we reviewed the physiological and molecular pathways inherent to tolerant species that have been described to contribute to hypoxia tolerance. Among them, Foxo3 and Eif5A were reported to mediate anoxic survival in Drosophila and Caenorhabditis elegans, respectively, and those results were confirmed in experimental models of stroke. In humans however, the multiple mechanisms involved in brain cell death after a stroke causes translation difficulties to arise making necessary a timely and coordinated control of the pathological changes. We propose here that, if we were able to plagiarize such natural hypoxia tolerance through drugs combined in a pharmacological cocktail it would open new therapeutic opportunities for stroke and likely, for other hypoxic conditions.
Collapse
|
2
|
Wijenayake S, Storey KB. Oxidative Damage? Not a Problem! The Characterization of Humanin-like Mitochondrial Peptide in Anoxia Tolerant Freshwater Turtles. Protein J 2021; 40:87-107. [PMID: 33387248 DOI: 10.1007/s10930-020-09944-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 11/30/2022]
Abstract
Mitochondria was long thought to be an "end function" organelle that regulated the metabolic flux and apoptosis in the cell. However, with the discovery of the mitochondrial peptide (MDP) humanin (HN/MTRNR2), the cytoprotective and pro-survival applications of MDPs have taken the forefront of therapeutic and diagnostic research. However, the regulation of humanin-like MDPs in natural model systems that can tolerate lethal environmental and cytotoxic insults remains to be investigated. Red-eared sliders are champion anaerobes that can withstand three continuous months of anoxia followed by rapid bouts of oxygen reperfusion without incurring cellular damage. Freshwater turtles employ extensive physiological and biochemical strategies to combat anoxia, with metabolic rate depression and a global enhancement of antioxidant and cytoprotective pathways being the two most important contributors. The main aim of this study was to uncover and characterize the humanin-homologue in freshwater turtles as well as investigate the differential regulation of humanin in response to short and long-term oxygen deprivation. In this study we have used de novo and homology-based protein modelling to elucidate the putative structure of humanin in red-eared sliders as well as an ELISA and western immunoblotting to confirm the protein abundance in the turtle brain and six peripheral tissues during control, 5 h, and 20 h anoxia (n = 4/group). We found that a humanin-homologue (TSE-humanin) is present in red-eared sliders and it may play a cytoprotective role against oxidative damage.
Collapse
Affiliation(s)
- Sanoji Wijenayake
- Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, ON, Canada.,Department of Biological Sciences and Center for Environmental Epigenetics and Development, University of Toronto, Toronto, ON, Canada
| | - Kenneth B Storey
- Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, ON, Canada. .,Department of Chemistry, Institute of Biochemistry, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
3
|
Elbeltagy AR, Bertolini F, Fleming DS, Van Goor A, Ashwell CM, Schmidt CJ, Kugonza DR, Lamont SJ, Rothschild MF. Natural Selection Footprints Among African Chicken Breeds and Village Ecotypes. Front Genet 2019; 10:376. [PMID: 31139205 PMCID: PMC6518202 DOI: 10.3389/fgene.2019.00376] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 04/09/2019] [Indexed: 01/09/2023] Open
Abstract
Natural selection is likely a major factor in shaping genomic variation of the African indigenous rural chicken, driving the development of genetic footprints. Selection footprints are expected to be associated with adaptation to locally prevailing environmental stressors, which may include diverse factors as high altitude, disease resistance, poor nutrition, oxidative and heat stresses. To determine the existence of a selection footprint, 268 birds were randomly sampled from three indigenous ecotypes from East Africa (Rwanda and Uganda) and North Africa (Baladi), and two registered Egyptian breeds (Dandarawi and Fayoumi). Samples were genotyped using the chicken Affymetrix 600K Axiom® Array. A total of 494,332 SNPs were utilized in the downstream analysis after implementing quality control measures. The intra-population runs of homozygosity (ROH) that occurred in >50% of individuals of an ecotype or in >75% of a breed were studied. To identify inter-population differentiation due to genetic structure, FST was calculated for North- vs. East-African populations and Baladi and Fayoumi vs. Dandarawi for overlapping windows (500 kb with a step-size of 250 kb). The ROH and FST mapping detected several selective sweeps on different autosomes. Results reflected selection footprints of the environmental stresses, breed behavior, and management. Intra-population ROH of the Egyptian chickens showed selection footprints bearing genes for adaptation to heat, solar radiation, ion transport and immunity. The high-altitude-adapted East-African populations' ROH showed a selection signature with genes for angiogenesis, oxygen-heme binding and transport. The neuroglobin gene (GO:0019825 and GO:0015671) was detected on a Chromosome 5 ROH of Rwanda-Uganda ecotypes. The sodium-dependent noradrenaline transporter, SLC6A2 on a Chromosome 11 ROH in Fayoumi breed may reflect its active behavior. Inter-population FST among Egyptian populations reflected genetic mechanisms for the Fayoumi resistance to Newcastle Disease Virus (NDV), while FST between Egyptian and Rwanda-Uganda populations indicated the Secreted frizzled related protein 2, SFRP2, (GO:0009314) on Chromosome 4, that contributes to melanogenic activity and most likely enhances the Dandarawi chicken adaptation to high-intensity of solar radiation in Southern Egypt. These results enhance our understanding of the natural selection forces role in shaping genomic structure for adaptation to the stressful African conditions.
Collapse
Affiliation(s)
- Ahmed R Elbeltagy
- Department of Animal Science, Iowa State University, Ames, IA, United States.,Department of Animal Biotechnology, Animal Production Research Institute, Giza, Egypt
| | - Francesca Bertolini
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Damarius S Fleming
- Department of Animal Science, Iowa State University, Ames, IA, United States.,Virus and Prion Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Angelica Van Goor
- Department of Animal Science, Iowa State University, Ames, IA, United States.,Institute of Food Production and Sustainability, National Institute of Food and Agriculture, United States Department of Agriculture, Washington, DC, United States
| | - Chris M Ashwell
- Department of Poultry Science, North Carolina State University, Raleigh, NC, United States
| | - Carl J Schmidt
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | - Donald R Kugonza
- Department of Agricultural Production, Makerere University, Kampala, Uganda
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Max F Rothschild
- Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|
4
|
Neuroglobin overexpression plays a pivotal role in neuroprotection through mitochondrial raft-like microdomains in neuroblastoma SK-N-BE2 cells. Mol Cell Neurosci 2018; 88:167-176. [PMID: 29378245 DOI: 10.1016/j.mcn.2018.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 01/10/2018] [Accepted: 01/21/2018] [Indexed: 11/23/2022] Open
Abstract
Since stressing conditions induce a relocalization of endogenous human neuroglobin (NGB) to mitochondria, this research is aimed to evaluate the protective role of NGB overexpression against neurotoxic stimuli, through mitochondrial lipid raft-associated complexes. To this purpose, we built a neuronal model of oxidative stress by the use of human dopaminergic neuroblastoma cells, SK-N-BE2, stably overexpressing NGB by transfection and treated with 1-methyl-4-phenylpyridinium ion (MPP+). We preliminary observed the redistribution of NGB to mitochondria following MPP+ treatment. The analysis of mitochondrial raft-like microdomains revealed that, following MPP+ treatment, NGB translocated to raft fractions (Triton X-100-insoluble), where it interacts with ganglioside GD3. Interestingly, the administration of agents capable of perturbating microdomain before MPP+ treatment, significantly affected viability in SK-N-BE2-NGB cells. The overexpression of NGB was able to abrogate the mitochondrial injuries on complex IV activity or mitochondrial morphology induced by MPP+ administration. The protective action of NGB on mitochondria only takes place if the mitochondrial lipid(s) rafts-like microdomains are intact, indeed NGB fails to protect complex IV activity when purified mitochondria were treated with the lipid rafts disruptor methyl-β-cyclodextrin. Thus, our unique in vitro model of stably transfected cells overexpressing endogenous NGB allowed us to suggest that the role in neuroprotection played by NGB is reliable only through interaction with mitochondrial lipid raft-associated complexes.
Collapse
|
5
|
Fago A. Functional roles of globin proteins in hypoxia-tolerant ectothermic vertebrates. J Appl Physiol (1985) 2017; 123:926-934. [PMID: 28428250 DOI: 10.1152/japplphysiol.00104.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/28/2017] [Accepted: 04/16/2017] [Indexed: 11/22/2022] Open
Abstract
Globins are heme-containing proteins ubiquitously expressed in vertebrates, where they serve a broad range of biological functions, directly or indirectly related to the tight control of oxygen levels and its toxic products in vivo. Perhaps the most investigated of all proteins, hemoglobin and myoglobin are primarily involved in oxygen transport and storage, but also in facilitating arterial vasodilation, suppressing mitochondrial respiration, and preventing tissue oxidative damage via accessory redox enzymatic activities during hypoxia. By contrast, the more recently discovered neuroglobin and cytoglobin do not seem to function as reversible oxygen carriers and are instead involved in redox activities, although their exact biological roles remain to be clarified. In this context, hypoxia-tolerant ectotherms, such as freshwater turtles and members of the carp family that survive winter in extreme hypoxia, have proven as excellent models to appreciate the diversity of biological functions of globin proteins. Unraveling physiological roles of globin proteins in these extreme animals will clarify an important part of the adaptive mechanisms for surviving extreme fluctuations of oxygen availability that are prohibitive to mammals.
Collapse
Affiliation(s)
- Angela Fago
- Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Tekko T, Lakspere T, Allikalt A, End J, Kõlvart KR, Jagomäe T, Terasmaa A, Philips MA, Visnapuu T, Väärtnõu F, Gilbert SF, Rinken A, Vasar E, Lilleväli K. Wfs1 is expressed in dopaminoceptive regions of the amniote brain and modulates levels of D1-like receptors. PLoS One 2017; 12:e0172825. [PMID: 28267787 PMCID: PMC5436468 DOI: 10.1371/journal.pone.0172825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/10/2017] [Indexed: 11/27/2022] Open
Abstract
During amniote evolution, the construction of the forebrain has diverged across
different lineages, and accompanying the structural changes, functional
diversification of the homologous brain regions has occurred. This can be
assessed by studying the expression patterns of marker genes that are relevant
in particular functional circuits. In all vertebrates, the dopaminergic system
is responsible for the behavioral responses to environmental stimuli. Here we
show that the brain regions that receive dopaminergic input through dopamine
receptor D1 are relatively conserved, but with some important
variations between three evolutionarily distant vertebrate lines–house mouse
(Mus musculus), domestic chick (Gallus gallus
domesticus) / common quail (Coturnix coturnix) and
red-eared slider turtle (Trachemys scripta). Moreover, we find
that in almost all instances, those brain regions expressing D1-like dopamine
receptor genes also express Wfs1. Wfs1 has been studied
primarily in the pancreas, where it regulates the endoplasmic reticulum (ER)
stress response, cellular Ca2+ homeostasis, and insulin production
and secretion. Using radioligand binding assays in wild type and
Wfs1-/- mouse brains, we show that the number of
binding sites of D1-like dopamine receptors is increased in the hippocampus of
the mutant mice. We propose that the functional link between Wfs1 and D1-like
dopamine receptors is evolutionarily conserved and plays an important role in
adjusting behavioral reactions to environmental stimuli.
Collapse
Affiliation(s)
- Triin Tekko
- Department of Physiology, Institute of Biomedicine and Translational
Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University
of Tartu, Tartu, Estonia
| | - Triin Lakspere
- Department of Developmental Biology, Institute of Molecular and Cell
Biology, University of Tartu, Tartu, Estonia
| | - Anni Allikalt
- Institute of Chemistry, University of Tartu, Tartu,
Estonia
| | - Jaanus End
- Department of Developmental Biology, Institute of Molecular and Cell
Biology, University of Tartu, Tartu, Estonia
| | | | - Toomas Jagomäe
- Department of Physiology, Institute of Biomedicine and Translational
Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University
of Tartu, Tartu, Estonia
| | - Anton Terasmaa
- Department of Physiology, Institute of Biomedicine and Translational
Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University
of Tartu, Tartu, Estonia
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational
Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University
of Tartu, Tartu, Estonia
| | - Tanel Visnapuu
- Department of Physiology, Institute of Biomedicine and Translational
Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University
of Tartu, Tartu, Estonia
| | - Fred Väärtnõu
- Department of Developmental Biology, Institute of Molecular and Cell
Biology, University of Tartu, Tartu, Estonia
| | - Scott F. Gilbert
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
of America
| | - Ago Rinken
- Institute of Chemistry, University of Tartu, Tartu,
Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational
Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University
of Tartu, Tartu, Estonia
| | - Kersti Lilleväli
- Department of Physiology, Institute of Biomedicine and Translational
Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University
of Tartu, Tartu, Estonia
- * E-mail:
| |
Collapse
|
7
|
Valentin-Kahan A, García-Tejedor GB, Robello C, Trujillo-Cenóz O, Russo RE, Alvarez-Valin F. Gene Expression Profiling in the Injured Spinal Cord of Trachemys scripta elegans: An Amniote with Self-Repair Capabilities. Front Mol Neurosci 2017; 10:17. [PMID: 28223917 PMCID: PMC5293771 DOI: 10.3389/fnmol.2017.00017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/12/2017] [Indexed: 12/19/2022] Open
Abstract
Slider turtles are the only known amniotes with self-repair mechanisms of the spinal cord that lead to substantial functional recovery. Their strategic phylogenetic position makes them a relevant model to investigate the peculiar genetic programs that allow anatomical reconnection in some vertebrate groups but are absent in others. Here, we analyze the gene expression profile of the response to spinal cord injury (SCI) in the turtle Trachemys scripta elegans. We found that this response comprises more than 1000 genes affecting diverse functions: reaction to ischemic insult, extracellular matrix re-organization, cell proliferation and death, immune response, and inflammation. Genes related to synapses and cholesterol biosynthesis are down-regulated. The analysis of the evolutionary distribution of these genes shows that almost all are present in most vertebrates. Additionally, we failed to find genes that were exclusive of regenerating taxa. The comparison of expression patterns among species shows that the response to SCI in the turtle is more similar to that of mice and non-regenerative Xenopus than to Xenopus during its regenerative stage. This observation, along with the lack of conserved “regeneration genes” and the current accepted phylogenetic placement of turtles (sister group of crocodilians and birds), indicates that the ability of spinal cord self-repair of turtles does not represent the retention of an ancestral vertebrate character. Instead, our results suggest that turtles developed this capability from a non-regenerative ancestor (i.e., a lineage specific innovation) that was achieved by re-organizing gene expression patterns on an essentially non-regenerative genetic background. Among the genes activated by SCI exclusively in turtles, those related to anoxia tolerance, extracellular matrix remodeling, and axonal regrowth are good candidates to underlie functional recovery.
Collapse
Affiliation(s)
- Adrián Valentin-Kahan
- Department of Cellular and Molecular Neurophysiology, Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| | - Gabriela B García-Tejedor
- Department of Cellular and Molecular Neurophysiology, Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| | - Carlos Robello
- Molecular Biology Unit, Institut Pasteur de MontevideoMontevideo, Uruguay; Departamento de Bioquímica, Facultad de Medicina, Universidad de la RepublicaMontevideo, Uruguay
| | - Omar Trujillo-Cenóz
- Department of Cellular and Molecular Neurophysiology, Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| | - Raúl E Russo
- Department of Cellular and Molecular Neurophysiology, Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| | - Fernando Alvarez-Valin
- Sección Biomatemática, Unidad de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República Montevideo, Uruguay
| |
Collapse
|
8
|
Schwarze K, Singh A, Burmester T. The Full Globin Repertoire of Turtles Provides Insights into Vertebrate Globin Evolution and Functions. Genome Biol Evol 2015; 7:1896-913. [PMID: 26078264 PMCID: PMC4524481 DOI: 10.1093/gbe/evv114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Globins are small heme proteins that play an important role in oxygen supply, but may also have other functions. Globins offer a unique opportunity to study the functional evolution of genes and proteins. We have characterized the globin repertoire of two different turtle species: the Chinese softshell turtle (Pelodiscus sinensis) and the western painted turtle (Chrysemys picta bellii). In the genomes of both species, we have identified eight distinct globin types: hemoglobin (Hb), myoglobin, neuroglobin, cytoglobin, globin E, globin X, globin Y, and androglobin. Therefore, along with the coelacanth, turtles are so far the only known vertebrates with a full globin repertoire. This fact allows for the first time a comparative analysis of the expression of all eight globins in a single species. Phylogenetic analysis showed an early divergence of neuroglobin and globin X before the radiation of vertebrates. Among the other globins, cytoglobin diverged first, and there is a close relationship between myoglobin and globin E; the position of globin Y is not resolved. The globin E gene was selectively lost in the green anole, and the genes coding for globin X and globin Y were deleted in chicken. Quantitative real-time reverse transcription polymerase chain reaction experiments revealed that myoglobin, neuroglobin, and globin E are highly expressed with tissue-specific patterns, which are in line with their roles in the oxidative metabolism of the striated muscles, the brain, and the retina, respectively. Histochemical analyses showed high levels of globin E in the pigment epithelium of the eye. Globin E probably has a myoglobin-like role in transporting O2 across the pigment epithelium to supply in the metabolically highly active retina.
Collapse
Affiliation(s)
- Kim Schwarze
- Institute of Zoology, Department of Biology, University of Hamburg, Germany
| | - Abhilasha Singh
- Institute of Zoology, Department of Biology, University of Hamburg, Germany
| | - Thorsten Burmester
- Institute of Zoology, Department of Biology, University of Hamburg, Germany
| |
Collapse
|
9
|
Larson J, Drew KL, Folkow LP, Milton SL, Park TJ. No oxygen? No problem! Intrinsic brain tolerance to hypoxia in vertebrates. ACTA ACUST UNITED AC 2014; 217:1024-39. [PMID: 24671961 DOI: 10.1242/jeb.085381] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many vertebrates are challenged by either chronic or acute episodes of low oxygen availability in their natural environments. Brain function is especially vulnerable to the effects of hypoxia and can be irreversibly impaired by even brief periods of low oxygen supply. This review describes recent research on physiological mechanisms that have evolved in certain vertebrate species to cope with brain hypoxia. Four model systems are considered: freshwater turtles that can survive for months trapped in frozen-over lakes, arctic ground squirrels that respire at extremely low rates during winter hibernation, seals and whales that undertake breath-hold dives lasting minutes to hours, and naked mole-rats that live in crowded burrows completely underground for their entire lives. These species exhibit remarkable specializations of brain physiology that adapt them for acute or chronic episodes of hypoxia. These specializations may be reactive in nature, involving modifications to the catastrophic sequelae of oxygen deprivation that occur in non-tolerant species, or preparatory in nature, preventing the activation of those sequelae altogether. Better understanding of the mechanisms used by these hypoxia-tolerant vertebrates will increase appreciation of how nervous systems are adapted for life in specific ecological niches as well as inform advances in therapy for neurological conditions such as stroke and epilepsy.
Collapse
Affiliation(s)
- John Larson
- Psychiatric Institute, Department of Psychiatry and Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
10
|
Sullivan KJ, Biggar KK, Storey KB. Transcript expression of the freeze responsive gene fr10 in Rana sylvatica during freezing, anoxia, dehydration, and development. Mol Cell Biochem 2014; 399:17-25. [PMID: 25280399 DOI: 10.1007/s11010-014-2226-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/27/2014] [Indexed: 11/24/2022]
Abstract
Freeze tolerance is a critical winter survival strategy for the wood frog, Rana sylvatica. In response to freezing, a number of genes are upregulated to facilitate the survival response. This includes fr10, a novel freeze-responsive gene first identified in R. sylvatica. This study analyzes the transcriptional expression of fr10 in seven tissues in response to freezing, anoxia, and dehydration stress, and throughout the Gosner stages of tadpole development. Transcription of fr10 increased overall in response to 24 h of freezing, with significant increases in expression detected in testes, heart, brain, and lung when compared to control tissues. When exposed to anoxia; heart, lung, and kidney tissues experienced a significant increase, while the transcription of fr10 in response to 40% dehydration was found to significantly increase in both heart and brain tissues. An analysis of the transcription of fr10 throughout the development of the wood frog showed a relatively constant expression; with slightly lower transcription levels observed in two of the seven Gosner stages. Based on these results, it is predicted that fr10 has multiple roles depending on the needs and stresses experienced by the wood frog. It has conclusively been shown to act as a cryoprotectant, with possible additional roles in anoxia, dehydration, and development. In the future, it is hoped that further knowledge of the mechanism of action of FR10 will allow for increased stress tolerance in human cells and tissues.
Collapse
Affiliation(s)
- K J Sullivan
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | | | | |
Collapse
|
11
|
Van Doorslaer S, Trandafir F, Harmer JR, Moens L, Dewilde S. EPR analysis of cyanide complexes of wild-type human neuroglobin and mutants in comparison to horse heart myoglobin. Biophys Chem 2014; 190-191:8-16. [DOI: 10.1016/j.bpc.2014.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/21/2014] [Accepted: 03/28/2014] [Indexed: 02/05/2023]
|
12
|
Milton SL, Dawson-Scully K. Alleviating brain stress: what alternative animal models have revealed about therapeutic targets for hypoxia and anoxia. FUTURE NEUROLOGY 2013; 8:287-301. [PMID: 25264428 DOI: 10.2217/fnl.13.12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
While the mammalian brain is highly dependent on oxygen, and can withstand only a few minutes without air, there are both vertebrate and invertebrate examples of anoxia tolerance. One example is the freshwater turtle, which can withstand days without oxygen, thus providing a vertebrate model with which to examine the physiology of anoxia tolerance without the pathology seen in mammalian ischemia/reperfusion studies. Insect models such as Drosophila melanogaster have additional advantages, such as short lifespans, low cost and well-described genetics. These models of anoxia tolerance share two common themes that enable survival without oxygen: entrance into a state of deep hypometabolism, and the suppression of cellular injury during anoxia and upon restoration of oxygen. The study of such models of anoxia tolerance, adapted through millions of years of evolution, may thus suggest protective pathways that could serve as therapeutic targets for diseases characterized by oxygen deprivation and ischemic/reperfusion injuries.
Collapse
Affiliation(s)
- Sarah L Milton
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| | - Ken Dawson-Scully
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| |
Collapse
|
13
|
Van Leuven W, Cuypers B, Desmet F, Giordano D, Verde C, Moens L, Van Doorslaer S, Dewilde S. Is the heme pocket region modulated by disulfide-bridge formation in fish and amphibian neuroglobins as in humans? BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1757-63. [PMID: 23403147 DOI: 10.1016/j.bbapap.2013.01.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 01/25/2013] [Accepted: 01/29/2013] [Indexed: 12/17/2022]
Abstract
Neuroglobin, a globin characterized by a bis-histidine ligation of the heme iron, has been identified in mammalian and non-mammalian vertebrates, including fish, amphibians and reptiles. In human neuroglobin, the presence of an internal disulfide bond in the CD loop (CD7-D5) is found to modulate the ligand binding through a change in the heme pocket structure. Although the neuroglobin sequences mostly display conserved Cys at positions CD7, D5 and G18/19, a number of exceptions are known. In this study, neuroglobins from amphibian (Xenopus tropicalis) and fish (Chaenocephalus aceratus, Dissostichus mawsoni and Danio rerio) are investigated using electron paramagnetic resonance and optical absorption spectroscopy. All these neuroglobins differ from human neuroglobin in their Cys-positions. It is demonstrated that if disulfide bonds are formed in fish and amphibian neuroglobins, the reduction of these bonds does not result in alteration of the heme pocket in these globins. Furthermore, it is shown that mutagenesis of the Cys residues of X. tropicalis neuroglobin influences the protein structure. The amphibian neuroglobin is also found to be more resistant to H2O2-induced denaturation than the other neuroglobins under study, although all show an overall large stability in high concentrations of this oxidant. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
Affiliation(s)
- Wendy Van Leuven
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Giordano D, Boron I, Abbruzzetti S, Van Leuven W, Nicoletti FP, Forti F, Bruno S, Cheng CHC, Moens L, di Prisco G, Nadra AD, Estrin D, Smulevich G, Dewilde S, Viappiani C, Verde C. Biophysical characterisation of neuroglobin of the icefish, a natural knockout for hemoglobin and myoglobin. Comparison with human neuroglobin. PLoS One 2012; 7:e44508. [PMID: 23226490 PMCID: PMC3513292 DOI: 10.1371/journal.pone.0044508] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 08/03/2012] [Indexed: 11/19/2022] Open
Abstract
The Antarctic icefish Chaenocephalus aceratus lacks the globins common to most vertebrates, hemoglobin and myoglobin, but has retained neuroglobin in the brain. This conserved globin has been cloned, over-expressed and purified. To highlight similarities and differences, the structural features of the neuroglobin of this colourless-blooded fish were compared with those of the well characterised human neuroglobin as well as with the neuroglobin from the retina of the red blooded, hemoglobin and myoglobin-containing, closely related Antarctic notothenioid Dissostichus mawsoni. A detailed structural and functional analysis of the two Antarctic fish neuroglobins was carried out by UV-visible and Resonance Raman spectroscopies, molecular dynamics simulations and laser-flash photolysis. Similar to the human protein, Antarctic fish neuroglobins can reversibly bind oxygen and CO in the Fe(2+) form, and show six-coordination by distal His in the absence of exogenous ligands. A very large and structured internal cavity, with discrete docking sites, was identified in the modelled three-dimensional structures of the Antarctic neuroglobins. Estimate of the free-energy barriers from laser-flash photolysis and Implicit Ligand Sampling showed that the cavities are accessible from the solvent in both proteins.Comparison of structural and functional properties suggests that the two Antarctic fish neuroglobins most likely preserved and possibly improved the function recently proposed for human neuroglobin in ligand multichemistry. Despite subtle differences, the adaptation of Antarctic fish neuroglobins does not seem to parallel the dramatic adaptation of the oxygen carrying globins, hemoglobin and myoglobin, in the same organisms.
Collapse
Affiliation(s)
| | - Ignacio Boron
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, Argentina
| | - Stefania Abbruzzetti
- Department of Physics, University of Parma, NEST Istituto Nanoscienze-CNR, Parma, Italy
| | - Wendy Van Leuven
- Department of Biomedical Sciences, PPES, University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium
| | - Francesco P. Nicoletti
- Dipartimento di Chimica “Ugo Schiff”, Università di Firenze, Sesto Fiorentino (FI), Italy
| | - Flavio Forti
- Facultat de Farmacia, Departament de Fisicoquímica and Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
| | - Stefano Bruno
- Department of Biochemistry and Molecular Biology, University of Parma, Parma, Italy
| | - C-H. Christina Cheng
- Department of Animal Biology, University of Illinois, Urbana, Illinois, United States of America
| | - Luc Moens
- Department of Biomedical Sciences, PPES, University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium
| | | | - Alejandro D. Nadra
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Darío Estrin
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Giulietta Smulevich
- Dipartimento di Chimica “Ugo Schiff”, Università di Firenze, Sesto Fiorentino (FI), Italy
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, Bari, Italy
| | - Sylvia Dewilde
- Department of Biomedical Sciences, PPES, University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium
| | - Cristiano Viappiani
- Department of Physics, University of Parma, NEST Istituto Nanoscienze-CNR, Parma, Italy
| | - Cinzia Verde
- Institute of Protein Biochemistry, CNR, Naples, Italy
| |
Collapse
|
15
|
Bjørlykke GA, Kvamme BO, Slinde E, Raae AJ. Cloning, expression and purification of Atlantic salmon (Salmo salar, L.) neuroglobin. Protein Expr Purif 2012; 86:151-6. [DOI: 10.1016/j.pep.2012.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/31/2012] [Accepted: 09/10/2012] [Indexed: 11/30/2022]
|
16
|
Chan ASY, Saraswathy S, Rehak M, Ueki M, Rao NA. Neuroglobin protection in retinal ischemia. Invest Ophthalmol Vis Sci 2012; 53:704-11. [PMID: 22167093 DOI: 10.1167/iovs.11-7408] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Neuroglobin (Ngb) is a vertebrate globin that is predominantly expressed in the retina and brain. To explore the role of Ngb in retinal neuroprotection during ischemia reperfusion (IR), the authors examined the effect of Ngb overexpression in the retina in vivo by using Ngb-transgenic (Ngb-Tg) mice. METHODS Retinal IR was induced in Ngb overexpressing Ngb-Tg mice and wild type (WT) mice by cannulating the anterior chamber and transiently elevating the IOP for 60 minutes. After Day 7 of reperfusion, the authors evaluated Ngb mRNA and protein expression in nonischemic control as well as ischemic mice and its effect on retinal histology, mitochondrial oxidative stress, and apoptosis, using morphometry and immunohistochemistry, quantitative PCR analysis and Western blot techniques. RESULTS Ngb-Tg mice without ischemia overexpress Ngb mRNA 11.3-fold (SE ± 0.457, P < 0.05) higher than WT control mice, and this overexpression of Ngb protein was localized to the mitochondria of the ganglion cells, outer and inner plexiform layers, and photoreceptor inner segments. This overexpression of Ngb is associated with decreased mitochondrial DNA damage in Ngb-Tg mice with IR in comparison with WT. Ngb-Tg mice with IR also revealed significant preservation of retinal thickness, significantly less activated caspase 3 protein expression, and apoptosis in comparison with WT mice. CONCLUSIONS Neuroglobin overexpression plays a neuroprotective role against retinal ischemia reperfusion injury due to decreasing of mitochondrial oxidative stress-mediated apoptosis.
Collapse
Affiliation(s)
- Anita S Y Chan
- Doheny Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
17
|
Stecyk JAW, Couturier CS, Fagernes CE, Ellefsen S, Nilsson GE. Quantification of heat shock protein mRNA expression in warm and cold anoxic turtles (Trachemys scripta) using an external RNA control for normalization. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2011; 7:59-72. [PMID: 22129782 DOI: 10.1016/j.cbd.2011.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 11/07/2011] [Accepted: 11/07/2011] [Indexed: 01/30/2023]
Abstract
The mRNA expression of heat-shock protein 90 (HSP90) and heat-shock cognate 70 (HSC70) was examined in cardiac chambers and telencephalon of warm- (21°C) and cold-acclimated (5°C) turtles (Trachemys scripta) exposed to normoxia, prolonged anoxia or anoxia followed by reoxygenation. Additionally, the suitability of total RNA as well as mRNA from β-actin, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and cyclophilin A (PPIA) for normalizing gene expression data was assessed, as compared to the use of an external RNA control. Measurements of HSP90 and HSC70 mRNA expression revealed that anoxia and reoxygenation have tissue- and gene-specific effects. By and large, the alterations support previous investigations on HSP protein abundance in the anoxic turtle heart and brain, as well as the hypothesized roles of HSP90 and HSC70 during stress and non-stress conditions. However, more prominent was a substantially increased HSP90 and HSC70 mRNA expression in the cardiac chambers with cold acclimation. The finding provides support for the notion that cold temperature induces a number of adaptations in tissues of anoxia-tolerant vertebrates that precondition them for winter anoxia. β-actin, GAPDH and PPIA mRNA expression and total RNA also varied with oxygenation state and acclimation temperature in a tissue- and gene-specific manner, as well as among tissue types, thus disqualifying them as suitable for real-time RT-PCR normalization. Thus, the present data highlights the advantages of normalizing real-time RT-PCR data to an external RNA control, an approach that also allows inter-tissue and potentially inter-species comparisons of target gene expression.
Collapse
Affiliation(s)
- Jonathan A W Stecyk
- Physiology Programme, Department of Molecular Biosciences, University of Oslo, PO Box 1041, N-0316, Oslo, Norway.
| | | | | | | | | |
Collapse
|
18
|
Jayaraman T, Tejero J, Chen BB, Blood AB, Frizzell S, Shapiro C, Tiso M, Hood BL, Wang X, Zhao X, Conrads TP, Mallampalli RK, Gladwin MT. 14-3-3 binding and phosphorylation of neuroglobin during hypoxia modulate six-to-five heme pocket coordination and rate of nitrite reduction to nitric oxide. J Biol Chem 2011; 286:42679-42689. [PMID: 21965683 DOI: 10.1074/jbc.m111.271973] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuroglobin protects neurons from hypoxia in vitro and in vivo; however, the underlying mechanisms for this effect remain poorly understood. Most of the neuroglobin is present in a hexacoordinate state with proximal and distal histidines in the heme pocket directly bound to the heme iron. At equilibrium, the concentration of the five-coordinate neuroglobin remains very low (0.1-5%). Recent studies have shown that post-translational redox regulation of neuroglobin surface thiol disulfide formation increases the open probability of the heme pocket and allows nitrite binding and reaction to form NO. We hypothesized that the equilibrium between the six- and five-coordinate states and secondary reactions with nitrite to form NO could be regulated by other hypoxia-dependent post-translational modification(s). Protein sequence models identified candidate sites for both 14-3-3 binding and phosphorylation. In both in vitro experiments and human SH-SY5Y neuronal cells exposed to hypoxia and glucose deprivation, we observed that 1) neuroglobin phosphorylation and protein-protein interactions with 14-3-3 increase during hypoxic and metabolic stress; 2) neuroglobin binding to 14-3-3 stabilizes and increases the half-life of phosphorylation; and 3) phosphorylation increases the open probability of the heme pocket, which increases ligand binding (CO and nitrite) and accelerates the rate of anaerobic nitrite reduction to form NO. These data reveal a series of hypoxia-dependent post-translational modifications to neuroglobin that regulate the six-to-five heme pocket equilibrium and heme access to ligands. Hypoxia-regulated reactions of nitrite and neuroglobin may contribute to the cellular adaptation to hypoxia.
Collapse
Affiliation(s)
- Thottala Jayaraman
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213.
| | - Jesús Tejero
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Bill B Chen
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Arlin B Blood
- Division of Neonatology, Department of Pediatrics, School of Medicine, Loma Linda University, Loma Linda, California 92354
| | - Sheila Frizzell
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Calli Shapiro
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Mauro Tiso
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Brian L Hood
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Xunde Wang
- NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Xuejun Zhao
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Thomas P Conrads
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Rama K Mallampalli
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania 15240
| | - Mark T Gladwin
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213.
| |
Collapse
|
19
|
EPR investigation of the role of B10 phenylalanine in neuroglobin — Evidence that B10Phe mediates structural changes in the heme region upon disulfide-bridge formation. J Inorg Biochem 2011; 105:1131-7. [DOI: 10.1016/j.jinorgbio.2011.05.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 05/31/2011] [Accepted: 05/31/2011] [Indexed: 11/18/2022]
|
20
|
Gorr TA, Wichmann D, Pilarsky C, Theurillat JP, Fabrizius A, Laufs T, Bauer T, Koslowski M, Horn S, Burmester T, Hankeln T, Kristiansen G. Old proteins - new locations: myoglobin, haemoglobin, neuroglobin and cytoglobin in solid tumours and cancer cells. Acta Physiol (Oxf) 2011; 202:563-81. [PMID: 20958924 DOI: 10.1111/j.1748-1716.2010.02205.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM The unexpected identification of myoglobin (MB) in breast cancer prompted us to evaluate the clinico-pathological value of MB, haemoglobin (HB) and cytoglobin (CYGB) in human breast carcinoma cases. We further screened for the presence of neuroglobin (NGB) and CYGB in tumours of diverse origin, and assessed the O(2) -response of HB, MB and CYGB mRNAs in cancer cell lines, to better elicit the links between this ectopic globin expression and tumour hypoxia. METHODS Breast tumours were analysed by immunohistochemistry for HB, MB and CYGB and correlated with clinico-pathological parameters. Screening for CYGB and NGB mRNA expression in tumour entities was performed by hybridization, quantitative PCR (qPCR) and bioinformatics. Hypoxic or anoxic responses of HB, MB and CYGB mRNAs was analysed by qPCR in human Hep3B, MCF7, HeLa and RCC4 cancer cell lines. RESULTS 78.8% of breast cancer cases were positive for MB, 77.9% were positive for HB and 55.4% expressed CYGB. The closest correlation with markers of hypoxia was observed for CYGB. Compared to the weakly positive status of MB in healthy breast tissues, invasive tumours either lost or up-regulated MB. Breast carcinomas showed the tendency to silence CYGB. HB was not seen in normal tissues and up-regulated in tumours. Beyond breast malignancies, expression levels of NGB and CYGB mRNAs were extremely low in brain tumours (glioblastoma, astrocytoma). NGB was not observed in non-brain tumours. CYGB mRNA, readily detectable in breast cancer and other tumours, is down-regulated in lung adenocarcinomas. Alpha1 globin (α1 globin) and Mb were co-expressed in MCF7 and HeLa cells; CYGB transcription was anoxia-inducible in Hep3B and RCC4 cells. CONCLUSIONS This is the first time that HB and CYGB are reported in breast cancer. Neither NGB nor CYGB are systematically up-regulated in tumours. The down-regulated CYGB expression in breast and lung tumours is in line with a tumour-suppressor role. Each of the screened cancer cells expresses at least one globin (i.e. main globin species: CYGB in Hep3B; α1 globin + MB in MCF7 and HeLa). Thus, globins exist in a wide variety of solid tumours. However, the generally weak expression of the endogenous proteins in the cancer argues against a significant contribution to tumour oxygenation. Future studies should consider that cancer-expressed globins might function in ways not directly linked to the binding and transport of oxygen.
Collapse
Affiliation(s)
- T A Gorr
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Dietz GPH. Protection by neuroglobin and cell-penetrating peptide-mediated delivery in vivo: a decade of research. Comment on Cai et al: TAT-mediated delivery of neuroglobin protects against focal cerebral ischemia in mice. Exp Neurol. 2011; 227(1): 224-31. Exp Neurol 2011; 231:1-10. [PMID: 21620833 DOI: 10.1016/j.expneurol.2011.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/04/2011] [Accepted: 05/10/2011] [Indexed: 12/09/2022]
Abstract
Over the last decade, numerous studies have suggested that neuroglobin is able to protect against the effects of ischemia. However, such results have mostly been based on models using transgenic overexpression or viral delivery. As a therapy, new technology would need to be applied to enable delivery of high concentrations of neuroglobin shortly after the patient suffers the stroke. An approach to deliver proteins in ischemia in vivo in a timely manner is the use of cell-penetrating peptides (CPP). CPP have been used in animal models for brain diseases for about a decade as well. In a recent issue of Experimental Neurology, Cai and colleagues test the effect of CPP-coupled neuroglobin in an in vivo stroke model. They find that the fusion protein protects the brain against the effect of ischemia when applied before stroke onset. Here, a concise review of neuroglobin research and the application of CPP peptides in hypoxia and ischemia is provided.
Collapse
Affiliation(s)
- Gunnar P H Dietz
- Dep. 851, Neurodegeneration II, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark.
| |
Collapse
|
22
|
Hermes-Uliana C, Pereira-Severi LS, Luerdes RB, Franco CLM, da Silva AV, Araújo EJDA, Sant'Ana DDMG. Chronic infection with Toxoplasma gondii causes myenteric neuroplasticity of the jejunum in rats. Auton Neurosci 2010; 160:3-8. [PMID: 20932812 DOI: 10.1016/j.autneu.2010.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 08/31/2010] [Accepted: 09/02/2010] [Indexed: 12/26/2022]
Abstract
Toxoplasma gondii is an aetiological agent of toxoplasmosis, which commonly causes diarrhoea in a number of species. This observation and the parasite's affinity for the nervous tissue support the theory that T. gondii infection may affect the myenteric neurons. The aim of this study was to evaluate the changes caused by T. gondii (genotype III) in the myenteric neurons of the jejunum in rats. Fifteen rats were distributed into three groups: control (CG), inoculated for 30 days (G30) and inoculated for 90 days (G90). Rats from the G30 and G90 groups received an oral inoculum with 500 oocysts from a genotype III (M7741) T. gondii strain. At 180 days of age, all animals were anaesthetised and euthanised. Whole mounts were stained by using Giemsa (total population) and NADPH-diaphorase (nitrergic subpopulation) histochemistry. Maintenance of the width, length, area and neuronal density was observed; there was neuronal atrophy in the G30 group and a tendency to hypertrophy in the G90 group. Rats inoculated orally with sporulated oocysts did not show clinical illness or macroscopic or microscopic lesions, as do the majority of animal species. Therefore, infection was confirmed by a serum agglutination test; 30 days of infection caused increased weight gain and atrophy of myenteric neurons. At 90 days post-infection, weight gain became normal, and myenteric neurons hypertrophied.
Collapse
Affiliation(s)
- Catchia Hermes-Uliana
- Programa de Pós-Graduação em Ciência Animal, Universidade Paranaense, Paraná, Brazil
| | | | | | | | | | | | | |
Collapse
|
23
|
Nayak G, Prentice HM, Milton SL. Role of neuroglobin in regulating reactive oxygen species in the brain of the anoxia-tolerant turtleTrachemys scripta. J Neurochem 2009; 110:603-12. [DOI: 10.1111/j.1471-4159.2009.06157.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Abstract
SUMMARY
For a long time, haemoglobin and myoglobin had been assumed to represent the only globin types of vertebrates. In 2000, however, we discovered a third globin type by mining the genome sequence data. Based on a preferential expression in the nervous system, this globin is referred to as neuroglobin. Despite nine years of research, its function is still uncertain and a number of hypotheses have been put forward. Neuroglobin enhances cell viability under hypoxia and under various types of oxidative stress in transgenic systems, but does not appear to be strongly upregulated in response to stress. A close phylogenetic relationship with invertebrate nerve globins and its positive correlation with the oxidative metabolism and mitochondria suggest a role in O2 supply. In vitro studies and cell culture experiments imply that neuroglobin may detoxify reactive oxygen or nitric oxide. Still other studies propose neuroglobin as being part of a signalling chain that transmits the redox state of the cell or that inhibits apoptosis. Although some functions are more probable than others, we conclude that it is still too early to definitively decide what may be the physiological role(s) of neuroglobin in vertebrates. Nevertheless, there is no doubt that neuroglobin has an essential, conserved function and is beneficial to neurons.
Collapse
Affiliation(s)
- Thorsten Burmester
- Institute of Zoology and Zoological Museum, University of Hamburg,Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany
| | - Thomas Hankeln
- Institute of Molecular Genetics, Johannes Gutenberg University of Mainz, J. J. Becherweg 30a, D-55099 Mainz, Germany
| |
Collapse
|
25
|
Duong TTH, Witting PK, Antao ST, Parry SN, Kennerson M, Lai B, Vogt S, Lay PA, Harris HH. Multiple protective activities of neuroglobin in cultured neuronal cells exposed to hypoxia re-oxygenation injury. J Neurochem 2009; 108:1143-54. [PMID: 19154338 DOI: 10.1111/j.1471-4159.2008.05846.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Oxidative stress is associated with the pathology of acute and chronic neurodegenerative disease. We have cloned a human neuroglobin (Nb) construct and over-expressed this protein in cultured human neuronal cells to assess whether Nb ameliorates the cellular response to experimental hypoxia-reoxygenation (H/R) injury. Parental cells transfected with a blank (pDEST40) vector responded to H/R injury with a significant decrease in cellular ATP at 5 and 24 h after insult. This was coupled with increases in the cytosolic Ca(2+), and the transition metals iron (Fe), copper (Cu), and zinc (Zn) within the cell body, as monitored simultaneously using X-ray fluorescence microprobe imaging. Parental cell viability decreased over the same time period with a approximately 4 to 5-fold increase in cell death (maximum approximately 25%) matched by an increase in caspase 3/7 activation (peaking at a 15-fold increase after 24 h) and condensation of beta-actin along axonal processes. Over-expression of Nb inhibited ATP loss and except for significant decreases in the sulfur (S), chlorine (Cl), potassium (K) and Ca(2+) contents, maintained cellular ion homeostasis after H/R insult. This resulted in increased cell viability, significantly diminished caspase activation and maintenance of the beta-actin cytoskeletal structure and receptor-mediated endocytosis. These data indicate that bolstering the cellular content of Nb inhibits neuronal cell dysfunction promoted by H/R insult through multiple protective actions including: (i) maintenance of cellular bioenergetics; (ii) inhibition of Ca(2+) influx; (iii) a reduction in cellular uptake of Fe, Cu and Zn at the expense of S, Cl and K; and (iv) an enhancement of cell viability through inhibiting necrosis and apoptosis.
Collapse
|
26
|
Storey KB, Storey JM. Tribute to P. L. Lutz: putting life on 'pause'--molecular regulation of hypometabolism. ACTA ACUST UNITED AC 2008; 210:1700-14. [PMID: 17488933 DOI: 10.1242/jeb.02716] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Entry into a hypometabolic state is an important survival strategy for many organisms when challenged by environmental stress, including low oxygen, cold temperatures and lack of food or water. The molecular mechanisms that regulate transitions to and from hypometabolic states, and stabilize long-term viability during dormancy, are proving to be highly conserved across phylogenic lines. A number of these mechanisms were identified and explored using anoxia-tolerant turtles as the model system, particularly from the research contributions made by Dr Peter L. Lutz in his explorations of the mechanisms of neuronal suppression in anoxic brain. Here we review some recent advances in understanding the biochemical mechanisms of metabolic arrest with a focus on ideas such as the strategies used to reorganize metabolic priorities for ATP expenditure, molecular controls that suppress cell functions (e.g. ion pumping, transcription, translation, cell cycle arrest), changes in gene expression that support hypometabolism, and enhancement of defense mechanisms (e.g. antioxidants, chaperone proteins, protease inhibitors) that stabilize macromolecules and promote long-term viability in the hypometabolic state.
Collapse
Affiliation(s)
- Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada.
| | | |
Collapse
|
27
|
Pamenter ME, Shin DSH, Buck LT. AMPA receptors undergo channel arrest in the anoxic turtle cortex. Am J Physiol Regul Integr Comp Physiol 2007; 294:R606-13. [PMID: 18056983 DOI: 10.1152/ajpregu.00433.2007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Without oxygen, all mammals suffer neuronal injury and excitotoxic cell death mediated by overactivation of the glutamatergic N-methyl-D-aspartate receptor (NMDAR). The western painted turtle can survive anoxia for months, and downregulation of NMDAR activity is thought to be neuroprotective during anoxia. NMDAR activity is related to the activity of another glutamate receptor, the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR). AMPAR blockade is neuroprotective against anoxic insult in mammals, but the role of AMPARs in the turtle's anoxia tolerance has not been investigated. To determine whether AMPAR activity changes during hypoxia or anoxia in the turtle cortex, whole cell AMPAR currents, AMPAR-mediated excitatory postsynaptic potentials (EPSPs), and excitatory postsynaptic currents (EPSCs) were measured. The effect of AMPAR blockade on normoxic and anoxic NMDAR currents was also examined. During 60 min of normoxia, evoked peak AMPAR currents and the frequencies and amplitudes of EPSPs and EPSCs did not change. During anoxic perfusion, evoked AMPAR peak currents decreased 59.2 +/- 5.5 and 60.2 +/- 3.5% at 20 and 40 min, respectively. EPSP frequency (EPSP(f)) and amplitude decreased 28.7 +/- 6.4% and 13.2 +/- 1.7%, respectively, and EPSC(f) and amplitude decreased 50.7 +/- 5.1% and 51.3 +/- 4.7%, respectively. In contrast, hypoxic (Po(2) = 5%) AMPAR peak currents were potentiated 56.6 +/- 20.5 and 54.6 +/- 15.8% at 20 and 40 min, respectively. All changes were reversed by reoxygenation. AMPAR currents and EPSPs were abolished by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). In neurons pretreated with CNQX, anoxic NMDAR currents were reversibly depressed by 49.8 +/- 7.9%. These data suggest that AMPARs may undergo channel arrest in the anoxic turtle cortex.
Collapse
Affiliation(s)
- Matthew Edward Pamenter
- University of Toronto, Department of Cellular and Systems Biology, 25 Harbord Street, Toronto, Ontario, Canada
| | | | | |
Collapse
|
28
|
Chan CY, Lam WP, Wai MSM, Wang M, Foster EL, Yew DTW. Perinatal hypoxia induces anterior chamber changes in the eyes of offspring fish. J Reprod Dev 2007; 53:1159-67. [PMID: 17693701 DOI: 10.1262/jrd.19018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hypoxia is a consistent challenge for aquatic animals. It is a pressing environmental problem; hypoxia can cause cranial edema and ovarium dysfunction in fish. Although several studies have reported the effect of hypoxic insult to the visual system, the hypoxic effect on perinatal animals and in particular their offspring has yet to be elucidated. In this study, activated caspase-3 activity was investigated using immunohistochemistry in order to examine the perinatal hypoxic damage in offspring fish. Offspring were divided into groups based on different time points of sacrifice. This allowed assessment of ocular development for different age groups. The results indicated that perinatal hypoxia induced ocular developmental defects in the offspring. The defects took the form of trabecular cell death and fibre degeneration, corneal thinning and lens fibre derangement. A concomitant change in intraocular pressure was recorded by tonometer in the experimental animals compared with the controls. Further investigation should be initiated to develop strategies to prevent developmental disability due to perinatal hypoxia and to increase survivability of the offspring.
Collapse
Affiliation(s)
- Chu Yan Chan
- Department of Anatomy, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, PR China
| | | | | | | | | | | |
Collapse
|
29
|
Burmester T, Gerlach F, Hankeln T. Regulation and Role of Neuroglobin and Cytoglobin Under Hypoxia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 618:169-80. [DOI: 10.1007/978-0-387-75434-5_13] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Milton SL, Prentice HM. Beyond anoxia: the physiology of metabolic downregulation and recovery in the anoxia-tolerant turtle. Comp Biochem Physiol A Mol Integr Physiol 2006; 147:277-90. [PMID: 17049896 PMCID: PMC1975785 DOI: 10.1016/j.cbpa.2006.08.041] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 08/17/2006] [Accepted: 08/21/2006] [Indexed: 01/05/2023]
Abstract
The freshwater turtle Trachemys scripta is among the most anoxia-tolerant of vertebrates, a true facultative anaerobe able to survive without oxygen for days at room temperature to weeks or months during winter hibernation. Our good friend and colleague Peter Lutz devoted nearly 25 years to the study of the physiology of anoxia tolerance in these and other model organisms, promoting not just the basic science but also the idea that understanding the physiology and molecular mechanisms behind anoxia tolerance provides insights into critical survival pathways that may be applicable to the hypoxic/ischemic mammalian brain. Work by Peter and his colleagues focused on the factors which enable the turtle to enter a deep hypometabolic state, including decreases in ion flux ("channel arrest"), increases in inhibitory neuromodulators like adenosine and GABA, and the maintenance of low extracellular levels of excitatory compounds such as dopamine and glutamate. Our attention has recently turned to molecular mechanisms of anoxia tolerance, including the upregulation of such protective factors as heat shock proteins (Hsp72, Hsc73), the reversible downregulation of voltage gated potassium channels, and the modulation of MAP kinase pathways. In this review we discuss three phases of anoxia tolerance, including the initial metabolic downregulation over the first several hours, the long-term maintenance of neuronal function over days to weeks of anoxia, and finally recovery upon reoxygenation, with necessary defenses against reactive oxygen stress.
Collapse
Affiliation(s)
- Sarah L Milton
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA.
| | | |
Collapse
|