1
|
Schwake C, Hyon M, Chishti AH. Signal peptide peptidase: A potential therapeutic target for parasitic and viral infections. Expert Opin Ther Targets 2022; 26:261-273. [PMID: 35235480 DOI: 10.1080/14728222.2022.2047932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Signal peptide peptidase (SPP) is a GxGD-type intramembrane-cleaving aspartyl protease responsible for clearing accumulating signal peptides in the endoplasmic reticulum. SPP is conserved among all kingdoms and is essential for maintaining cell homeostasis. Inhibition of SPP with selective inhibitors and the structurally similar HIV protease inhibitors results in signal peptide accumulation and subsequent cell death. Identification of SPP homologues in major human parasitic infections has opened a new therapeutic opportunity. Moreover, the essentiality of mammalian SPP-mediated viral protein processing during infection is emerging. AREAS COVERED This review introduces the discovery and biological function of human SPP enzymes and identify parasitic homologues as pharmacological targets of both SPP and HIV protease inhibitors. Later, the role of mammalian SPP during viral infection and how disruption of host SPP can be employed as a novel antiviral therapy are examined and discussed. EXPERT OPINION Parasitic and viral infections cause severe health and economic burden, exacerbated by the lack of new therapeutics in the pipeline. SPP has been shown to be essential for malaria parasite growth and encouraging evidence in other parasites demonstrates broad essentiality of these proteases as therapeutic targets. As drug resistant parasite and viruses emerge, SPP inhibition will provide a new generation of compounds to counter the growing threat of antimicrobial resistance.
Collapse
Affiliation(s)
- Christopher Schwake
- Department of Developmental, Molecular, and Chemical Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Michael Hyon
- Department of Developmental, Molecular, and Chemical Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Athar H Chishti
- Department of Developmental, Molecular, and Chemical Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
2
|
Alzahrani N, Wu MJ, Shanmugam S, Yi M. Delayed by Design: Role of Suboptimal Signal Peptidase Processing of Viral Structural Protein Precursors in Flaviviridae Virus Assembly. Viruses 2020; 12:v12101090. [PMID: 32993149 PMCID: PMC7601889 DOI: 10.3390/v12101090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/04/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
The Flaviviridae virus family is classified into four different genera, including flavivirus, hepacivirus, pegivirus, and pestivirus, which cause significant morbidity and mortality in humans and other mammals, including ruminants and pigs. These are enveloped, single-stranded RNA viruses sharing a similar genome organization and replication scheme with certain unique features that differentiate them. All viruses in this family express a single polyprotein that encodes structural and nonstructural proteins at the N- and C-terminal regions, respectively. In general, the host signal peptidase cleaves the structural protein junction sites, while virus-encoded proteases process the nonstructural polyprotein region. It is known that signal peptidase processing is a rapid, co-translational event. Interestingly, certain signal peptidase processing site(s) in different Flaviviridae viral structural protein precursors display suboptimal cleavage kinetics. This review focuses on the recent progress regarding the Flaviviridae virus genus-specific mechanisms to downregulate signal peptidase-mediated processing at particular viral polyprotein junction sites and the role of delayed processing at these sites in infectious virus particle assembly.
Collapse
|
3
|
Dehghani B, Hashempour T, Hasanshahi Z, Moayedi J. Bioinformatics Analysis of Domain 1 of HCV-Core Protein: Iran. Int J Pept Res Ther 2019; 26:303-320. [PMID: 32435167 PMCID: PMC7223762 DOI: 10.1007/s10989-019-09838-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2019] [Indexed: 12/23/2022]
Abstract
Hepatitis C virus (HCV) infection is a serious global health problem and a cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma (HCC). Bioinformatics software has been an effective tool to study the HCV genome as well as core domains. Our research was based on employing several bioinformatics software applications to find important mutations in domain 1 of core protein in Iranian HCV infected samples from 2006 to 2017, and an investigation of general properties, B-cell and T-cell epitopes, modification sites, and structure of domain 1. Domain 1 sequences of 188 HCV samples isolated from 2006 to 2017, Iran, were retrieved from NCBI gene bank. Using several tools, all sequences were analyzed for determination of mutations, physicochemical analysis, B-cell epitopes prediction, T-cell and CTL epitopes prediction, post modification, secondary and tertiary structure prediction. Our analysis determined several mutations in some special positions (70, 90, 91, and 110) that are associated with HCC and hepatocarcinogenesis, efficacy of triple therapy and sustained virological response, and interaction between core and CCR6. Several B-cell, T-cell, and CTL epitopes were recognized. Secondary and tertiary structures were mapped fordomain1 and core proteins. Our study, as a first report, offered inclusive data about frequent mutation in HCV-core gene domain 1 in Iranian sequences that can provide helpful analysis on structure and function of domain 1 of the core gene.
Collapse
Affiliation(s)
- Behzad Dehghani
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, 71937 Iran
| | - Tayebeh Hashempour
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, 71937 Iran
| | - Zahra Hasanshahi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, 71937 Iran
| | - Javad Moayedi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, 71937 Iran
| |
Collapse
|
4
|
Sistayanarain A, Chaiwong S. Molecular characterization of hepatitis C virus genotype 6 subtypes in Thai blood donors. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 50:26-31. [DOI: 10.1016/j.jmii.2015.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 01/02/2015] [Accepted: 01/19/2015] [Indexed: 02/08/2023]
|
5
|
Yang CH, Li HC, Shiu YL, Ku TS, Wang CW, Tu YS, Chen HL, Wu CH, Lo SY. Influenza A virus upregulates PRPF8 gene expression to increase virus production. Arch Virol 2017; 162:1223-1235. [PMID: 28110426 DOI: 10.1007/s00705-016-3210-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/19/2016] [Indexed: 01/08/2023]
Abstract
A ddRT-PCR analysis was performed to detect cellular genes that are differentially expressed after influenza A virus (H1N1) infection of A549 cells. After ddRT-PCR, eight DNA fragments were identified. PRPF8, one of the cellular genes that were upregulated after virus infection, was further analyzed since it has previously been identified as a cellular factor required for influenza virus replication. The upregulation of PRPF8 gene expression after viral infection was confirmed using real-time RT-PCR for mRNA detection and Western blot analysis for protein detection. Influenza A virus also upregulated the PRPF8 promoter in a reporter assay. In addition to H1N1, influenza A virus H3N2 and influenza B virus could also activate PRPF8 expression. Therefore, upregulation of PRPF8 expression might be important for the replication of different influenza viruses. Indeed, overexpression of PRPF8 gene enhanced virus production, while knockdown of expression of this gene reduced viral production significantly. To determine which viral protein could enhance PRPF8 gene expression, individual viral genes were cloned and expressed. Among the different viral proteins, expression of either the viral NS1 or PB1 gene could upregulate the PRPF8 expression. Our results from this study indicate that influenza A virus upregulates cellular PRPF8 gene expression through viral NS1 and PB1 proteins to increase virus production.
Collapse
Affiliation(s)
- Chee-Hing Yang
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Hui-Chun Li
- Department of Biochemistry, School of Medicine, Tzu Chi University, 701, Section 3, Chung Yang Road, Hualien, Taiwan
| | - Yu-Ling Shiu
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Tzu-Shan Ku
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Chia-Wen Wang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Yi-Shuan Tu
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Hung-Ling Chen
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Cheng-Hao Wu
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Shih-Yen Lo
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan. .,Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan. .,Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan.
| |
Collapse
|
6
|
Substrate determinants of signal peptide peptidase-like 2a (SPPL2a)-mediated intramembrane proteolysis of the invariant chain CD74. Biochem J 2016; 473:1405-22. [DOI: 10.1042/bcj20160156] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/16/2016] [Indexed: 11/17/2022]
Abstract
Intramembrane proteolysis of CD74 by SPPL2a is essential for B- and dendritic cells. We show that CD74 is proteolysed in the luminal third of the transmembrane segment and identify determinants within its transmembrane and luminal membrane-proximal domain facilitating this cleavage.
Collapse
|
7
|
Chen JS, Li HC, Lin SI, Yang CH, Chien WY, Syu CL, Lo SY. Cleavage of Dicer protein by I7 protease during vaccinia virus infection. PLoS One 2015; 10:e0120390. [PMID: 25815818 PMCID: PMC4376780 DOI: 10.1371/journal.pone.0120390] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 01/21/2015] [Indexed: 11/18/2022] Open
Abstract
Dicer is the key component in the miRNA pathway. Degradation of Dicer protein is facilitated during vaccinia virus (VV) infection. A C-terminal cleaved product of Dicer protein was detected in the presence of MG132 during VV infection. Thus, it is possible that Dicer protein is cleaved by a viral protease followed by proteasome degradation of the cleaved product. There is a potential I7 protease cleavage site in the C-terminus of Dicer protein. Indeed, reduction of Dicer protein was detected when Dicer was co-expressed with I7 protease but not with an I7 protease mutant protein lack of the protease activity. Mutation of the potential I7 cleavage site in the C-terminus of Dicer protein resisted its degradation during VV infection. Furthermore, Dicer protein was reduced dramatically by recombinant VV vI7Li after the induction of I7 protease. If VV could facilitate the degradation of Dicer protein, the process of miRNA should be affected by VV infection. Indeed, accumulation of precursor miR122 was detected after VV infection or I7 protease expression. Reduction of miR122 would result in the suppression of HCV sub-genomic RNA replication, and, in turn, the amount of viral proteins. As expected, significant reduction of HCVNS5A protein was detected after VV infection and I7 protease expression. Therefore, our results suggest that VV could cleave Dicer protein through I7 protease to facilitate Dicer degradation, and in turn, suppress the processing of miRNAs. Effect of Dicer protein on VV replication was also studied. Exogenous expression of Dicer protein suppresses VV replication slightly while knockdown of Dicer protein does not affect VV replication significantly.
Collapse
Affiliation(s)
- Jhih-Si Chen
- Department of Laboratory Medicine and Medical Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Hui-Chun Li
- Department of Biochemistry, Tzu Chi University, Hualien, Taiwan
| | - Shu-I Lin
- Department of Laboratory Medicine and Medical Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Chee-Hing Yang
- Department of Laboratory Medicine and Medical Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Wan-Yu Chien
- Department of Laboratory Medicine and Medical Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Ciao-Ling Syu
- Department of Laboratory Medicine and Medical Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Shih-Yen Lo
- Department of Laboratory Medicine and Medical Biotechnology, Tzu Chi University, Hualien, Taiwan
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- * E-mail:
| |
Collapse
|
8
|
Li HC, Ma HC, Yang CH, Lo SY. Production and pathogenicity of hepatitis C virus core gene products. World J Gastroenterol 2014; 20:7104-7122. [PMID: 24966583 PMCID: PMC4064058 DOI: 10.3748/wjg.v20.i23.7104] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/05/2013] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of chronic liver diseases, including steatosis, cirrhosis and hepatocellular carcinoma, and its infection is also associated with insulin resistance and type 2 diabetes mellitus. HCV, belonging to the Flaviviridae family, is a small enveloped virus whose positive-stranded RNA genome encoding a polyprotein. The HCV core protein is cleaved first at residue 191 by the host signal peptidase and further cleaved by the host signal peptide peptidase at about residue 177 to generate the mature core protein (a.a. 1-177) and the cleaved peptide (a.a. 178-191). Core protein could induce insulin resistance, steatosis and even hepatocellular carcinoma through various mechanisms. The peptide (a.a. 178-191) may play a role in the immune response. The polymorphism of this peptide is associated with the cellular lipid drop accumulation, contributing to steatosis development. In addition to the conventional open reading frame (ORF), in the +1 frame, an ORF overlaps with the core protein-coding sequence and encodes the alternative reading frame proteins (ARFP or core+1). ARFP/core+1/F protein could enhance hepatocyte growth and may regulate iron metabolism. In this review, we briefly summarized the current knowledge regarding the production of different core gene products and their roles in viral pathogenesis.
Collapse
|
9
|
Hepatitis C virus non-structural protein 3 interacts with cytosolic 5'(3')-deoxyribonucleotidase and partially inhibits its activity. PLoS One 2013; 8:e68736. [PMID: 23874742 PMCID: PMC3706368 DOI: 10.1371/journal.pone.0068736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 06/01/2013] [Indexed: 01/17/2023] Open
Abstract
Infection with hepatitis C virus (HCV) is etiologically involved in liver cirrhosis, hepatocellular carcinoma and B-cell lymphomas. It has been demonstrated previously that HCV non-structural protein 3 (NS3) is involved in cell transformation. In this study, a yeast two-hybrid screening experiment was conducted to identify cellular proteins interacting with HCV NS3 protein. Cytosolic 5′(3′)-deoxyribonucleotidase (cdN, dNT-1) was found to interact with HCV NS3 protein. Binding domains of HCV NS3 and cellular cdN proteins were also determined using the yeast two-hybrid system. Interactions between HCV NS3 and cdN proteins were further demonstrated by co-immunoprecipitation and confocal analysis in cultured cells. The cellular cdN activity was partially repressed by NS3 protein in both the transiently-transfected and the stably-transfected systems. Furthermore, HCV partially repressed the cdN activity while had no effect on its protein expression in the systems of HCV sub-genomic replicons and infectious HCV virions. Deoxyribonucleotidases are present in most mammalian cells and involve in the regulation of intracellular deoxyribonucleotides pools by substrate cycles. Control of DNA precursor concentration is essential for the maintenance of genetic stability. Reduction of cdN activity would result in the imbalance of DNA precursor concentrations. Thus, our results suggested that HCV partially reduced the cdN activity via its NS3 protein and this may in turn cause diseases.
Collapse
|
10
|
Hu WT, Li HC, Lee SK, Ma HC, Yang CH, Chen HL, Lo SY. Both core and F proteins of hepatitis C virus could enhance cell proliferation in transgenic mice. Biochem Biophys Res Commun 2013; 435:147-52. [PMID: 23628415 DOI: 10.1016/j.bbrc.2013.04.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 04/17/2013] [Indexed: 12/27/2022]
Abstract
The role of the protein encoded by the alternative open reading frame (ARF/F/core+1) of the Hepatitis C virus (HCV) genome in viral pathogenesis remains unknown. The different forms of ARF/F/core+1 protein were labile in cultured cells, a myc-tag fused at the N-terminus of the F protein made it more stable. To determine the role of core and F proteins in HCV pathogenesis, transgenic mice with either protein expression under the control of Albumin promoter were generated. Expression of core protein and F protein with myc tag (myc-F) could be detected by Western blotting analysis in the livers of these mice. The ratio of liver to body weight is increased for both core and myc-F transgenic mice compared to that of wild type mice. Indeed, the proliferating cell nuclear antigen protein, a proliferation marker, was up-regulated in the transgenic mice with core or myc-F protein. Further analyses by microarray and Western blotting suggested that β-catenin signaling pathway was activated by either core or myc-F protein in the transgenic mice. These transgenic mice were further treated with either Diethynitrosamine (a tumor initiator) or Phenobarbital (a tumor promoter). Phenobarbital but not Diethynitrosamine treatment could increase the liver/body weight ratio of these mice. However, no tumor formation was observed in these mice. In conclusion, HCV core and myc-F proteins could induce hepatocyte proliferation in the transgenic mice possibly through β-catenin signaling pathway.
Collapse
Affiliation(s)
- Wen-Ta Hu
- Graduate Institute of Medical Biotechnology, Tzu Chi University, Hualien, Taiwan
| | | | | | | | | | | | | |
Collapse
|
11
|
Wichroski MJ, Fang J, Eggers BJ, Rose RE, Mazzucco CE, Pokornowski KA, Baldick CJ, Anthony MN, Dowling CJ, Barber LE, Leet JE, Beno BR, Gerritz SW, Agler ML, Cockett MI, Tenney DJ. High-throughput screening and rapid inhibitor triage using an infectious chimeric Hepatitis C virus. PLoS One 2012; 7:e42609. [PMID: 22880053 PMCID: PMC3412796 DOI: 10.1371/journal.pone.0042609] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 07/09/2012] [Indexed: 12/14/2022] Open
Abstract
The recent development of a Hepatitis C virus (HCV) infectious virus cell culture model system has facilitated the development of whole-virus screening assays which can be used to interrogate the entire virus life cycle. Here, we describe the development of an HCV growth assay capable of identifying inhibitors against all stages of the virus life cycle with assay throughput suitable for rapid screening of large-scale chemical libraries. Novel features include, 1) the use of an efficiently-spreading, full-length, intergenotypic chimeric reporter virus with genotype 1 structural proteins, 2) a homogenous assay format compatible with miniaturization and automated liquid-handling, and 3) flexible assay end-points using either chemiluminescence (high-throughput screening) or Cellomics ArrayScan™ technology (high-content screening). The assay was validated using known HCV antivirals and through a large-scale, high-throughput screening campaign that identified novel and selective entry, replication and late-stage inhibitors. Selection and characterization of resistant viruses provided information regarding inhibitor target and mechanism. Leveraging results from this robust whole-virus assay represents a critical first step towards identifying inhibitors of novel targets to broaden the spectrum of antivirals for the treatment of HCV.
Collapse
Affiliation(s)
- Michael J. Wichroski
- Bristol-Myers Squibb Research and Development, Wallingford, Connecticut, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Chan SC, Lo SY, Liou JW, Lin MC, Syu CL, Lai MJ, Chen YC, Li HC. Visualization of the structures of the hepatitis C virus replication complex. Biochem Biophys Res Commun 2011; 404:574-8. [DOI: 10.1016/j.bbrc.2010.12.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 12/07/2010] [Indexed: 11/27/2022]
|
13
|
Yang CH, Li HC, Jiang JG, Hsu CF, Wang YJ, Lai MJ, Juang YL, Lo SY. Enterovirus type 71 2A protease functions as a transcriptional activator in yeast. J Biomed Sci 2010; 17:65. [PMID: 20682079 PMCID: PMC2923119 DOI: 10.1186/1423-0127-17-65] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 08/04/2010] [Indexed: 12/01/2022] Open
Abstract
Enterovirus type 71 (EV71) 2A protease exhibited strong transcriptional activity in yeast cells. The transcriptional activity of 2A protease was independent of its protease activity. EV71 2A protease retained its transcriptional activity after truncation of 40 amino acids at the N-terminus but lost this activity after truncation of 60 amino acids at the N-terminus or deletion of 20 amino acids at the C-terminus. Thus, the acidic domain at the C-terminus of this protein is essential for its transcriptional activity. Indeed, deletion of amino acids from 146 to 149 (EAME) in this acidic domain lost the transcriptional activity of EV71 2A protein though still retained its protease activity. EV71 2A protease was detected both in the cytoplasm and nucleus using confocal microscopy analysis. Coxsackie virus B3 2A protease also exhibited transcriptional activity in yeast cells. As expected, an acidic domain in the C-terminus of Coxsackie virus B3 2A protease was also identified. Truncation of this acidic domain resulted in the loss of transcriptional activity. Interestingly, this acidic region of poliovirus 2A protease is critical for viral RNA replication. The transcriptional activity of the EV71 or Coxsackie virus B3 2A protease should play a role in viral replication and/or pathogenesis.
Collapse
Affiliation(s)
- Chee-Hing Yang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Pène V, Hernandez C, Vauloup-Fellous C, Garaud-Aunis J, Rosenberg AR. Sequential processing of hepatitis C virus core protein by host cell signal peptidase and signal peptide peptidase: a reassessment. J Viral Hepat 2009; 16:705-15. [PMID: 19281487 DOI: 10.1111/j.1365-2893.2009.01118.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hepatitis C virus (HCV) core protein is believed to play critical roles in the virus morphogenesis and pathogenesis. In HCV polyprotein, core protein terminates with a signal peptide followed by E1 envelope protein. It has remained unclear whether cleavage by host cell signal peptidase (SP) at the core-E1 junction to generate the complete form of core protein, which is anchored in the endoplasmic reticulum membrane, is absolutely required for cleavage within the signal peptide by host cell signal peptide peptidase (SPP) to liberate the mature form of core protein, which is then free for trafficking to lipid droplets. In this study, the possible sources of disagreement in published reports have been examined, and we conclude that a product generated upon inhibition of SP-catalysed cleavage at the core-E1 junction in heterologous expression systems was incorrectly identified as mature core protein. Moreover, inhibition of this cleavage in the most relevant model of human hepatoma cells replicating a full-length HCV genome was shown to abolish interaction of core protein with lipid droplets and production of infectious progeny virus. These results firmly establish that SPP-catalysed liberation of mature core protein is absolutely dependent on prior cleavage by SP at the correct core-E1 site to generate the complete form of core protein, consistent with this obligatory order of processing playing a role in HCV infectious cycle.
Collapse
Affiliation(s)
- V Pène
- INSERM, Equipe Avenir Virologie de l'hépatite C, Institut Cochin, Paris, France
| | | | | | | | | |
Collapse
|
15
|
Chang CW, Li HC, Hsu CF, Chang CY, Lo SY. Increased ATP generation in the host cell is required for efficient vaccinia virus production. J Biomed Sci 2009; 16:80. [PMID: 19725950 PMCID: PMC2741444 DOI: 10.1186/1423-0127-16-80] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2008] [Accepted: 09/02/2009] [Indexed: 12/17/2022] Open
Abstract
To search for cellular genes up-regulated by vaccinia virus (VV) infection, differential display-reverse transcription-polymerase chain reaction (ddRT-PCR) assays were used to examine the expression of mRNAs from mock-infected and VV-infected HeLa cells. Two mitochondrial genes for proteins that are part of the electron transport chain that generates ATP, ND4 and CO II, were up-regulated after VV infection. Up-regulation of ND4 level by VV infection was confirmed by Western blotting analysis. Up-regulation of ND4 was reduced by the MAPK inhibitor, apigenin, which has been demonstrated elsewhere to inhibit VV replication. The induction of ND4 expression occurred after viral DNA replication since ara C, an inhibitor of poxviral DNA replication, could block this induction. ATP production was increased in the host cells after VV infection. Moreover, 4.5 μM oligomycin, an inhibitor of ATP production, reduced the ATP level 13 hr after virus infection to that of mock-infected cells and inhibited viral protein expression and virus production, suggesting that increased ATP production is required for efficient VV production. Our results further suggest that induction of ND4 expression is through a Bcl-2 independent pathway.
Collapse
Affiliation(s)
- Chia-Wei Chang
- Graduate Institute of Molecular and Cellular Biology, Tzu Chi University, Hualien, Taiwan, Republic of China.
| | | | | | | | | |
Collapse
|
16
|
Expression and membrane integration of SARS-CoV E protein and its interaction with M protein. Virus Genes 2009; 38:365-71. [PMID: 19322648 PMCID: PMC7088807 DOI: 10.1007/s11262-009-0341-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2008] [Accepted: 02/17/2009] [Indexed: 01/22/2023]
Abstract
The severe acute respiratory syndrome (SARS)-CoV E gene fragment was cloned and expressed as a recombinant protein fused with a myc tag at the N-terminus in vitro and in Vero E6 cells. Similar to other N-glycosylated proteins, the glycosylation of SARS-CoV E protein occurred co-translationally in the presence of microsomes. The SARS-CoV E protein is predicted to be a double-spanning membrane protein lacking a conventional signal peptide. Both of the transmembrane regions (a.a. 11–33 and 37–59) are predicted to be α-helices, which penetrate into membranes by themselves. As expected, these two transmembrane regions inserted a cytoplasmic protein into the endoplasmic reticulum membrane. Either of these two transmembrane domains co-localized with M protein. Both the transmembrane domains of E protein are required to interact with M protein, while either of the hydrophilic regions (a.a. 1–10 or 60–76) is dispensable as shown by co-immunoprecipitation assay. These results are important for the study of SARS-CoV assembly.
Collapse
|
17
|
Golde TE, Wolfe MS, Greenbaum DC. Signal peptide peptidases: a family of intramembrane-cleaving proteases that cleave type 2 transmembrane proteins. Semin Cell Dev Biol 2009; 20:225-30. [PMID: 19429495 DOI: 10.1016/j.semcdb.2009.02.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 02/05/2009] [Accepted: 02/05/2009] [Indexed: 01/09/2023]
Abstract
Five genes encode the five human signal peptide peptidases (SPPs), which are intramembrane-cleaving aspartyl proteases (aspartyl I-CLiPs). SPPs have been conserved through evolution with family members found in higher eukaryotes, fungi, protozoa, arachea, and plants. SPPs are related to the presenilin family of aspartyl I-CLiPs but differ in several key aspects. Presenilins (PSENs) and SPPs both cleave the transmembrane region of membrane proteins; however, PSENs cleave type 1 membrane proteins whereas SPPs cleave type 2 membrane proteins. Though the overall homology between SPPs and PSENs is minimal, they are multipass membrane proteins that contain two conserved active site motifs YD and GxGD in adjacent membrane-spanning domains and a conserved PAL motif of unknown function near their COOH-termini. They differ in that the active site YD and GxGD containing transmembrane domains of SPPs are inverted relative to PSENs, thus, orienting the active site in a consistent topology relative to the substrate. At least two of the human SPPs (SPP and SPPL3) appear to function without additional cofactors, but PSENs function as a protease, called gamma-secretase, only when complexed with Nicastrin, APH-1 and Pen-2. The biological roles of SPP are largely unknown, and only a few endogenous substrates for SPPs have been identified. Nevertheless there is emerging evidence that SPP family members are highly druggable and may regulate both essential physiologic and pathophysiologic processes. Further study of the SPP family is needed in order to understand their biological roles and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Todd E Golde
- Department of Neuroscience, Mayo Clinic, College of Medicine, 4500 San Pablo Road, Jacksonville, FL 32224, United States.
| | | | | |
Collapse
|
18
|
Hsieh YC, Li HC, Chen SC, Lo SY. Interactions between M protein and other structural proteins of severe, acute respiratory syndrome-associated coronavirus. J Biomed Sci 2008; 15:707-17. [PMID: 18792806 PMCID: PMC7089546 DOI: 10.1007/s11373-008-9278-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 08/21/2008] [Indexed: 01/07/2023] Open
Abstract
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) structural proteins (S, E, M, and NC) localize in different subcellular positions when expressed individually. However, SARS-CoV M protein is co-localized almost entirely with S, E, or NC protein when co-expressed in the cells. On the other hand, only partial co-localization was observed when S and E, S and NC, or E and NC were co-expressed in the cells. Interactions between SARS-CoV M and other structural proteins but not interactions between S and E, S and NC, or E and NC were further demonstrated by co-immunoprecipitation assay. These results indicate that SARS-CoV M protein, similar to the M proteins of other coronaviruses, plays a pivotal role in virus assembly. The cytoplasmic C-terminus domain of SARS-CoV M protein was responsible for binding to NC protein. Multiple regions of M protein interacted with E and S proteins. A model for the interactions between SARS-CoV M protein and other structural proteins is proposed. This study helps us better understand protein-protein interactions during viral assembly of SARS-CoV.
Collapse
Affiliation(s)
- Yi-Ching Hsieh
- Graduate Institute of Molecular and Cellular Biology, Tzu Chi University, 701, Section 3, Chung Yang Road, Hualien, Taiwan
| | - Hui-Chun Li
- Graduate Institute of Molecular and Cellular Biology, Tzu Chi University, 701, Section 3, Chung Yang Road, Hualien, Taiwan
- Graduate Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Shih-Chi Chen
- Graduate Institute of Molecular and Cellular Biology, Tzu Chi University, 701, Section 3, Chung Yang Road, Hualien, Taiwan
| | - Shih-Yen Lo
- Graduate Institute of Molecular and Cellular Biology, Tzu Chi University, 701, Section 3, Chung Yang Road, Hualien, Taiwan
- Graduate Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
19
|
Abstract
Gamma-Secretase is a promiscuous protease that cleaves bitopic membrane proteins within the lipid bilayer. Elucidating both the mechanistic basis of gamma-secretase proteolysis and the precise factors regulating substrate identification is important because modulation of this biochemical degradative process can have important consequences in a physiological and pathophysiological context. Here, we briefly review such information for all major classes of intramembranously cleaving proteases (I-CLiPs), with an emphasis on gamma-secretase, an I-CLiP closely linked to the etiology of Alzheimer's disease. A large body of emerging data allows us to survey the substrates of gamma-secretase to ascertain the conformational features that predispose a peptide to cleavage by this enigmatic protease. Because substrate specificity in vivo is closely linked to the relative subcellular compartmentalization of gamma-secretase and its substrates, we also survey the voluminous body of literature concerning the traffic of gamma-secretase and its most prominent substrate, the amyloid precursor protein.
Collapse
Affiliation(s)
- A. J. Beel
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Rm. 5142 MRBIII, 21st Ave. S., Nashville, Tennessee 37232-8725 USA
| | - C. R. Sanders
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Rm. 5142 MRBIII, 21st Ave. S., Nashville, Tennessee 37232-8725 USA
| |
Collapse
|
20
|
The Vignette for V14N1 Issue. J Biomed Sci 2006. [DOI: 10.1007/s11373-006-9138-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|