1
|
Huang C, Zhao Q, Zhou X, Huang R, Duan Y, Haybaeck J, Yang Z. The progress of protein synthesis factors eIFs, eEFs and eRFs in inflammatory bowel disease and colorectal cancer pathogenesis. Front Oncol 2022; 12:898966. [DOI: 10.3389/fonc.2022.898966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal diseases are threatening human health, especially inflammatory bowel disease (IBD) and colorectal cancer (CRC). IBD is a group of chronic, recurrent and incurable disease, which may affect the entire gastrointestinal tract, increasing the risk of CRC. Eukaryotic gene expression is a complicated process, which is mainly regulated at the level of gene transcription and mRNA translation. Protein translation in tissue is associated with a sequence of steps, including initiation, elongation, termination and recycling. Abnormal regulation of gene expression is the key to the pathogenesis of CRC. In the early stages of cancer, it is vital to identify new diagnostic and therapeutic targets and biomarkers. This review presented current knowledge on aberrant expression of eIFs, eEFs and eRFs in colorectal diseases. The current findings of protein synthesis on colorectal pathogenesis showed that eIFs, eEFs and eRFs may be potential targets for CRC treatment.
Collapse
|
2
|
Javid H, Hashemian P, Yazdani S, Sharbaf Mashhad A, Karimi-Shahri M. The role of heat shock proteins in metastatic colorectal cancer: A review. J Cell Biochem 2022; 123:1704-1735. [PMID: 36063530 DOI: 10.1002/jcb.30326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 01/18/2023]
Abstract
Heat shock proteins (HSPs) are a large molecular chaperone family classified by their molecular weights, including HSP27, HSP40, HSP60, HSP70, HSP90, and HSP110. HSPs are likely to have antiapoptotic properties and participate actively in various processes such as tumor cell proliferation, invasion, metastases, and death. In this review, we discuss comprehensively the functions of HSPs associated with the progression of colorectal cancer (CRC) and metastasis and resistance to cancer therapy. Taken together, HSPs have numerous clinical applications as biomarkers for cancer diagnosis and prognosis and potential therapeutic targets for CRC and its related metastases.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Pedram Hashemian
- Jahad Daneshgahi Research Committee, Jahad Daneshgahi Institute, Mashhad, Iran
| | - Shaghayegh Yazdani
- Department of Medical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Laboratory Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Alireza Sharbaf Mashhad
- Department of Medical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
3
|
Asgharzadeh F, Moradi-Marjaneh R, Marjaneh MM. The role of heat shock protein 40 in carcinogenesis and biology of colorectal cancer. Curr Pharm Des 2022; 28:1457-1465. [PMID: 35570564 DOI: 10.2174/1381612828666220513124603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/31/2022] [Indexed: 11/22/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. Despite the enormous amount of effort in the diagnosis and treatment of CRC, the overall survival rate of patients remains low. The precise molecular and cellular basis underlying CRC has not been completely understood yet. Over time, new genes and molecular pathways involved in the pathogenesis of the disease are being identified. Accurate discovery of these genes and signaling pathways are important and urgent missions for the next generation of anticancer therapy research. Chaperone DnaJ, also known as Hsp40 (heat shock protein 40), has been of particular interest in CRC pathogenesis, as it is involved in the fundamental cell activities for maintaining cellular homeostasis. Evidence show that protein family members of DnaJ/Hsp40 play both roles; enhancing and reducing the growth of CRC cells. In the present review, we focus on the current knowledge on the molecular mechanisms responsible for the role of DnaJ/Hsp40 in CRC carcinogenesis and biology.
Collapse
Affiliation(s)
- Fereshteh Asgharzadeh
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhaneh Moradi-Marjaneh
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mahdi Moradi Marjaneh
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
4
|
Guerrero S, López-Cortés A, Indacochea A, García-Cárdenas JM, Zambrano AK, Cabrera-Andrade A, Guevara-Ramírez P, González DA, Leone PE, Paz-Y-Miño C. Analysis of Racial/Ethnic Representation in Select Basic and Applied Cancer Research Studies. Sci Rep 2018; 8:13978. [PMID: 30228363 PMCID: PMC6143551 DOI: 10.1038/s41598-018-32264-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/26/2018] [Indexed: 12/15/2022] Open
Abstract
Over the past decades, consistent studies have shown that race/ethnicity have a great impact on cancer incidence, survival, drug response, molecular pathways and epigenetics. Despite the influence of race/ethnicity in cancer outcomes and its impact in health care quality, a comprehensive understanding of racial/ethnic inclusion in oncological research has never been addressed. We therefore explored the racial/ethnic composition of samples/individuals included in fundamental (patient-derived oncological models, biobanks and genomics) and applied cancer research studies (clinical trials). Regarding patient-derived oncological models (n = 794), 48.3% have no records on their donor's race/ethnicity, the rest were isolated from White (37.5%), Asian (10%), African American (3.8%) and Hispanic (0.4%) donors. Biobanks (n = 8,293) hold specimens from unknown (24.56%), White (59.03%), African American (11.05%), Asian (4.12%) and other individuals (1.24%). Genomic projects (n = 6,765,447) include samples from unknown (0.6%), White (91.1%), Asian (5.6%), African American (1.7%), Hispanic (0.5%) and other populations (0.5%). Concerning clinical trials (n = 89,212), no racial/ethnic registries were found in 66.95% of participants, and records were mainly obtained from Whites (25.94%), Asians (4.97%), African Americans (1.08%), Hispanics (0.16%) and other minorities (0.9%). Thus, two tendencies were observed across oncological studies: lack of racial/ethnic information and overrepresentation of Caucasian/White samples/individuals. These results clearly indicate a need to diversify oncological studies to other populations along with novel strategies to enhanced race/ethnicity data recording and reporting.
Collapse
Affiliation(s)
- Santiago Guerrero
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Av. Mariscal Sucre and Mariana de Jesús, Block I, 2nd floor, 170129, Quito, Ecuador.
| | - Andrés López-Cortés
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Av. Mariscal Sucre and Mariana de Jesús, Block I, 2nd floor, 170129, Quito, Ecuador
| | - Alberto Indacochea
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Oncology and Molecular Pathology Research Group-VHIR- Vall d' Hebron Institut de Recerca-Vall d' Hebron Hospital, P/de la Vall d'Hebron, Barcelona, Spain
| | - Jennyfer M García-Cárdenas
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Av. Mariscal Sucre and Mariana de Jesús, Block I, 2nd floor, 170129, Quito, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Av. Mariscal Sucre and Mariana de Jesús, Block I, 2nd floor, 170129, Quito, Ecuador
| | - Alejandro Cabrera-Andrade
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Av. Mariscal Sucre and Mariana de Jesús, Block I, 2nd floor, 170129, Quito, Ecuador
- Carrera de Enfermería, Facultad de Ciencias de la Salud, Universidad de las Américas, Avenue de los Granados, Quito, 170125, Ecuador
- Grupo de Bio-Quimioinformática, Universidad de las Américas, Avenue de los Granados, Quito, 170125, Ecuador
| | - Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Av. Mariscal Sucre and Mariana de Jesús, Block I, 2nd floor, 170129, Quito, Ecuador
| | - Diana Abigail González
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Av. Mariscal Sucre and Mariana de Jesús, Block I, 2nd floor, 170129, Quito, Ecuador
| | - Paola E Leone
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Av. Mariscal Sucre and Mariana de Jesús, Block I, 2nd floor, 170129, Quito, Ecuador
| | - César Paz-Y-Miño
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Av. Mariscal Sucre and Mariana de Jesús, Block I, 2nd floor, 170129, Quito, Ecuador.
| |
Collapse
|
5
|
Ali MU, Ur Rahman MS, Jia Z, Jiang C. Eukaryotic translation initiation factors and cancer. Tumour Biol 2017; 39:1010428317709805. [PMID: 28653885 DOI: 10.1177/1010428317709805] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent technological advancements have shown tremendous mechanistic accomplishments in our understanding of the mechanism of messenger RNA translation in eukaryotic cells. Eukaryotic messenger RNA translation is very complex process that includes four phases (initiation, elongation, termination, and ribosome recycling) and diverse mechanisms involving protein and non-protein molecules. Translation regulation is principally achieved during initiation step of translation, which is organized by multiple eukaryotic translation initiation factors. Eukaryotic translation initiation factor proteins help in stabilizing the formation of the functional ribosome around the start codon and provide regulatory mechanisms in translation initiation. Dysregulated messenger RNA translation is a common feature of tumorigenesis. Various oncogenic and tumor suppressive genes affect/are affected by the translation machinery, making the components of the translation apparatus promising therapeutic targets for the novel anticancer drug. This review provides details on the role of eukaryotic translation initiation factors in messenger RNA translation initiation, their contribution to onset and progression of tumor, and how dysregulated eukaryotic translation initiation factors can be used as a target to treat carcinogenesis.
Collapse
Affiliation(s)
- Muhammad Umar Ali
- 1 Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Muhammad Saif Ur Rahman
- 1 Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenyu Jia
- 2 Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Cao Jiang
- 1 Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Wu J, Liu T, Rios Z, Mei Q, Lin X, Cao S. Heat Shock Proteins and Cancer. Trends Pharmacol Sci 2016; 38:226-256. [PMID: 28012700 DOI: 10.1016/j.tips.2016.11.009] [Citation(s) in RCA: 444] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/23/2016] [Accepted: 11/11/2016] [Indexed: 12/21/2022]
Abstract
Heat shock proteins (HSPs) constitute a large family of proteins involved in protein folding and maturation whose expression is induced by heat shock or other stressors. The major groups are classified based on their molecular weights and include HSP27, HSP40, HSP60, HSP70, HSP90, and large HSPs. HSPs play a significant role in cellular proliferation, differentiation, and carcinogenesis. In this article we comprehensively review the roles of major HSPs in cancer biology and pharmacology. HSPs are thought to play significant roles in the molecular mechanisms leading to cancer development and metastasis. HSPs may also have potential clinical uses as biomarkers for cancer diagnosis, for assessing disease progression, or as therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Jianming Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tuoen Liu
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, WV 24901, USA.
| | - Zechary Rios
- University of Illinois College of Medicine at Chicago, Chicago, IL 60612, USA
| | - Qibing Mei
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
7
|
Proteomic expressional profiling of a paraffin-embedded tissue by multiplex tissue immunoblotting. Methods Mol Biol 2015; 1312:175-84. [PMID: 26044002 DOI: 10.1007/978-1-4939-2694-7_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the functional proteome era, the proteomic profiling of clinicopathologic annotated tissues is an essential step for mining and evaluations of candidate biomarkers for disease. Previously, application of routine proteomic methodologies to clinical tissue specimens has provided unsatisfactory results. Multiplex tissue immunoblotting is a method of transferring proteins from a formalin-fixed, paraffin-embedded tissue section to a stack of membranes which can be applied to a conventional immunoblotting method. A single tissue section can be transferred to up to ten membranes, each of which is probed with antibodies and detected with fluorescent tags. By this approach, total protein and target signals can be simultaneously determined on each membrane; hence each antibody is internally normalized. Phosphorylation specific antibodies as well as antibodies that do not readily work well with paraffin-embedded tissue are applicable to the membranes, expanding the menu of antibodies that can be utilized with formalin-fixed tissue. This novel platform can provide quantitative detection retaining histomorphologic detail in clinical samples and has great potential to facilitate discovery and development of new diagnostic assays and therapeutic agents.
Collapse
|
8
|
Hershey JWB. The role of eIF3 and its individual subunits in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:792-800. [PMID: 25450521 DOI: 10.1016/j.bbagrm.2014.10.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/28/2014] [Accepted: 10/28/2014] [Indexed: 12/15/2022]
Abstract
Specific individual subunits of eIF3 are elevated or reduced in numerous human tumors, and their ectopic overexpression in immortal cells can result in malignant transformation. The structure and assembly of eIF3 and its role in promoting mRNA and methionyl-tRNAi binding to the ribosome during the initiation phase of protein synthesis are described. Methods employed to detect altered levels of eIF3 subunits in cancers are critically evaluated in order to conclude rigorously that such subunits may cause malignant transformation. Strong evidence is presented that the individual overexpression of eIF3 subunits 3a, 3b, 3c, 3h, 3i and 3m may cause malignant transformation, whereas underexpression of subunits 3e and 3f may cause a similar outcome. Possible mechanisms to explain the malignant phenotypes are examined. The involvement of eIF3 in cancer reinforces the view that translational control plays an important role in the regulation of cell proliferation, and provides new targets for the development of therapeutic agents. This article is part of a Special Issue entitled: Translation and Cancer.
Collapse
Affiliation(s)
- John W B Hershey
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, United States.
| |
Collapse
|
9
|
Eukaryotic translation initiation factors in cancer development and progression. Cancer Lett 2013; 340:9-21. [PMID: 23830805 DOI: 10.1016/j.canlet.2013.06.019] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/11/2013] [Accepted: 06/14/2013] [Indexed: 01/03/2023]
Abstract
Eukaryotic gene expression is a complicated process primarily regulated at the levels of gene transcription and mRNA translation. The latter involves four main steps: initiation, elongation, termination and recycling. Translation regulation is primarily achieved during initiation which is orchestrated by 12 currently known eukaryotic initiation factors (eIFs). Here, we review the current state of eIF research and present a concise summary of the various eIF subunits. As eIFs turned out to be critically implicated in different oncogenic processes the various eIF members and their contribution to onset and progression of cancer are featured.
Collapse
|
10
|
Grzmil M, Hemmings BA. Translation Regulation as a Therapeutic Target in Cancer: Figure 1. Cancer Res 2012; 72:3891-900. [DOI: 10.1158/0008-5472.can-12-0026] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Translational control gone awry: a new mechanism of tumorigenesis and novel targets of cancer treatments. Biosci Rep 2011; 31:1-15. [PMID: 20964625 DOI: 10.1042/bsr20100077] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Translational control is one of primary regulation mechanisms of gene expression. Eukaryotic translational control mainly occurs at the initiation step, the speed-limiting step, which involves more than ten translation initiation factors [eIFs (eukaryotic initiation factors)]. Changing the level or function of these eIFs results in abnormal translation of specific mRNAs and consequently abnormal growth of cells that leads to human diseases, including cancer. Accumulating evidence from recent studies showed that the expression of many eIFs was associated with malignant transformation, cancer prognosis, as well as gene expression regulation. In the present paper, we perform a critical review of recent advances in understanding the role and mechanism of eIF action in translational control and cancer as well as the possibility of targeting eIFs for therapeutic development.
Collapse
|
12
|
Grzmil M, Rzymski T, Milani M, Harris AL, Capper RG, Saunders NJ, Salhan A, Ragoussis J, Norbury CJ. An oncogenic role of eIF3e/INT6 in human breast cancer. Oncogene 2010; 29:4080-9. [PMID: 20453879 DOI: 10.1038/onc.2010.152] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Altered expression of the eukaryotic translation initiation factor 3 (eIF3) subunit eIF3e/INT6 has been described in various types of human cancer, but the nature of its involvement in tumorigenesis is not yet clear. Using immunohistochemical analysis of 81 primary breast cancers, we found that high tumor grade correlated significantly with elevated cytoplasmic eIF3e level in epithelial tumor cells. Analysis of protein synthesis after siRNA-mediated knockdown in breast cancer cell lines indicated that eIF3e is not required for bulk translation. Microarray analysis of total and polysomal RNAs nonetheless identified distinct sets of mRNAs regulated either positively or negatively by eIF3e; functional classification of these revealed a marked enrichment of genes involved in cell proliferation, invasion and apoptosis. Validated mRNA targets regulated positively at the translational level by eIF3e included urokinase-type plasminogen activator and apoptotic regulator BCL-XL, whereas synthesis of proteins including the mitotic checkpoint component MAD2L1 was negatively regulated. Finally, eIF3e-depleted breast carcinoma cells showed reduced in vitro invasion and proliferation. Taken together, our study data suggest that eIF3e has a positive role in breast cancer progression. It regulates the translation, and in some cases abundance, of mRNAs involved in key aspects of cancer cell biology.
Collapse
Affiliation(s)
- M Grzmil
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chung JY, Hong SM, Choi BY, Cho H, Yu E, Hewitt SM. The expression of phospho-AKT, phospho-mTOR, and PTEN in extrahepatic cholangiocarcinoma. Clin Cancer Res 2009; 15:660-7. [PMID: 19147772 DOI: 10.1158/1078-0432.ccr-08-1084] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE The protein kinase B (AKT) pathway plays a key role in the regulation of cellular survival, apoptosis, and protein translation, and has been shown to have prognostic significance in a number of cancers. We sought to define its role in extrahepatic cholangiocarcinoma. EXPERIMENTAL DESIGN Two hundred twenty-one extrahepatic cholangiocarcinoma patients with clinicopathologic data, including survival, were arrayed into tissue microarrays. Phosphorylated AKT (p-AKT), phosphorylated mammalian target of rapamycin (p-mTOR), and total phosphatase and tensin homolog deleted on chromosome 10 (PTEN) protein expressions were studied with multiplex tissue immunoblotting assay. RESULTS Expressions of p-AKT and p-mTOR were significantly increased in extrahepatic cholangiocarcinoma cases compared with normal and dysplastic bile duct epithelium (P < 0.05 both). Decreased PTEN expression was observed in patients with increasing depth of invasion (P < 0.05), T classification (P < 0.05), and stage grouping (P < 0.05), and the presence of invasion of the pancreas (P < 0.05) and duodenum (P < 0.05). Decreased PTEN expression (P = 0.004) as well as decreased PTEN/p-AKT (P = 0.003) and PTEN/p-mTOR (P = 0.009) expression showed shorter survival by univariate but not by multivariate analysis. CONCLUSIONS The AKT pathway is activated in a subset of extrahepatic cholangiocarcinoma. Elevated PTEN expression correlates with longer survival. Quantitative data obtained by multiplex tissue immunoblotting may provide additional information than assessment of immunohistochemistry alone. Quantitative analysis of PTEN, PTEN/p-AKT and PTEN/p-mTOR shows differences in survival by univariate analysis.
Collapse
Affiliation(s)
- Joon-Yong Chung
- Tissue Array Research Program, Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|
14
|
Umar A, Kang H, Timmermans AM, Look MP, Meijer-van Gelder ME, den Bakker MA, Jaitly N, Martens JWM, Luider TM, Foekens JA, Pasa-Tolić L. Identification of a putative protein profile associated with tamoxifen therapy resistance in breast cancer. Mol Cell Proteomics 2009; 8:1278-94. [PMID: 19329653 PMCID: PMC2690491 DOI: 10.1074/mcp.m800493-mcp200] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Tamoxifen resistance is a major cause of death in patients with recurrent breast cancer. Current clinical factors can correctly predict therapy response in only half of the treated patients. Identification of proteins that are associated with tamoxifen resistance is a first step toward better response prediction and tailored treatment of patients. In the present study we intended to identify putative protein biomarkers indicative of tamoxifen therapy resistance in breast cancer using nano-LC coupled with FTICR MS. Comparative proteome analysis was performed on ∼5,500 pooled tumor cells (corresponding to ∼550 ng of protein lysate/analysis) obtained through laser capture microdissection (LCM) from two independently processed data sets (n = 24 and n = 27) containing both tamoxifen therapy-sensitive and therapy-resistant tumors. Peptides and proteins were identified by matching mass and elution time of newly acquired LC-MS features to information in previously generated accurate mass and time tag reference databases. A total of 17,263 unique peptides were identified that corresponded to 2,556 non-redundant proteins identified with ≥2 peptides. 1,713 overlapping proteins between the two data sets were used for further analysis. Comparative proteome analysis revealed 100 putatively differentially abundant proteins between tamoxifen-sensitive and tamoxifen-resistant tumors. The presence and relative abundance for 47 differentially abundant proteins were verified by targeted nano-LC-MS/MS in a selection of unpooled, non-microdissected discovery set tumor tissue extracts. ENPP1, EIF3E, and GNB4 were significantly associated with progression-free survival upon tamoxifen treatment for recurrent disease. Differential abundance of our top discriminating protein, extracellular matrix metalloproteinase inducer, was validated by tissue microarray in an independent patient cohort (n = 156). Extracellular matrix metalloproteinase inducer levels were higher in therapy-resistant tumors and significantly associated with an earlier tumor progression following first line tamoxifen treatment (hazard ratio, 1.87; 95% confidence interval, 1.25–2.80; p = 0.002). In summary, comparative proteomics performed on laser capture microdissection-derived breast tumor cells using nano-LC-FTICR MS technology revealed a set of putative biomarkers associated with tamoxifen therapy resistance in recurrent breast cancer.
Collapse
Affiliation(s)
- Arzu Umar
- Erasmus Medical Center Rotterdam, Josephine Nefkens Inst., Dept. of Medical Oncology, Laboratory of Genomics and Proteomics of Breast Cancer, Dr. Molewaterplein 50, Be 430c, P. O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
In the functional proteome era, the proteomic profiling of clinicopathologic annotated tissues is an essential step for mining and evaluations of candidate biomarkers for disease. Previously, application of routine proteomic methodologies to clinical tissue specimens has provided unsatisfactory results. Multiplex tissue immunoblotting is a method of transferring proteins from a formalin-fixed, paraffin-embedded tissue section to a stack of membranes which can be applied to a conventional immunoblotting method. A single tissue section can be transferred to up to ten membranes, each of which is probed with antibodies and detected with fluorescent tags. By this approach, total protein and target signals can be simultaneously determined on each membrane; hence each antibody is internally normalized. Phosphorylation-specific antibodies as well as antibodies that do not readily work well with paraffin-embedded tissue are applicable to the membranes, expanding the menu of antibodies that can be utilized with formalin-fixed tissue. This novel platform can provide quantitative detection retaining histomorphologic detail in clinical samples and has great potential to facilitate discovery and development of new diagnostic assays and therapeutic agents.
Collapse
|
16
|
Hewitt SM, Takikita M, Abedi-Ardekani B, Kris Y, Bexfield K, Braunschweig T, Chung JY. Validation of proteomic-based discovery with tissue microarrays. Proteomics Clin Appl 2008; 2:1460-6. [DOI: 10.1002/prca.200800003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Indexed: 12/27/2022]
|
17
|
Grzmil M, Whiting D, Maule J, Anastasaki C, Amatruda JF, Kelsh RN, Norbury CJ, Patton EE. The INT6 cancer gene and MEK signaling pathways converge during zebrafish development. PLoS One 2007; 2:e959. [PMID: 17895999 PMCID: PMC1978538 DOI: 10.1371/journal.pone.0000959] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 09/02/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Int-6 (integration site 6) was identified as an oncogene in a screen of tumorigenic mouse mammary tumor virus (MMTV) insertions. INT6 expression is altered in human cancers, but the precise role of disrupted INT6 in tumorigenesis remains unclear, and an animal model to study Int-6 physiological function has been lacking. PRINCIPAL FINDINGS Here, we create an in vivo model of Int6 function in zebrafish, and through genetic and chemical-genetic approaches implicate Int6 as a tissue-specific modulator of MEK-ERK signaling. We find that Int6 is required for normal expression of MEK1 protein in human cells, and for Erk signaling in zebrafish embryos. Loss of either Int6 or Mek signaling causes defects in craniofacial development, and Int6 and Erk-signaling have overlapping domains of tissue expression. SIGNIFICANCE Our results provide new insight into the physiological role of vertebrate Int6, and have implications for the treatment of human tumors displaying altered INT6 expression.
Collapse
Affiliation(s)
- Michal Grzmil
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Danny Whiting
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - John Maule
- MRC Human Genetics Unit and University of Edinburgh Cancer Research Centre, Western General Hospital, Edinburgh, United Kingdom
| | - Corina Anastasaki
- MRC Human Genetics Unit and University of Edinburgh Cancer Research Centre, Western General Hospital, Edinburgh, United Kingdom
| | - James F. Amatruda
- Departments of Pediatrics, Internal Medicine and Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Robert N. Kelsh
- Centre for Regenerative Medicine, Developmental Biology Programme, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Chris J. Norbury
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - E. Elizabeth Patton
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- MRC Human Genetics Unit and University of Edinburgh Cancer Research Centre, Western General Hospital, Edinburgh, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
18
|
Takikita M, Chung JY, Hewitt SM. Tissue microarrays enabling high-throughput molecular pathology. Curr Opin Biotechnol 2007; 18:318-25. [PMID: 17643281 DOI: 10.1016/j.copbio.2007.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 05/09/2007] [Accepted: 05/09/2007] [Indexed: 10/23/2022]
Abstract
The tissue microarray has enabled high-throughput pathology. Rather than the laborious review of individual slides and issues of assay reproducibility across large series of specimens, tissue microarrays allow the review of a single stain on a single slide containing tens to hundreds of samples. This is a paradigm shift in pathology, away from histomorphology and toward molecular characterization by immunohistochemistry. This platform allows large retrospective clinical studies of biomarkers for correlation with outcome and can equally well be applied toward high-throughput analysis of cell lines and xenografts. Tissue microarrays encourage novel approaches to assaying tissue with retained histomorphology and have enabled image analysis in pathology. The reduction of tissue to an analyte for high-throughput analysis has highlighted the importance of a high quality tissue and the impact of tissue handling and processing in the quality of data that can be obtained from analysis of tissue.
Collapse
Affiliation(s)
- Mikiko Takikita
- Tissue Array Research Program, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, TARP Lab, MSC 4605, Bethesda, MD 20892-4605, USA
| | | | | |
Collapse
|
19
|
The Vignette for V14 N3 Issue. J Biomed Sci 2007. [DOI: 10.1007/s11373-007-9169-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|