1
|
Zhu X, Tian C, Yao D, Li S, Lv J, Chen Y, Huang X. Anti-inflammatory properties of ophioglonin derived from the fern Ophioglossum vulgatum L. via inactivating NF-κB and MAPK signaling pathways. FEBS Open Bio 2024. [PMID: 39455284 DOI: 10.1002/2211-5463.13914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/24/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Medicinal plants contain bioactive compounds that have therapeutic effects on human health. Ophioglossum vulgatum L. is a representative species of the fern genus Ophioglossum that has anti-inflammatory properties as recognized in folk medicine. Herein, we performed a nitric oxide (NO) assay-guided screening in RAW264.7 cells to investigate the active components of the plant. We found that ophioglonin (OPN), a characteristic homoflavonoid of the genus Ophioglossum, is one of the bioactive components. Therefore, we performed a comparative analysis of the isolated compounds and found that OPN has effects similar to those of isolated dihydroquercetin and luteolin at the concentrations tested. The antioxidant and anti-inflammatory activities of OPN were extensively validated using lipopolysaccharide -stimulated RAW264.7 cells, mouse bone marrow-derived macrophages (BMDMs), and peritoneal exudate macrophages (PEMs). In vivo experiments with a carrageenan-induced mouse paw edema model further confirmed the anti-inflammatory effect of OPN. Additionally, we found that OPN and Ophioglossum vulgatum extracts inhibit the activation of signal transducers, NF-ĸB p65, IĸBα, ERK, p38, and JNK, consistent with the findings of pathway enrichment analysis. This work reinforces the anti-inflammatory properties of Ophioglossum vulgatum and indicates that OPN is a promising therapeutic agent for inflammation-associated disorders. Further clinical evaluations, including clinical trials, would be beneficial to validate the anti-inflammatory properties of OPN.
Collapse
Affiliation(s)
- Xiaoqing Zhu
- Science and Technology Industry Development Center, Chongqing Medical and Pharmaceutical College, Chongqing, China
- Institute of Immunology, People's Liberation Army, Third Military Medical University, Chongqing, China
| | - Cheng Tian
- Science and Technology Industry Development Center, Chongqing Medical and Pharmaceutical College, Chongqing, China
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Dan Yao
- Science and Technology Industry Development Center, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Siqi Li
- Institute of Immunology, People's Liberation Army, Third Military Medical University, Chongqing, China
| | - Junjiang Lv
- Science and Technology Industry Development Center, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Yongwen Chen
- Institute of Immunology, People's Liberation Army, Third Military Medical University, Chongqing, China
| | - Xiaoyong Huang
- Institute of Immunology, People's Liberation Army, Third Military Medical University, Chongqing, China
| |
Collapse
|
2
|
Dvorakova M, Soudek P, Pavicic A, Langhansova L. The traditional utilization, biological activity and chemical composition of edible fern species. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117818. [PMID: 38296173 DOI: 10.1016/j.jep.2024.117818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ferns form an important part of the human diet. Young fern fiddleheads are mostly consumed as vegetables, while the rhizomes are often extracted for starch. These edible ferns are also often employed in traditional medicine, where all parts of the plant are used, mostly to prepare extracts. These extracts are applied either externally as lotions and baths or internally as potions, decoctions and teas. Ailments traditionally treated with ferns include coughs, colds, fevers, pain, burns and wounds, asthma, rheumatism, diarrhoea, or skin diseases (eczema, rashes, itching, leprosy). AIM OF THE REVIEW This review aims to compile the worldwide knowledge on the traditional medicinal uses of edible fern species correlating to reported biological activities and isolated bioactive compounds. MATERIALS AND METHODS The articles and books published on edible fern species were searched through the online databases Web of Science, Pubmed and Google Scholar, with critical evaluation of the hits. The time period up to the end of 2022 was included. RESULTS First, the edible fern species were identified based on the literature data. A total of 90 fern species were identified that are eaten around the world and are also used in traditional medicine. Ailments treated are often associated with inflammation or bacterial infection. However, only the most common and well-known fern species, were investigated for their biological activity. The most studied species are Blechnum orientale L., Cibotium barometz (L.) J. Sm., Diplazium esculentum (Retz.) Sw., Marsilea minuta L., Osmunda japonica Thunb., Polypodium vulgare L., and Stenochlaena palustris (Burm.) Bedd. Most of the fern extracts have been studied for their antioxidant, anti-inflammatory and antimicrobial activities. Not surprisingly, antioxidant capacity has been the most studied, with results reported for 28 edible fern species. Ferns have been found to be very rich sources of flavonoids, polyphenols, polyunsaturated fatty acids, carotenoids, terpenoids and steroids and most of these compounds are remarkable free radical scavengers responsible for the outstanding antioxidant capacity of fern extracts. As far as clinical trials are concerned, extracts from only three edible fern species have been evaluated. CONCLUSIONS The extracts of edible fern species exert antioxidant anti-inflammatory and related biological activities, which is consistent with their traditional medicinal use in the treatment of wounds, burns, colds, coughs, skin diseases and intestinal diseases. However, studies to prove pharmacological activities are scarce, and require chemical-biological standardization. Furthermore, correct botanical classification needs to be included in publications to simplify data acquisition. Finally, more in-depth phytochemical studies, allowing the linking of traditional use to pharmacological relevance are needed to be done in a standardized way.
Collapse
Affiliation(s)
- Marcela Dvorakova
- Czech Academy of Sciences, Institute of Experimental Botany, Rozvojova 263, CZ-16200, Prague 6, Czech Republic.
| | - Petr Soudek
- Czech Academy of Sciences, Institute of Experimental Botany, Rozvojova 263, CZ-16200, Prague 6, Czech Republic.
| | - Antonio Pavicic
- Czech Academy of Sciences, Institute of Experimental Botany, Rozvojova 263, CZ-16200, Prague 6, Czech Republic; Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, CZ-50005, Hradec Králové, Czech Republic.
| | - Lenka Langhansova
- Czech Academy of Sciences, Institute of Experimental Botany, Rozvojova 263, CZ-16200, Prague 6, Czech Republic.
| |
Collapse
|
3
|
Hao J, Liang Y, Ping J, Li J, Shi W, Su Y, Wang T. Chloroplast gene expression level is negatively correlated with evolutionary rates and selective pressure while positively with codon usage bias in Ophioglossum vulgatum L. BMC PLANT BIOLOGY 2022; 22:580. [PMID: 36510137 PMCID: PMC9746204 DOI: 10.1186/s12870-022-03960-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 11/24/2022] [Indexed: 05/02/2023]
Abstract
BACKGROUND Characterization of the key factors determining gene expression level has been of significant interest. Previous studies on the relationship among evolutionary rates, codon usage bias, and expression level mostly focused on either nuclear genes or unicellular/multicellular organisms but few in chloroplast (cp) genes. Ophioglossum vulgatum is a unique fern and has important scientific and medicinal values. In this study, we sequenced its cp genome and transcriptome to estimate the evolutionary rates (dN and dS), selective pressure (dN/dS), gene expression level, codon usage bias, and their correlations. RESULTS The correlation coefficients between dN, dS, and dN/dS, and Transcripts Per Million (TPM) average values were -0.278 (P = 0.027 < 0.05), -0.331 (P = 0.008 < 0.05), and -0.311 (P = 0.013 < 0.05), respectively. The codon adaptation index (CAI) and tRNA adaptation index (tAI) were significantly positively correlated with TPM average values (P < 0.05). CONCLUSIONS Our results indicated that when the gene expression level was higher, the evolutionary rates and selective pressure were lower, but the codon usage bias was stronger. We provided evidence from cp gene data which supported the E-R (E stands for gene expression level and R stands for evolutionary rate) anti-correlation.
Collapse
Affiliation(s)
- Jing Hao
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yingyi Liang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jingyao Ping
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jinye Li
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wanxin Shi
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, 518057, China.
| | - Ting Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
4
|
Mssillou I, Bakour M, Slighoua M, Laaroussi H, Saghrouchni H, Ez-Zahra Amrati F, Lyoussi B, Derwich E. Investigation on wound healing effect of Mediterranean medicinal plants and some related phenolic compounds: A review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115663. [PMID: 36038091 DOI: 10.1016/j.jep.2022.115663] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/07/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The human skin constitutes a biological barrier against external stress and wounds can reduce the role of its physiological structure. In medical sciences, wounds are considered a major problem that requires urgent intervention. For centuries, medicinal plants have been used in the Mediterranean countries for many purposes and against wounds. AIM OF THIS REVIEW Provides an outlook on the Mediterranean medicinal plants used in wound healing. Furthermore, the wound healing effect of polyphenolic compounds and their chemical structures are also summarized. Moreover, we discussed the wound healing process, the structure of the skin, and the current therapies in wound healing. MATERIALS AND METHODS The search was performed in several databases such as ScienceDirect, PubMed, Google Scholar, Scopus, and Web of Science. The following Keywords were used individually and/or in combination: the Mediterranean, wound healing, medicinal plants, phenolic compounds, composition, flavonoid, tannin. RESULTS The wound healing process is distinguished by four phases, which are respectively, hemostasis, inflammation, proliferation, and remodeling. The Mediterranean medicinal plants are widely used in the treatment of wounds. The finding showed that eighty-nine species belonging to forty families were evaluated for their wound-healing effect in this area. The Asteraceae family was the most reported family with 12 species followed by Lamiaceae (11 species). Tunisia, Egypt, Morocco, and Algeria were the countries where these plants are frequently used in wound healing. In addition to medicinal plants, results showed that nineteen phenolic compounds from different classes are used in wound treatment. Tyrosol, hydroxytyrosol, curcumin, luteolin, chrysin, rutin, kaempferol, quercetin, icariin, morin, epigallocatechin gallate, taxifolin, silymarin, hesperidin, naringin, isoliquiritin, puerarin, genistein, and daidzein were the main compounds that showed wound-healing effect. CONCLUSION In conclusion, medicinal plants and polyphenolic compounds provide therapeutic evidence in wound healing and for the development of new drugs in this field.
Collapse
Affiliation(s)
- Ibrahim Mssillou
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco.
| | - Meryem Bakour
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Meryem Slighoua
- Laboratory of Biotechnology, Health, Agrofood and Environment (LBEAS), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Hassan Laaroussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Hamza Saghrouchni
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, 01330 Balcalı/Sarıçam, Adana, Turkey
| | - Fatima Ez-Zahra Amrati
- Laboratory of Biotechnology, Health, Agrofood and Environment (LBEAS), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Elhoussine Derwich
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco; Unity of GC/MS and GC, City of Innovation, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| |
Collapse
|
5
|
Bajracharya GB, Bajracharya B. A comprehensive review on Nepalese wild vegetable food ferns. Heliyon 2022; 8:e11687. [DOI: 10.1016/j.heliyon.2022.e11687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/28/2022] [Accepted: 11/11/2022] [Indexed: 11/21/2022] Open
|
6
|
Ramalingam S, Chandrasekar MJN, Nanjan MJ. Plant-based Natural Products for Wound Healing: A Critical Review. Curr Drug Res Rev 2022; 14:37-60. [PMID: 35549848 DOI: 10.2174/2589977513666211005095613] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 06/15/2023]
Abstract
Wound healing is an intricate process consisting of four overlapping phases, namely hemostasis, inflammation, proliferation, and remodelling. Effective treatment of wounds depends upon the interaction of appropriate cell types, cell surface receptors, and the extracellular matrix with the therapeutic agents. Several approaches currently used for treating wounds, such as advanced wound dressing, growth factor therapy, stem cell therapy, and gene therapy, are not very effective and lead to impaired healing. Further, repeated use of antibiotics to treat open wounds leads to multi- drug resistance. Today there is considerable interest in plant-based drugs as they are believed to be safe, inexpensive, and more suitable for chronic wounds. For example, a large number of plant- based extracts and their bioactive compounds have been investigated for wound healing. In recent years the structural and mechanistic diversity of natural products have become central players in the search for newer therapeutic agents. In the present review, a thorough critical survey of the traditionally used plant-based drugs used worldwide for wound healing with special reference to the natural products/bioactive compounds isolated and screened is presented. It is hoped that this review will attract the attention of the research community involved in newer drug design and development for wound healing.
Collapse
Affiliation(s)
- Shalini Ramalingam
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris-643001, Tamil Nadu, India
| | - Moola Joghee Nanjan Chandrasekar
- School of Life Science, JSS Academy of Higher Education & Research (Ooty Campus), Longwood, Mysuru Road, Ooty, The Nilgiris-643001, Nilgiris-643001, Tamilnadu, India
| | | |
Collapse
|
7
|
Hassanpour M, Hajihassani F, Abdollahpourasl M, Cheraghi O, Aghamohamadzade N, Rahbargazi R, Nouri M, Pilehvar-Soltanahmadi Y, Zarghami N, Akbarzadeh A, Panahi Y, Sahebkar A. Pathophysiological Effects of Sulfur Mustard on Skin and its Current Treatments: Possible Application of Phytochemicals. Comb Chem High Throughput Screen 2020; 24:3-19. [PMID: 32679016 DOI: 10.2174/1386207323666200717150414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/21/2020] [Accepted: 06/03/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Sulfur-(SM) and nitrogen (NM)-based mustards are the mutagenic incapacitating compounds which are widely used in vesicating the chemical warfare and cause toxicity in many organs, especially skin. SM, as a potent vesicating agent, contributes to the destruction of skin in dermis and epidermis layers. The progression of the lesion depends on the concentration of SM and the duration of exposure. Body responses start with pruritus, erythema, edema and xerosis, which lead to the accumulation of immune cells in the target sites and recruitment of mast cells and paracrine-mediated activity. Pro-inflammatory effectors are accumulated in the epidermis, hair follicles, and sebaceous glands resulting in the destruction of the basement membrane beneath the epidermis. There is still no satisfactory countermeasure against SM-induced lesions in clinical therapy, and the symptomatic or supportive treatments are routine management approaches. OBJECTIVE The current review highlights the recent progression of herbal medicines application in SM-induced injuries through the illustrative examples and also demonstrates their efficacies, properties and mechanism of actions as therapeutic agents. CONCLUSION Phytochemicals and herbal extracts with anti-bacterial, anti-inflammatory and antioxidant properties have been recently shown to hold therapeutic promise against the SM-induced cutaneous complications. The present review discusses the possible application of herbal medicines in the healing of SM-induced injuries.
Collapse
Affiliation(s)
- Mehdi Hassanpour
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fateme Hajihassani
- Department of Health Management, School of Management and Medical informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Omid Cheraghi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Nasser Aghamohamadzade
- Endocrine and Metabolism Section, Department of Internal Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbargazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Younes Pilehvar-Soltanahmadi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yunes Panahi
- Pharmacotherapy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
8
|
Wolf M, Marciniak J, Lossdörfer S, Kirschneck C, Brauner I, Götz W, Jäger A. Role of HSP70 protein in human periodontal ligament cell function and physiology. Ann Anat 2018; 221:76-83. [PMID: 30253189 DOI: 10.1016/j.aanat.2018.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 06/06/2018] [Accepted: 09/14/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Heat pre-treatment of mechanically loaded human periodontal ligament cells (hPDL) dampens the inflammatory cellular response, as evidenced by a reduced expression of pro-inflammatory cytokines, inhibition of monocyte adhesion and osteoclastic differentiation. These findings imply heat shock proteins (HSP) as cell protective molecules acting in the PDL that are up-regulated upon ischemia caused by mechanical loading. HSP70 and its inhibition by VER155008 as the active agent in several pharmaceuticals are established targets and strategies, respectively, in the treatment of neoproliferative diseases. However, the effect of both players on periodontal remodeling in unknown. Therefore, we analyzed the role of HSP70 and its frequently used inhibitor VER155008 in the regulation of physiological hPDL cell functions and immune cell interaction. MATERIALS AND METHODS Fifth passage hPDL cells were cultured in the presence of 25μm HSP70 inactivating agent VER155008. At harvest, HSP70 expression, cell proliferation, and parameters of cell interaction, colony formation and wound healing were analyzed by means of real-time PCR, immunohistochemistry, Western blot, biochemical MTS assay, microscopy, and functional assays for monocyte adhesion and differentiation. RESULTS Basal HSP70 expression and hPDL cell morphology were not affected by HSP70 inhibitor VER155008. In contrast, cell proliferation, tissue defect healing, and colony formation were reduced significantly following HSP70 inhibition, whereas apoptosis and necrosis, monocyte adhesion and osteoclastic differentiation were markedly increased. CONCLUSIONS The present data indicate a regulatory role for HSP70 protein in hPDL cell biology. CLINICAL RELEVANCE These findings identify HSP70 as a promising target in the attempt to modify periodontal remodeling and point to potential periodontal side effects of HSP70 pharmaceutical usage.
Collapse
Affiliation(s)
- Michael Wolf
- Department of Orthodontics, University Hospital of the RWTH Aachen, Germany.
| | - Jana Marciniak
- Department of Orthodontics, University Hospital of the RWTH Aachen, Germany; Department of Orthodontics, Dental Clinic, University of Bonn, Germany
| | - Stefan Lossdörfer
- Department of Orthodontics, Dental Clinic, University of Bonn, Germany
| | | | - Isabel Brauner
- Department of Orthodontics, University Hospital of the RWTH Aachen, Germany
| | - Werner Götz
- Department of Orthodontics, Dental Clinic, University of Bonn, Germany
| | - Andreas Jäger
- Department of Orthodontics, Dental Clinic, University of Bonn, Germany
| |
Collapse
|
9
|
Longer duration of operative time enhances healing metabolites and improves patient outcome after Achilles tendon rupture surgery. Knee Surg Sports Traumatol Arthrosc 2018; 26. [PMID: 28638971 PMCID: PMC6061452 DOI: 10.1007/s00167-017-4606-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE The relationship between the duration of operative time (DOT), healing response and patient outcome has not been previously investigated. An enhanced healing response related to DOT may potentiate repair processes, especially in hypovascular and sparsely metabolized musculoskeletal tissues such as tendons. This study aimed to investigate the association between DOT and the metabolic healing response, patient-reported outcome and the rate of post-operative complications after acute Achilles tendon injury. METHODS Observational cohort, cross-sectional study with observers blinded to patient grouping. A total of two-hundred and fifty-six prospectively randomized patients (210 men, 46 women; mean age 41 years) with an acute total Achilles tendon rupture all operated on with uniform anaesthetic and surgical technique were retrospectively assessed. At 2 weeks post-operatively, six metabolites were quantified using microdialysis. At 3, 6 and 12 months, patient-reported pain, walking ability and physical activity were examined using self-reported questionnaires, Achilles tendon total rupture score, foot and ankle outcome score and physical activity scale. At 12 months, functional outcome was assessed using the heel-rise test. Complications, such as deep venous thrombosis, infections and re-operations, were recorded throughout the study. RESULTS Patients who underwent longer DOT exhibited higher levels of glutamate (p = 0.026) and glycerol (p = 0.023) at 2 weeks. At the 1-year follow-up, longer DOT was associated with significantly less loss in physical activity (p = 0.003), less pain (p = 0.009), less walking limitations (p = 0.022) and better functional outcome (p = 0.014). DOT did not significantly correlate with the rate of adverse events, such as deep venous thrombosis, infections or re-ruptures. Higher glutamate levels were associated with less loss in physical activity (p = 0.017). All correlations were confirmed by multiple linear regressions taking confounding factors into consideration. CONCLUSION The results from this study suggest a previously unknown mechanism, increased metabolic response associated with longer DOT, which may improve patient outcome after Achilles tendon rupture surgery. Allowing for a higher amount of traumatized tissue, as reflected by up-regulation of glycerol in patients with longer DOT, may prove to be an important surgical tip for stimulation of repair of hypometabolic soft tissue injuries, such as Achilles tendon ruptures. LEVEL OF EVIDENCE II.
Collapse
|
10
|
Cao H, Chai TT, Wang X, Morais-Braga MFB, Yang JH, Wong FC, Wang R, Yao H, Cao J, Cornara L, Burlando B, Wang Y, Xiao J, Coutinho HDM. Phytochemicals from fern species: potential for medicine applications. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2017; 16:379-440. [PMID: 32214919 PMCID: PMC7089528 DOI: 10.1007/s11101-016-9488-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 12/21/2016] [Indexed: 02/05/2023]
Abstract
Ferns are an important phytogenetic bridge between lower and higher plants. Historically they have been used in many ways by humans, including as ornamental plants, domestic utensils, foods, and in handicrafts. In addition, they have found uses as medicinal herbs. Ferns produce a wide array of secondary metabolites endowed with different bioactivities that could potentially be useful in the treatment of many diseases. However, there is currently relatively little information in the literature on the phytochemicals present in ferns and their pharmacological applications, and the most recent review of the literature on the occurrence, chemotaxonomy and physiological activity of fern secondary metabolites was published over 20 years ago, by Soeder (Bot Rev 51:442-536, 1985). Here, we provide an updated review of this field, covering recent findings concerning the bioactive phytochemicals and pharmacology of fern species.
Collapse
Affiliation(s)
- Hui Cao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau
| | - Tsun-Thai Chai
- Department of Chemical Science, Faculty of ScienceUniversiti Tunku Abdul Rahman, 31900 Kampar, Malaysia
| | - Xin Wang
- Department of Biology, Shanghai Normal University, 100 Guilin Rd, Shanghai, 200234 China
| | | | - Jing-Hua Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091 China
| | - Fai-Chu Wong
- Department of Chemical Science, Faculty of ScienceUniversiti Tunku Abdul Rahman, 31900 Kampar, Malaysia
- Centre for Biodiversity Research, Universiti Tunku Abdul Rahman, 31900 Kampar, Malaysia
| | - Ruibing Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau
| | - Huankai Yao
- School of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221004 China
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Jianguo Cao
- Department of Biology, Shanghai Normal University, 100 Guilin Rd, Shanghai, 200234 China
| | - Laura Cornara
- Dipartimento di Scienze della Terra dell’Ambiente e della Vita, Polo Botanico, Università degli Studi di Genova, Corso Dogali 1M, 16136 Genoa, Italy
| | - Bruno Burlando
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale “Amedeo Avogadro”, Viale Teresa Michel 11, 15121 Alessandria, Italy
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini 6, 16149 Genoa, Italy
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau
| | - Jianbo Xiao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau
| | - Henrique D. M. Coutinho
- Laboratory of Microbiology and Molecular Biology, Regional University of Cariri–URCA, Crato, CE Brazil
| |
Collapse
|
11
|
Antenucci S, Panzella L, Farina H, Ortenzi MA, Caneva E, Martinotti S, Ranzato E, Burlando B, d'Ischia M, Napolitano A, Verotta L. Powering tyrosol antioxidant capacity and osteogenic activity by biocatalytic polymerization. RSC Adv 2016. [DOI: 10.1039/c5ra23004g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oxidative polymerization of tyrosol afforded a mixture of oligomers (OligoTyr) which proved to be more active than tyrosol as antioxidant and as stimulator of alkaline phosphatase (ALP) activity when loaded into polylactic acid (PLA) scaffolds.
Collapse
Affiliation(s)
- Stefano Antenucci
- Department of Chemistry
- University of Milan
- I-20133 Milan
- Italy
- CRC Materiali Polimerici “LaMPo”
| | - Lucia Panzella
- Department of Chemical Sciences
- University of Naples “Federico II”
- Naples
- Italy
| | - Hermes Farina
- Department of Chemistry
- University of Milan
- I-20133 Milan
- Italy
| | - Marco Aldo Ortenzi
- Department of Chemistry
- University of Milan
- I-20133 Milan
- Italy
- CRC Materiali Polimerici “LaMPo”
| | - Enrico Caneva
- Interdepartmental Center for Large Instrumentation (CIGA)
- University of Milan
- I-20133 Milan
- Italy
| | - Simona Martinotti
- Department of Science and Technological Innovation
- University of Piemonte Orientale “Amedeo Avogadro”
- I-15121 Alessandria
- Italy
| | - Elia Ranzato
- Department of Science and Technological Innovation
- University of Piemonte Orientale “Amedeo Avogadro”
- I-15121 Alessandria
- Italy
| | - Bruno Burlando
- Department of Science and Technological Innovation
- University of Piemonte Orientale “Amedeo Avogadro”
- I-15121 Alessandria
- Italy
- Biophysics Institute
| | - Marco d'Ischia
- Department of Chemical Sciences
- University of Naples “Federico II”
- Naples
- Italy
| | | | - Luisella Verotta
- Department of Chemistry
- University of Milan
- I-20133 Milan
- Italy
- CRC Materiali Polimerici “LaMPo”
| |
Collapse
|
12
|
Dong JW, Cai L, Li XJ, Peng L, Xing Y, Mei RF, Wang JP, Ding ZT. Two new peroxy fatty acids with antibacterial activity from Ophioglossum thermale Kom. Fitoterapia 2015; 109:212-6. [PMID: 26742995 DOI: 10.1016/j.fitote.2015.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/11/2015] [Accepted: 12/27/2015] [Indexed: 12/25/2022]
Abstract
Two new peroxy fatty acids, thermalic acids A (1) and B (2), together with eight known compounds, (3β)-methyl-3-hydroxy-urs-11-en-28 oate (3), luteolin (4), quercetin (5), 3-methoxyquercetin (6), ophioglonol (7), ophioglonol 4'-O-α-D-glucopyranoside (8), pedunculosumoside B (9), syringol (10), were isolated from the herba of Ophioglossum thermale Kom. The structures of 1 and 2 were identified by HRESIMS, EIMS, 1D and 2D NMR, and electronic circular dichroism (ECD) spectra. Both two acids exhibited potential antibacterial activities against Staphylococcus aureus, Bacillus subtilis, and Escherichia coli. This is the first report of peroxy fatty acids isolated from herbaceous plants of Ophioglossaceae.
Collapse
Affiliation(s)
- Jian-Wei Dong
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Le Cai
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Xue-Jiao Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Li Peng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Yun Xing
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Rui-Feng Mei
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Jia-Peng Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Zhong-Tao Ding
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China.
| |
Collapse
|
13
|
Lim D, Kim MK, Jang YP, Kim J. Sceptridium ternatum attenuates allergic contact dermatitis-like skin lesions by inhibiting T helper 2-type immune responses and inflammatory responses in a mouse model. J Dermatol Sci 2015; 79:288-97. [PMID: 26150208 DOI: 10.1016/j.jdermsci.2015.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/19/2015] [Accepted: 06/23/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND Sceptridium ternatum (ST) is a medicinal herb used in folk remedies for the treatment of various disorders such as pertussis, allergic asthma, abdominalgia, diarrhea, and external use for wound healing. However, the biological and pharmacological activities of ST are not fully clarified besides anti-asthmatic effect. OBJECTIVE We studied a Sceptridium ternatum ethanol extract (ST) with respect to its anti-inflammatory and immune regulatory activities in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells, concanavalin A (conA)-stimulated BALB/c mice splenocytes, and a 2,4-dinitrochlorobenzene (DNCB)-induced allergic contact dermatitis (ACD) mouse model. METHODS RAW 264.7 cells were pretreated with ST for 1h and then stimulated with LPS. To determine the anti-inflammatory effects of ST, the production of nitric oxide (NO), interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) were measured using an enzyme-linked immunosorbent assay (ELISA). To determine its anti-allergic effects, splenocytes from BALB/c mice were incubated and stimulated with conA in the absence or presence of ST for 48h. The production of IL-4 and interferon (IFN)-γ in culture supernatants were evaluated by ELISA. To test the effects of ST on ACD, 100μL of 1% DNCB was applied to the dorsal skin of BALB/c mice for 2 weeks, and ST was administered 2 h before DNCB application. The thicknesses of the epidermis and dermis were determined by skin histological analysis. Serum immunoglobulin (Ig) E levels, the production of IL-1β, IL-4, and IL-6 in dorsal skin tissue, and T helper (Th) 2 cytokines production of CD4(+) T cells were analyzed by ELISA. The expression of nuclear transcription factor-κB (NF-κB) both in vitro and in vivo was determined via immunoblotting. RESULTS In RAW 264.7 cells, ST inhibited LPS-induced inflammation mediator production and NF-κB expression. ST upregulated IFN-γ production and downregulated IL-4 production in conA-stimulated splenocytes. ST application reduced the thicknesses of the epidermis and dermis by decreasing serum IgE level and the expressions of IL-1β, IL-4, IL-6, and NF-κB in the dorsal skin of the DNCB-induced ACD model mice. Furthermore, ST treated group showed reduction of the Th2 cytokines production in activated CD4(+) T cells. CONCLUSION These findings not only indicate that application of ST reduced skin thickening by regulating Th 2-type allergic responses and inhibiting expression of inflammatory mediators in a DNCB-induced ACD mouse model, but also suggest that Sceptridium ternatum is a natural option for the treatment of skin inflammation.
Collapse
Affiliation(s)
- Dahae Lim
- Department of Korean Physiology, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Min Kyoung Kim
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Hoegi-dong, Dongdaemun-gu, Seoul 130-701, South Korea
| | - Young-Pyo Jang
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Hoegi-dong, Dongdaemun-gu, Seoul 130-701, South Korea; Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Hoegi-dong, Dongdaemun-gu, Seoul 130-701, South Korea
| | - Jinju Kim
- Department of Korean Physiology, College of Pharmacy, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
14
|
Budovsky A, Yarmolinsky L, Ben-Shabat S. Effect of medicinal plants on wound healing. Wound Repair Regen 2015; 23:171-83. [DOI: 10.1111/wrr.12274] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 02/13/2015] [Accepted: 02/17/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Arie Budovsky
- Judea Regional Research & Development Center; Carmel
| | | | - Shimon Ben-Shabat
- Department of Biochemistry and Pharmacology; Faculty of Health Sciences, Ben-Gurion University of the Negev; Beer-Sheva Israel
| |
Collapse
|
15
|
Li PN, Li H, Zhong LX, Sun Y, Yu LJ, Wu ML, Zhang LL, Kong QY, Wang SY, Lv DC. Molecular events underlying maggot extract promoted rat in vivo and human in vitro skin wound healing. Wound Repair Regen 2015; 23:65-73. [DOI: 10.1111/wrr.12243] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 11/24/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Pei-Nan Li
- Department of Orthopedic Surgery; First Clinical College; Dalian Medical University; Dalian China
| | - Hong Li
- Department of Cell Biology; College of Basic Medical Sciences; Dalian Medical University; Dalian China
| | - Li-Xia Zhong
- Department of Cell Biology; College of Basic Medical Sciences; Dalian Medical University; Dalian China
| | - Yuan Sun
- Department of Cell Biology; College of Basic Medical Sciences; Dalian Medical University; Dalian China
| | - Li-Jun Yu
- Department of Cell Biology; College of Basic Medical Sciences; Dalian Medical University; Dalian China
| | - Mo-Li Wu
- Department of Cell Biology; College of Basic Medical Sciences; Dalian Medical University; Dalian China
| | - Lin-Lin Zhang
- Department of Cell Biology; College of Basic Medical Sciences; Dalian Medical University; Dalian China
| | - Qing-You Kong
- Department of Cell Biology; College of Basic Medical Sciences; Dalian Medical University; Dalian China
| | - Shou-Yu Wang
- Department of Orthopedic Surgery; First Clinical College; Dalian Medical University; Dalian China
| | - De-Cheng Lv
- Department of Orthopedic Surgery; First Clinical College; Dalian Medical University; Dalian China
| |
Collapse
|