1
|
Bucci P, Martínez-Navarrete M, Marti-Quijal FJ, José Guillot A, Barba FJ, Ferrer E, Cantero D, Muñoz R, Melero A. In vivo reduction of skin inflammation using ferulic acid-loaded lipid vesicles derived from Brewer's spent grain. Int J Pharm 2024; 666:124764. [PMID: 39332462 DOI: 10.1016/j.ijpharm.2024.124764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Breweŕs spent grain (BSG) is the main by-product of the brewing industry, and due to its rapid decomposition, it generates serious environmental problems such as malodors and greenhouse gases emissions. On the other hand, this lignocellulosic compound contains a large number of antioxidants, being ferulic acid (FA) the most abundant. FA is a powerful antioxidant molecule that has demonstrated significant protective effects on key components of the skin, including keratinocytes, fibroblasts, collagen, and elastin. FA inhibits melanogenesis, promotes angiogenesis and accelerates the wound healing although its use is limited by its rapid oxidation. In this study, different hydrolysis treatments (chemical, enzymatic and hydrothermal) were performed on BSG to obtain FA. Herein FA-loaded ultradeformable liposomes (ULs) were designed to improve their stability and in vivo performance. These nanosystems allow FA permeability through human skin, as proven by an ex vivo skin permeability assay using Franz diffusion cells. The toxicity and anti-inflammatory activity of the formulation has been investigated. The free form and 100 nm FA_ULs were evaluated. Cell viability was dose-dependent and provided optimal results for the treatment of inflammatory skin conditions in an in vivo Oxazolone-induced Delayed Type Hypersensitivity model using Swiss CD1 mice, demonstrated by the reduction of the inflammatory cytokines expression, ear thickness, bioluminescence and histological evaluation. These results pave the way for FA-based treatments of skin and inflammatory conditions.
Collapse
Affiliation(s)
- Paula Bucci
- Institute of Sustainable Processes, Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain.
| | - Miquel Martínez-Navarrete
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avenida Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Francisco J Marti-Quijal
- Research group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy and Food Sciences, Universitat de València, Avenida Vicent Andrés Estellés s/n, Burjassot, València 46100, Spain
| | - Antonio José Guillot
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avenida Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Francisco J Barba
- Research group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy and Food Sciences, Universitat de València, Avenida Vicent Andrés Estellés s/n, Burjassot, València 46100, Spain
| | - Emilia Ferrer
- Research group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy and Food Sciences, Universitat de València, Avenida Vicent Andrés Estellés s/n, Burjassot, València 46100, Spain
| | - Danilo Cantero
- The Institute of Bioeconomy. Calle Dr Mergelina S/N, Department of Chemical Engineering and Environmental Technology, University of Valladolid, Valladolid 47011, Spain
| | - Raúl Muñoz
- Institute of Sustainable Processes, Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avenida Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
2
|
Li F, Zhi J, Zhao R, Sun Y, Wen H, Cai H, Chen W, Jiang X, Bai R. Discovery of matrix metalloproteinase inhibitors as anti-skin photoaging agents. Eur J Med Chem 2024; 267:116152. [PMID: 38278079 DOI: 10.1016/j.ejmech.2024.116152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Photodamage is the result of prolonged exposure of the skin to sunlight. This exposure causes an overexpression of matrix metalloproteinases (MMPs), leading to the abnormal degradation of collagen in the skin tissue and resulting in skin aging and damage. This review presents a detailed overview of MMPs as a potential target for addressing skin aging. Specifically, we elucidated the precise mechanisms by which MMP inhibitors exert their anti-photoaging effects. Furthermore, we comprehensively analyzed the current research progress on MMP inhibitors that demonstrate significant inhibitory activity against MMPs and anti-skin photoaging effects. The review also provides insights into the structure-activity relationships of these inhibitors. Our objective in conducting this review is to provide valuable practical information to researchers engaged in investigations on anti-skin photoaging.
Collapse
Affiliation(s)
- Feifan Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Jia Zhi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Rui Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Yinyan Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Hao Wen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Hong Cai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Wenchao Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
3
|
Yan C, Xing M, Zhang S, Gao Y. Clinical Development and Evaluation of a Multi-Component Dissolving Microneedle Patch for Skin Pigmentation Disorders. Polymers (Basel) 2023; 15:3296. [PMID: 37571190 PMCID: PMC10422440 DOI: 10.3390/polym15153296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Excessive melanin deposition in the skin leads to various skin pigmentation diseases, such as chloasma and age spots. The deposition is induced by several factors, including tyrosinase activities and ultraviolet-induced oxidative stress. Herein, we propose a multi-component, multi-pathway drug combination, with glabridin, 3-O-ethyl-L-ascorbic acid, and tranexamic acid employed as, respectively, a tyrosinase inhibitor, an antioxidant, and a melanin transmission inhibitor. Considering the poor skin permeability associated with topical application, dissolving microneedles (MNs) prepared with hyaluronic acid/poly(vinyl alcohol)/poly(vinylpyrrolidone) were developed to load the drug combination. The drug-loaded microneedles (DMNs) presented outstanding skin insertion, dissolution, and drug delivery properties. In vitro experiments confirmed that DMNs loaded with active ingredients had significant antioxidant and inhibitory effects on tyrosinase activity. Furthermore, the production of melanin both in melanoma cells (B16-F10) and in zebrafish was directly reduced after using DMNs. Clinical studies demonstrated the DMNs' safety and showed that they have the ability to effectively reduce chloasma and age spots. This study indicated that a complex DMN based on a multifunctional combination is a valuable depigmentation product worthy of clinical application.
Collapse
Affiliation(s)
- Chenxin Yan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengzhen Xing
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Suohui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- Beijing CAS Microneedle Technology Ltd., Beijing 102609, China
| | - Yunhua Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing CAS Microneedle Technology Ltd., Beijing 102609, China
| |
Collapse
|
4
|
Abstract
The need for clinical remedies to the multiple age-related deficiencies in skin function brought on by extrinsic and intrinsic causes is increased by these demographic changes. Reactive oxygen species (ROS), mitochondrial deoxyribonucleic acid (mtDNA) mutations, telomere shortening, as well as other factors, contribute to the aging of the skin. In this overview, the issue of human skin aging is introduced, along with several pathways and the protective effects of ferulic acid in light of current patents. The complex antioxidant effect of ferulic acid depends on the "sweeping" away of free radicals as well as the suppression of the synthesis of ROS or nitrogen. Furthermore, Cu (II) or Fe protonated metal ions are chelated by this acid (II). Ferulic acid is a free radical scavenger as well as an enzyme inhibitor, increasing the activity of enzymes that scavenge free radicals while decreasing the activity of enzymes that speed up the creation of free radicals. AMPK signalling, which can regulate cellular homeostasis, stress tolerance, cell survival and proliferation, cell death, and autophagy, has recently been linked to aging and lifespan. Therefore, Caenorhabditis elegans (C. elegans) and rodents had longer life-spans due to specific AMPK activation. By inhibiting the TGF-β/Smad signalling pathway, UV irradiation can reduce the production of procollagen. Glycation changes the skin's physical characteristics, making it less elastic and stiffer. . Excessive free radicals simultaneously trigger the nuclear factor kappa B (NF- κB) signalling pathway, increasing TNF levels and matrix metalloproteinase production (MMPs).
Collapse
Affiliation(s)
- Deepa Neopane
- Department of Pharmacy, Integral University, Lucknow, India
| | | | - Aditya Singh
- Department of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
5
|
Bao X, Li W, Jia R, Meng D, Zhang H, Xia L. Molecular mechanism of ferulic acid and its derivatives in tumor progression. Pharmacol Rep 2023:10.1007/s43440-023-00494-0. [PMID: 37202657 PMCID: PMC10374777 DOI: 10.1007/s43440-023-00494-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/20/2023]
Abstract
Cancer is a significant disease that poses a major threat to human health. The main therapeutic methods for cancer include traditional surgery, radiotherapy, chemotherapy, and new therapeutic methods such as targeted therapy and immunotherapy, which have been developed rapidly in recent years. Recently, the tumor antitumor effects of the active ingredients of natural plants have attracted extensive attention. Ferulic acid (FA), (3-methoxy-4-hydroxyl cinnamic), with the molecular formula is C10H10O4, is a phenolic organic compound found in ferulic, angelica, jujube kernel, and other Chinese medicinal plants but is also, abundant in rice bran, wheat bran, and other food raw materials. FA has anti-inflammatory, analgesic, anti-radiation, and immune-enhancing effects and also shows anticancer activity, as it can inhibit the occurrence and development of various malignant tumors, such as liver cancer, lung cancer, colon cancer, and breast cancer. FA can cause mitochondrial apoptosis by inducing the generation of intracellular reactive oxygen species (ROS). FA can also interfere with the cell cycle of cancer cells, arrest most cancer cells in G0/G1 phase, and exert an antitumor effect by inducing autophagy; inhibiting cell migration, invasion, and angiogenesis; and synergistically improving the efficacy of chemotherapy drugs and reducing adverse reactions. FA acts on a series of intracellular and extracellular targets and is involved in the regulation of tumor cell signaling pathways, including the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT), B-cell lymphoma-2 (Bcl-2), and tumor protein 53 (P53) pathways and other signaling pathways. In addition, FA derivatives and nanoliposomes, as platforms for drug delivery, have an important regulatory effect on tumor resistance. This paper reviews the effects and mechanisms of antitumor therapies to provide new theoretical support and insight for clinical antitumor therapy.
Collapse
Affiliation(s)
- Xingxun Bao
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Wei Li
- Department of Obstetrics and Gynecology, Linyi Third People's Hospital, Linyi, People's Republic of China
| | - Ruixue Jia
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Dandan Meng
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Hairong Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Third Hospital, Jinan, 250031, People's Republic of China.
| | - Lei Xia
- Department of Pathology, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China.
| |
Collapse
|
6
|
Kalicharan B, Naidoo Y, van Staden J. Ethnopharmacology and biological activities of the Aizoaceae. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115988. [PMID: 36460295 DOI: 10.1016/j.jep.2022.115988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Aizoaceae is one of the largest succulent plant families. Most members of the family are ornamental and form part of specialist succulent collections. The exceptional diversity of the Aizoaceae is not only limited to its growth forms, habitat, and chemistry, but is also reflected in its many traditional uses. Selected species are well known for their use in traditional medicines, with recent scientific studies validating their biological activity. AIM OF THE STUDY Herein, this review aimed to articulate foundational and current global research endeavors related to the traditional uses and pharmacological activities of the Aizoaceae. MATERIALS AND METHODS Research articles and search terms related to the ethnopharmacology and bioactivities of the Aizoaceae between 1940 and 2022 were evaluated using electronic databases such as Google Scholar, PubMed, ScienceDirect, Scopus, JSTOR, and Web of Science. RESULTS Popular Aizoaceae genera including Mesembryanthemum, Trianthema, and Tetragonia are noted for their cultural value and are key components in herbal medicines for the treatment of a myriad of disorders. Isolated bioactive compounds isolated from selected species demonstrated varied antimicrobial, antioxidant, and neuroprotective functions in basic pharmacological studies. However, most studies lacked reliable correlation to in vivo activity and did not adequately validate the safety and efficacy of potential therapeutic compounds. CONCLUSIONS While the cultural and therapeutic value of popular Aizoaceae species have been highlighted in the literature, there remains glaring inconsistencies among other related species. Data deficiency may be ameliorated by further studies focused on taxonomic markers, chemical characterization and underlying molecular mechanisms of activity of a wider pool of species to enhance our knowledge of this hyperdiverse family.
Collapse
Affiliation(s)
- B Kalicharan
- School of Life Sciences, University of KwaZulu Natal, Westville Campus, Durban, 4000, South Africa; Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville, 3209, South Africa
| | - Y Naidoo
- School of Life Sciences, University of KwaZulu Natal, Westville Campus, Durban, 4000, South Africa
| | - J van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville, 3209, South Africa.
| |
Collapse
|
7
|
3D Printed Hollow Microneedles for Treating Skin Wrinkles Using Different Anti-Wrinkle Agents: A Possible Futuristic Approach. COSMETICS 2023. [DOI: 10.3390/cosmetics10020041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Skin wrinkles are an inevitable phenomenon that is brought about by aging due to the degradation of scleroprotein fibers and significant collagen reduction, which is the fundamental basis of anti-wrinkle technology in use today. Conventional treatments such as lasering and Botulinum toxin have some drawbacks including allergic skin reactions, cumbersome treatment procedures, and inefficient penetration of the anti-wrinkle products into the skin due to the high resistance of stratum corneum. Bearing this in mind, the cosmetic industry has exploited the patient-compliant technology of microneedles (MNs) to treat skin wrinkles, developing several products based on solid and dissolvable MNs incorporated with antiwrinkle formulations. However, drug administration via these MNs is limited by the high molecular weight of the drugs. Hollow MNs (HMNs) can deliver a wider array of active agents, but that is a relatively unexplored area in the context of antiwrinkle technology. To address this gap, we discuss the possibility of bioinspired 3D printed HMNs in treating skin wrinkles in this paper. We compare the previous and current anti-wrinkling treatment options, as well as the techniques and challenges involved with its manufacture and commercialization.
Collapse
|
8
|
Sun G, Wang J, Xu X, Zhai L, Li Z, Liu J, Zhao D, Jiang R, Sun L. Panax ginseng Meyer cv. Silvatica phenolic acids protect DNA from oxidative damage by activating Nrf2 to protect HFF-1 cells from UVA-induced photoaging. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115883. [PMID: 36328205 DOI: 10.1016/j.jep.2022.115883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Long-wave ultraviolet A (UVA) causes skin aging by damaging the fine structures of the skin, such as elastic fibers and collagen fibers, through oxidation. Currently, the use of plant extracts to protect skin from photoaging is a popular method. Panax ginseng C.A. Meyer exerts commendable anti-photoaging and antioxidant effects. P. ginseng Meyer cv. Silvatica, also known as forest ginseng (FG), is a type of ginseng cultivated by artificially simulating the growth environment of wild ginseng aged >15 years. However, there are only a few reports on its anti-photoaging effect on the skin caused by UVA stimulation. AIM OF THE STUDY To investigate whether isolated and extracted FG can inhibit skin photoaging as well as to explore its action mechanism. METHODS The FG extract (FGE) was obtained from the supernatant of FG after water extraction and alcohol precipitation with the D101 resin. The composition and content of phenolic acids in FGE were determined by high-performance liquid chromatography (HPLC). The MTT assay was performed to detect cell viability. The ratio of SA-β-GAL-positive cells, CoL-I level, 8-OHdG concentration, MDA, GSH, GPx, SOD, and CAT activity were measured using relevant kits. Furthermore, cell cycle alterations and ROS accumulation were assessed by flow cytometry. The expressions of p53, p21, p16, and Keap1 protein were detected by Western blotting. The Nrf2 translocation was monitored by immunofluorescence staining. RESULTS The findings revealed that FGE significantly restored UVA injury-induced cell viability, reduced the proportion of SA-β-GAL-positive cells, and increased the level of CoL-I secretion in a dose-dependent manner, where the main ingredients were chlorogenic acid, protocatechuic acid, salicylic acid, p-hydroxybenzoic acid, vanillic acid, ferulic acid, and caffeic acid. Further studies indicated that this phenolic acid mixture (PAM) could alleviate UVA-induced HFF-1 cell cycle arrest and protect the DNA from oxidative damage caused by UVA stimulation. Moreover, the expressions of cell cycle regulatory proteins p53, p21, and p16 and the accumulation of ROS were inhibited, the translocation of Nrf2 into the nucleus was promoted, the expression of Keap1 protein was inhibited, the activity of intracellular antioxidant indicators GSH, GPx, SOD, and CAT was enhanced, and the expression of malondialdehyde (MDA) was inhibited. CONCLUSIONS Collectively, our results demonstrated that FG phenolic acids protect DNA from oxidative damage by activating Nrf2 to safeguard the skin from photoaging induced by UVA stimulation.
Collapse
Affiliation(s)
- Guang Sun
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Jing Wang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Xiaohao Xu
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Lu Zhai
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Zhenzhuo Li
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Jianzeng Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, China; Jilin Province Traditional Chinese Medicine Characteristic Health Product Research and Development Cross-regional Cooperation Science and Technology Innovation Center, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, China
| | - Rui Jiang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China.
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, China.
| |
Collapse
|
9
|
Wawrzyńczak A, Nowak I, Woźniak N, Chudzińska J, Feliczak-Guzik A. Synthesis and Characterization of Hierarchical Zeolites Modified with Polysaccharides and Its Potential Role as a Platform for Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15020535. [PMID: 36839857 PMCID: PMC9968069 DOI: 10.3390/pharmaceutics15020535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/24/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Hierarchical zeolites are aluminosilicates with a crystal structure, which next to the micropores possess secondary porosity in the range of mesopores and/or small macropores. Due to their ordered structure and additional secondary porosity, they have aroused great interest among scientists in recent years. Therefore, the present work concerns the synthesis and characterization of hierarchical zeolites with secondary mesoporosity, based on commercial zeolites such as MFI (ZSM-5), BEA (β) and FAU (Y), and modified with polysaccharides such as inulin, hyaluronic acid, and heparin. All materials were characterized by various analytical techniques and applied as a platform for delivery of selected drug molecules. On the basis of X-ray diffraction (presence of reflections in the 2θ angle range of 1.5-2.5°) and low-temperature nitrogen sorption isotherms (mixture of isotherms of I and IV type) additional secondary porosity was found in the mesopore range. Additional tests were also conducted to determine the possibility of loading selected molecules with biological activity into the aforementioned materials and then releasing them in the therapeutic process. Molecules with different therapeutic options were selected for testing, namely ibuprofen, curcumin, and ferulic acid with anti-inflammatory, potentially anticancer, antioxidant, and skin discoloration activities, respectively. Preliminary studies have confirmed the possibility of using hierarchical zeolites as potential carriers for bioactive molecules, as the loading percentage of active substances ranged from 39-79% and cumulative release for ibuprofen reached almost 100% after 8 h of testing.
Collapse
Affiliation(s)
- Agata Wawrzyńczak
- Correspondence: (A.W.); (A.F.-G.); Tel.: +48-61-829-1749 (A.W.); +48-61-829-1747 (A.F.-G)
| | | | | | | | | |
Collapse
|
10
|
Schanknecht E, Bachari A, Nassar N, Piva T, Mantri N. Phytochemical Constituents and Derivatives of Cannabis sativa; Bridging the Gap in Melanoma Treatment. Int J Mol Sci 2023; 24:ijms24010859. [PMID: 36614303 PMCID: PMC9820847 DOI: 10.3390/ijms24010859] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Melanoma is deadly, physically impairing, and has ongoing treatment deficiencies. Current treatment regimens include surgery, targeted kinase inhibitors, immunotherapy, and combined approaches. Each of these treatments face pitfalls, with diminutive five-year survival in patients with advanced metastatic invasion of lymph and secondary organ tissues. Polyphenolic compounds, including cannabinoids, terpenoids, and flavonoids; both natural and synthetic, have emerging evidence of nutraceutical, cosmetic and pharmacological potential, including specific anti-cancer, anti-inflammatory, and palliative utility. Cannabis sativa is a wellspring of medicinal compounds whose direct and adjunctive application may offer considerable relief for melanoma suffers worldwide. This review aims to address the diverse applications of C. sativa's biocompounds in the scope of melanoma and suggest it as a strong candidate for ongoing pharmacological evaluation.
Collapse
Affiliation(s)
- Ellen Schanknecht
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Ava Bachari
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Nazim Nassar
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Terrence Piva
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- Correspondence:
| |
Collapse
|
11
|
Synthesis of Lipid Nanoparticles Incorporated with Ferula assa-foetida L. Extract. COSMETICS 2022. [DOI: 10.3390/cosmetics9060129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Solid Lipid Nanoparticles (SLN) have been prepared by high-pressure homogenization and optimized in order to protect ferulic acid from Ferula assa-foetida L. extract. The influence of lipid and surfactant concentration on the mean particle size (Z-Ave), polydispersity index (PDI), and zeta potential (ZP) of SLN was analyzed. In addition, other parameters for the preparation of ferulic acid-loaded nanoparticles, such as extract concentration and variable parameters for the synthesis method used (e.g., pressure), were adjusted to obtain the smallest particle size and polydispersity index, as well as the highest value for zeta potential, which are characteristic of the stable SLN. The established formulation obtained from the optimized synthesis was composed of 6.0 wt.% of the lipid phase and 1.5 wt.% of surfactant, giving stable SLN with Z-Ave, PDI, and ZP values of 163.00 ± 1.06 nm, 0.16 ± 0.01, and −41.97 ± 0.47 mV, respectively. The loading of ferulic acid from Ferula assa-foetida L. extract within the SLN resulted in particles with a mean size of 155.3 ± 1.1 nm, polydispersity index of 0.16 ± 0.01, zeta potential of −38.00 ± 1.12 mV, and encapsulation efficiency of 27%, the latter being quantified on the basis of RP-HPLC analysis. Our findings highlight the added value of SLN as a delivery system for phenolic phytochemical compounds extracted from Ferula assa-foetida L.
Collapse
|
12
|
Żymańczyk-Duda E, Samson SO, Brzezińska-Rodak M, Klimek-Ochab M. Versatile Applications of Cyanobacteria in Biotechnology. Microorganisms 2022; 10:microorganisms10122318. [PMID: 36557571 PMCID: PMC9785398 DOI: 10.3390/microorganisms10122318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Cyanobacteria are blue-green Gram-negative and photosynthetic bacteria which are seen as one of the most morphologically numerous groups of prokaryotes. Because of their ability to fix gaseous nitrogen and carbon dioxide to organic materials, they are known to play important roles in the universal nutrient cycle. Cyanobacteria has emerged as one of the promising resources to combat the issues of global warming, disease outbreaks, nutrition insecurity, energy crises as well as persistent daily human population increases. Cyanobacteria possess significant levels of macro and micronutrient substances which facilitate the versatile popularity to be utilized as human food and protein supplements in many countries such as Asia. Cyanobacteria has been employed as a complementary dietary constituent of feed for poultry and as vitamin and protein supplement in aquatic lives. They are effectively used to deal with numerous tasks in various fields of biotechnology, such as agricultural (including aquaculture), industrial (food and dairy products), environmental (pollution control), biofuel (bioenergy) and pharmaceutical biotechnology (such as antimicrobial, anti-inflammatory, immunosuppressant, anticoagulant and antitumor); recently, the growing interest of applying them as biocatalysts has been observed as well. Cyanobacteria are known to generate a numerous variety of bioactive compounds. However, the versatile potential applications of cyanobacteria in biotechnology could be their significant growth rate and survival in severe environmental conditions due to their distinct and unique metabolic pathways as well as active defensive mechanisms. In this review, we elaborated on the versatile cyanobacteria applications in different areas of biotechnology. We also emphasized the factors that could impede the implementation to cyanobacteria applications in biotechnology and the execution of strategies to enhance their effective applications.
Collapse
|
13
|
Costa EF, Magalhães WV, Di Stasi LC. Recent Advances in Herbal-Derived Products with Skin Anti-Aging Properties and Cosmetic Applications. Molecules 2022; 27:7518. [PMID: 36364354 PMCID: PMC9658815 DOI: 10.3390/molecules27217518] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 10/10/2023] Open
Abstract
Although aesthetic benefits are a desirable effect of the treatment of skin aging, it is also important in controlling several skin diseases, mainly in aged people. The development of new dermocosmetics has rapidly increased due to consumers' demand for non-invasive products with lower adverse effects than those currently available on the market. Natural compounds of plant origin and herbal-derived formulations have been popularized due to their various safe active products, which act through different mechanisms of action on several signaling pathways for skin aging. Based on this, the aim of the review was to identify the recent advances in herbal-derived product research, including herbal formulations and isolated compounds with skin anti-aging properties. The studies evaluated the biological effects of herbal-derived products in in vitro, ex vivo, and in vivo studies, highlighting the effects that were reported in clinical trials with available pharmacodynamics data that support their protective effects to treat, prevent, or control human skin aging. Thus, it was possible to identify that gallic and ferulic acids and herbal formulations containing Thymus vulgaris, Panax ginseng, Triticum aestivum, or Andrographis paniculata are the most promising natural products for the development of new dermocosmetics with skin anti-aging properties.
Collapse
Affiliation(s)
- Erika F. Costa
- Laboratory of Phytomedicines, Pharmacology, and Biotechnology (PhytoPharmaTech), Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | - Wagner V. Magalhães
- Research and Development Department, Chemyunion Ltd., Sorocaba 18087-101, SP, Brazil
| | - Luiz C. Di Stasi
- Laboratory of Phytomedicines, Pharmacology, and Biotechnology (PhytoPharmaTech), Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| |
Collapse
|
14
|
Ren YB, Wang XW, Bai JX, Liu C, Yu SL, Zhou Y, Lin CC, Yao DH, Huang J, Wang JH. Three new tyrosol derivatives from Huangjing wine. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:1018-1024. [PMID: 34842008 DOI: 10.1080/10286020.2021.2008371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Phytochemical investigation on the concentrate of Huangjing wine, resulted in the isolation of three new tyrosol derivatives 4'''-hydroxyphenethyl 2-(R)-hydroxy-3-phenylpropionate (1), 4'''-hydroxyphenethyl(4'-hydroxy-3'-methoxyphenyl)propionate (2) and 4''-hydroxyphenethyl ethyl succinate (3), together with 5 known compounds, ferulic acid (4), L-phenyllactic acid (5), hydroxytyrosol (6), dihydroferulic acid (7), cyclo(L-Pro-D-Tyr) (8). Their structures were elucidated using spectroscopic analysis and by comparison with the literature data. All compounds displayed antioxidant effect in the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical. Among them, the new compound 2 exhibited obvious antioxidant effect, and new compounds 1 and 3 exhibited medium antioxidant effect.
Collapse
Affiliation(s)
- Yan-Bin Ren
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150000, China
| | - Xing-Wen Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150000, China
| | - Jia-Xuan Bai
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150000, China
| | - Chang Liu
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150000, China
| | - Si-Lin Yu
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150000, China
| | - Yue Zhou
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150000, China
| | - Cong-Cong Lin
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150000, China
| | - Da-Hong Yao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen Technology University, Shenzhen 518060, China
| | - Jian Huang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150000, China
| | - Jin-Hui Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150000, China
| |
Collapse
|
15
|
Xu J, Zhang X, Song Y, Zheng B, Wen Z, Gong M, Meng L. Heat-Killed Lacticaseibacillus paracasei Ameliorated UVB-Induced Oxidative Damage and Photoaging and Its Underlying Mechanisms. Antioxidants (Basel) 2022; 11:1875. [PMID: 36290598 PMCID: PMC9598452 DOI: 10.3390/antiox11101875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Ultraviolet B (UVB) radiation is a major environmental causative factor of skin oxidative damage and photoaging. Lacticaseibacillus paracasei is a well-known probiotic strain that can regulate skin health. The present study investigated the effects of heat-killed Lacticaseibacillus paracasei (PL) on UVB linked oxidative damage and photoaging in skin cells (Normal human dermal fibroblast (NHDF) cells and B16F10 murine melanoma cells). Results demonstrated that: (1) PL prevented UVB-induced cytotoxicity relating to decreased DNA damage in NHDF and B16F10 cells; (2) PL alleviated UVB-induced oxidative damage through increasing GSH content, as well as antioxidant enzyme activities and mRNA levels (except MnSOD activity and mRNA levels as well as CAT mRNA level) relating to the activation of Sirt1/PGC-1α/Nrf2 signaling in NHDF cells; (3) PL attenuated UVB-induced photoaging was noticed with a decrease in the percentage of SA-β-gal positive cells in NHDF cells model. Moreover, PL attenuated UVB-induced photoaging through exerting an anti-wrinkling effect by enhancing the type I collagen level relating to the inhibition (JNK, p38)/(c-Fos, c-Jun) of signaling in NHDF cells, and exerting an anti-melanogenic effect by suppressing tyrosinase and TYRP-1 activity and/or expressions relating to the inhibition of PKA/CREB/MITF signaling in B16F10 cells. In conclusion, PL could ameliorate UVB-induced oxidative damage and photoaging. Therefore, PL may be a potential antioxidant and anti-photoaging active ingredient for the cosmetic industry.
Collapse
Affiliation(s)
| | | | - Yan Song
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bin Zheng
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhengshun Wen
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316022, China
| | | | | |
Collapse
|
16
|
Malar DS, Prasanth MI, Verma K, Prasansuklab A, Tencomnao T. Hibiscus sabdariffa Extract Protects HaCaT Cells against Phenanthrene-Induced Toxicity through the Regulation of Constitutive Androstane Receptor/Pregnane X Receptor Pathway. Nutrients 2022; 14:nu14183829. [PMID: 36145217 PMCID: PMC9502750 DOI: 10.3390/nu14183829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Phenanthrene (Phe) exposure is associated with skin ageing, cardiotoxicity and developmental defects. Here, we investigated the mode of Phe toxicity in human keratinocytes (HaCaT cells) and the attenuation of toxicity on pre-treatment (6 h) with ethanol extract of Hibiscus sabdariffa calyxes (HS). Cell viability, reactive oxygen species (ROS) generation, mitochondrial membrane potential (ΔΨm) alteration, changes in the transcriptional activity of selected genes involved in phase I and II metabolism, antioxidant response and gluconeogenesis, western blot and docking studies were performed to determine the protective effect of HS against Phe. Phe (250 μM) induced cytotoxicity in HaCaT cells through AhR-independent, CAR/PXR/RXR-mediated activation of CYP1A1 and the subsequent alterations in phase I and II metabolism genes. Further, CYP1A1 activation by Phe induced ROS generation, reduced ΔΨm and modulated antioxidant response, phase II metabolism and gluconeogenesis-related gene expression. However, pre-treatment with HS extract restored the pathological changes observed upon Phe exposure through CYP1A1 inhibition. Docking studies showed the site-specific activation of PXR and CAR by Phe and inhibition of CYP1A1 and CYP3A4 by the bioactive compounds of HS similar to that of the positive controls tested. Our results conclude that HS extract can attenuate Phe-induced toxicity in HaCaT cells through CAR/PXR/RXR mediated inhibition of CYP1A1.
Collapse
Affiliation(s)
- Dicson Sheeja Malar
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanika Verma
- Department of Parasite-Host Biology, ICMR-National Institute of Malaria Research (NIMR), New Delhi 110077, India
| | - Anchalee Prasansuklab
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (A.P.); (T.T.); Tel.: +66-218-8048 (A.P.); +66-2-218-1533 (T.T.)
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (A.P.); (T.T.); Tel.: +66-218-8048 (A.P.); +66-2-218-1533 (T.T.)
| |
Collapse
|
17
|
Li G, Lee YY, Lu X, Chen J, Liu N, Qiu C, Wang Y. Simultaneous loading of (-)-epigallocatechin gallate and ferulic acid in chitosan-based nanoparticles as effective antioxidant and potential skin-whitening agents. Int J Biol Macromol 2022; 219:333-345. [PMID: 35934077 DOI: 10.1016/j.ijbiomac.2022.07.242] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/21/2022] [Accepted: 07/31/2022] [Indexed: 11/05/2022]
Abstract
Chitosan (CS) based nanoparticles simultaneously loaded with (-)-epigallocatechin gallate (EGCG) and ferulic acid (FA) were fabricated via ionic gelation method modified by sodium tripolyphosphate and genipin (G-CS-EGCG-FA NPs). The particle size, morphology, entrapment efficiency, rheological properties, antioxidant and tyrosinase inhibitory activity of NPs were investigated. The G-CS-EGCG-FA NPs exhibited irregular ellipsoidal shape with average diameter of 412.3 nm and high DPPH and ABTS·+ scavenging ability. The entrapment efficiency of EGCG and FA in NPs was 46.0 ± 1.3 % and 46.8 ± 1.6 %, respectively. CS-based NPs show no toxic effects on NIH 3 T3 cells and B16-F10 melanoma cells with concentration <200 μg/mL and 25 μg/mL, respectively and the cell viability ranged from 100 % to 118 %. Meanwhile, the oxidative repaired capacity of G-CS-EGCG-FA NPs (200 μg/mL) in H2O2-induced cells was over 100 %, higher than that of the same dose of free EGCG or FA. Moreover, the tyrosinase inhibition activity of G-CS-EGCG-FA NPs (25 μg/mL) (84.6 %) was more potent than that of free EGCG (55.3 %), free FA (47.1 %) and kojic acid, indicating the good skin repairing and whitening ability of G-CS-EGCG-FA NPs. Given these results, this research provides new insights for designing novel particles loaded with dual bioactive agents that possess synergistic benefits.
Collapse
Affiliation(s)
- Guanghui Li
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Jinan University, Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China
| | - Yee Ying Lee
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Xuanxuan Lu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Jinan University, Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China
| | - Jing Chen
- Institute for Advance and Application Chemical synthesis, Jinan University, Guangzhou 510632, China
| | - Ning Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Chaoying Qiu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Jinan University, Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China.
| | - Yong Wang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Jinan University, Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China.
| |
Collapse
|
18
|
Merecz-Sadowska A, Sitarek P, Kowalczyk T, Zajdel K, Kucharska E, Zajdel R. The Modulation of Melanogenesis in B16 Cells Upon Treatment with Plant Extracts and Isolated Plant Compounds. Molecules 2022; 27:molecules27144360. [PMID: 35889231 PMCID: PMC9324663 DOI: 10.3390/molecules27144360] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023] Open
Abstract
Plants are a rich source of secondary metabolites that exhibit numerous desired properties. The compounds may influence the biology of melanocytes, pigment cells that produce melanin, by modulating numerous signaling pathways, including cAMP/PKA, MAPKs and PI3K/AKT. Its downstream target is microphthalmia-associated transcription factor, responsible for the expression of the tyrosinase enzyme, which plays a major role in melanogenesis. Therefore, this literature review aims to provide insights related to melanogenesis modulation mechanisms of plant extracts and isolated plant compounds in B16 cells. Database searches were conducted using online-based library search instruments from 2012 to 2022, such as NCBI-PubMed and Google Scholar. Upregulation or downregulation of signaling pathways by phytochemicals can influence skin hypo- and hyperpigmentation by changing the level of melanin production, which may pose a significant cosmetic issue. Therefore, plant extracts or isolated plant compounds may be used in the therapy of pigmentation disorders.
Collapse
Affiliation(s)
- Anna Merecz-Sadowska
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
- Correspondence:
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland;
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland;
| | - Karolina Zajdel
- Department of Medical Informatics and Statistics, Medical University of Lodz, 90-645 Lodz, Poland;
| | - Ewa Kucharska
- Chair of Gerontology, Geriatrics and Social Work at the Faculty of Pedagogy, Ignatianum Academy in Cracow, 31-501 Cracow, Poland;
| | - Radosław Zajdel
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
| |
Collapse
|
19
|
Kamila ZP, Renata D, Kołodziejczak A, Rotsztejn H. Ferulic acid - a novel topical agent in reducing signs of photoaging. Dermatol Ther 2022; 35:e15543. [PMID: 35486440 DOI: 10.1111/dth.15543] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/24/2022] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Continuous production of reactive oxygen species, induced by UV radiation, is one of the main mechanisms contributing to skin photoaging. Therefore, the use of novel superior antioxidants, which ferulic acid belongs to, is an innovative treatment option. The aim of this study was to evaluate the effect of 14% ferulic acid peel on skin hydration, topography, the level of melanin, and the severity of erythema, in people with skin photoaging symptoms. METHODS 20 women aged 45 to 60, received 8 treatments of chemical peeling in 1-week intervals. Efficacy was measured using The Multi Probe Adapter (MPA) Systems (Courage + Khazaka electronic GmbH, Köln, Germany). The measurements were taken before, 8, and 12 weeks after the first treatment. Additionally, the photo documentation was made with Fotomedicus (Elfo) and VISIA® Complexion Analysis System (Canfield Scientific, Inc.). Results The objective evaluation showed statistically significant improvement in all measured skin parameters (P<0,05). The best results of skin hydration and melanin level were observed right after the end of the series (P<0,001). The best improvement in erythema reduction was noted a month after the last treatment (P<0,0001). At the control, untreated point none of the probes showed statistically significant changes. CONCLUSION In conclusion, a series of treatments with 14% ferulic acid peel has a significant bleaching, erythema-reducing, and moisturizing activity. The results achieved by apparatus, are reflected by photo documentation. The effects achieved during a series persist over time.
Collapse
Affiliation(s)
- Zduńska-Pęciak Kamila
- Department of Cosmetology and Aesthetic Dermatology, Faculty of Pharmacy, Medical University of Łódź, Muszyńskiego 1 Street, Łódź, Poland
| | - Dębowska Renata
- Centre for Science and Research Dr Irena Eris, Warsaw, Poland
| | - Anna Kołodziejczak
- Department of Cosmetology and Aesthetic Dermatology, Faculty of Pharmacy, Medical University of Łódź, Łódź, Poland
| | - Helena Rotsztejn
- Department of Cosmetology and Aesthetic Dermatology, Faculty of Pharmacy, Medical University of Łódź, Łódź, Poland
| |
Collapse
|
20
|
Skin-Whitening and Antiwrinkle Proprieties of Maackia amurensis Methanolic Extract Lead Compounds. Processes (Basel) 2022. [DOI: 10.3390/pr10050855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
(1) Background: This study aimed to investigate the feasibility of using Maackia amurensis branch extract as a cosmetic ingredient with skin-whitening and antiwrinkle effects. (2) Methods: The skin-whitening effect of M. amurensis branch extract was confirmed by investigating α-melanocyte-stimulating hormone (α-MSH)-induced melanin synthesis and melanogenic protein expression in B16F1 cells. The antiwrinkle effect of M. amurensis branch extract was verified by assessing matrix metalloproteinase (MMP)-1 expression and soluble collagen content in CCD-986sk cells. The major compounds in M. amurensis branch extract were identified through isolation and characterization and confirmed by high-performance liquid chromatography analysis. (3) Results: M. amurensis branch extract significantly inhibited α-MSH-induced melanin synthesis by 49%, 42%, and 18% at 50, 37.5, and 25 μg/mL concentrations, respectively, compared with the negative control (NC). M. amurensis branch extract also significantly reduced the expression of the microphthalmia-associated transcription factor, tyrosinase-related protein (TRP)-1, TRP-2, and tyrosinase in B16F1 cells. Furthermore, M. amurensis branch extracts decreased ultraviolet A-induced MMP-1 expression and increased soluble collagen synthesis in CCD-986sk cells. In addition, the major compounds present in M. amurensis branch extract were found to be formononetin, genistein, trans-resveratrol, piceatannol, and tectoridin. (4) Conclusions: M. amurensis branch extract has skin-whitening and antiwrinkle properties. Therefore, it can be used as an ingredient in functional cosmetics with skin-whitening and antiwrinkle effects.
Collapse
|
21
|
Zhang H, Lu Q, Liu R. Widely targeted metabolomics analysis reveals the effect of fermentation on the chemical composition of bee pollen. Food Chem 2021; 375:131908. [PMID: 34959145 DOI: 10.1016/j.foodchem.2021.131908] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/06/2021] [Accepted: 12/18/2021] [Indexed: 01/28/2023]
Abstract
Microbial fermentation can break the bee pollen wall. However, the global profiling of bee pollen metabolites under fermentation remains unclear. This study aims to comprehensively elucidate the changes in the composition of bee pollen after microbial fermentation. Ultra-performance liquid chromatography-electron spray ionization-mass spectrometry (UPLC-ESI-MS) based on widely targeted metabolomics analysis was used to compare the chemical composition of unfermented bee pollen (UBP) and fermented bee pollen (FBP). Among the 890 metabolites detected, a total of 668 differential metabolites (classified into 17 categories) were identified between UBP and FBP. Fermentation significantly increased the contents of primary metabolites such as 74 amino acids and derivatives, 42 polyunsaturated fatty acids and 66 organic acids, as well as some secondary metabolites such as 38 phenolic acids, 80 flavone aglycones and 22 phenolamides. The results indicate that fermentation is a promising strategy to improve the nutritional value of bee pollen.
Collapse
Affiliation(s)
- Huifang Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qun Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China.
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China.
| |
Collapse
|
22
|
Nandagopal P, Steven AN, Chan LW, Rahmat Z, Jamaluddin H, Mohd Noh NI. Bioactive Metabolites Produced by Cyanobacteria for Growth Adaptation and Their Pharmacological Properties. BIOLOGY 2021; 10:1061. [PMID: 34681158 PMCID: PMC8533319 DOI: 10.3390/biology10101061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023]
Abstract
Cyanobacteria are the most abundant oxygenic photosynthetic organisms inhabiting various ecosystems on earth. As with all other photosynthetic organisms, cyanobacteria release oxygen as a byproduct during photosynthesis. In fact, some cyanobacterial species are involved in the global nitrogen cycles by fixing atmospheric nitrogen. Environmental factors influence the dynamic, physiological characteristics, and metabolic profiles of cyanobacteria, which results in their great adaptation ability to survive in diverse ecosystems. The evolution of these primitive bacteria resulted from the unique settings of photosynthetic machineries and the production of bioactive compounds. Specifically, bioactive compounds play roles as regulators to provide protection against extrinsic factors and act as intracellular signaling molecules to promote colonization. In addition to the roles of bioactive metabolites as indole alkaloids, terpenoids, mycosporine-like amino acids, non-ribosomal peptides, polyketides, ribosomal peptides, phenolic acid, flavonoids, vitamins, and antimetabolites for cyanobacterial survival in numerous habitats, which is the focus of this review, the bioactivities of these compounds for the treatment of various diseases are also discussed.
Collapse
Affiliation(s)
- Pavitra Nandagopal
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (P.N.); (L.-W.C.); (Z.R.); (H.J.)
| | - Anthony Nyangson Steven
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia;
| | - Liong-Wai Chan
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (P.N.); (L.-W.C.); (Z.R.); (H.J.)
| | - Zaidah Rahmat
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (P.N.); (L.-W.C.); (Z.R.); (H.J.)
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Skudai 81310, Malaysia
| | - Haryati Jamaluddin
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (P.N.); (L.-W.C.); (Z.R.); (H.J.)
| | - Nur Izzati Mohd Noh
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (P.N.); (L.-W.C.); (Z.R.); (H.J.)
| |
Collapse
|
23
|
Gupta KM, Das S, Chow PS. Molecular dynamics simulations to elucidate translocation and permeation of active from lipid nanoparticle to skin: complemented by experiments. NANOSCALE 2021; 13:12916-12928. [PMID: 34477775 DOI: 10.1039/d1nr02652f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
One of the most realistic approaches for delivering actives (pharmaceuticals/cosmetics) deep into skin layers is encapsulation into nanoparticles (NPs). Nonetheless, molecular-level mechanisms related to active delivery from NPs to the skin have scarcely been studied despite the large number of synthesis and characterization studies. We herein report the underlying mechanism of active translocation and permeation through the outermost layer of skin, the stratum corneum (SC), via molecular dynamics (MD) simulations complemented by experimental studies. A SC molecular model is constructed using current state-of-the-art methodology via incorporating the three most abundant skin lipids: ceramides, free fatty acids, and cholesterol. As a potent antioxidant, ferulic acid (FA) is used as the model active, and it is loaded into Gelucire 50/13 NP. MD simulations elucidate that, first, FA-loaded NP approaches the skin surface quickly, followed by slight penetration and adsorption onto the upper skin surface; FA then translocates from the NP surface to the skin surface due to stronger NP-skin interactions compared to the FA-NP interactions; then, once FA is released onto the skin surface, it slowly permeates deep into the skin bilayer. Both the free energy and resistance to permeation not only indicate the spontaneous transfer of FA from the bulk to the skin surface, but they also reveal that the main barrier against permeation exists in the middle of the lipid hydrophobic tails. Significantly lower diffusion of FA is obtained in the main barrier region compared to the bulk. The estimated permeability coefficient (log P) values are found to be higher than the experimental values. Importantly, the permeation process evaluated via MD simulations perfectly matches with experiments. The study suggests a molecular simulation platform that provides various crucial insights relating to active delivery from loaded NP to skin, and it could facilitate the design and development of novel NP-based formulations for transdermal delivery and the topical application of drugs/cosmetics.
Collapse
Affiliation(s)
- Krishna M Gupta
- Institute of Chemical & Engineering Sciences, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833.
| | | | | |
Collapse
|
24
|
Comparison of Single and Combined Use of Ergothioneine, Ferulic Acid, and Glutathione as Antioxidants for the Prevention of Ultraviolet B Radiation-Induced Photoaging Damage in Human Skin Fibroblasts. Processes (Basel) 2021. [DOI: 10.3390/pr9071204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ultraviolet B (UVB) irradiation can cause human skin damage or skin aging and wrinkle formation through photochemical reactions. Antioxidative substances may ameliorate UV damage. In this study, the anti-photoaging activity of three antioxidants—ergothioneine, ferulic acid, and glutathione—was investigated after UVB irradiation of Hs68 human skin fibroblast cells. The cells treated with these three antioxidants appeared similar to unirradiated control cells. UVB irradiation decreased cell viability by 26% compared to that of unirradiated control cells. However, the addition of either single or combined antioxidants enhanced cell viability after UVB irradiation. These three antioxidants can inhibit the production of reactive oxygen species (ROS) induced by the UVB irradiation of the Hs68 cells. Ergothioneine showed a greater inhibitory effect on matrix metalloproteinase-1 (MMP-1) performance than the other two antioxidants. IL-1 alpha was not detected in the Hs68 cells after exposure to a radiation dose of 150 mJ/cm2. Ergothioneine showed better restoration of type 1 procollagen than either ferulic acid or glutathione. Based on these results, the addition of two antioxidants was expected to restore type Ι procollagen production. In summary, these results demonstrate that the three tested antioxidants protect the skin against UVB-induced damage. The single and combined use of ergothioneine, ferulic acid, and glutathione has the potential for development as anti-photoaging materials in cosmetic applications.
Collapse
|
25
|
Mahmood I, Azfaralariff A, Mohamad A, Airianah OB, Law D, Dyari HRE, Lim YC, Fazry S. Mutated Shiitake extracts inhibit melanin-producing neural crest-derived cells in zebrafish embryo. Comp Biochem Physiol C Toxicol Pharmacol 2021; 245:109033. [PMID: 33737223 DOI: 10.1016/j.cbpc.2021.109033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/17/2021] [Accepted: 03/06/2021] [Indexed: 02/07/2023]
Abstract
The ability of natural extracts to inhibit melanocyte activity is of great interest to researchers. This study evaluates and explores the ability of mutated Shiitake (A37) and wildtype Shiitake (WE) extract to inhibit this activity. Several properties such as total phenolic (TPC) and total flavonoid content (TFC), antioxidant activity, effect on cell and component profiling were conducted. While having no significant differences in total phenolic content, mutation resulted in A37 having a TFC content (1.04 ± 0.7 mg/100 ml) compared to WE (0.86 ± 0.9 mg/100 ml). Despite that, A37 extract has lower antioxidant activity (EC50, A37 = 549.6 ± 2.70 μg/ml) than WE (EC50 = 52.8 ± 1.19 μg/ml). Toxicity tests on zebrafish embryos show that both extracts, stop the embryogenesis process when the concentration used exceeds 900 μg/ml. Although both extracts showed pigmentation reduction in zebrafish embryos, A37 extract showed no effect on embryo heartbeat. Cell cycle studies revealed that WE significantly affect the cell cycle while A37 not. Further tests found that these extracts inhibit the phosphorylation of Glycogen synthase kinase 3 β (pGSK3β) in HS27 cell line, which may explain the activation of apoptosis in melanin-producing cells. It was found that from 19 known compounds, 14 compounds were present in both WE and A37 extracts. Interestingly, the presence of decitabine in A37 extract makes it very potential for use in the medical application such as treatment of melanoma, skin therapy and even cancer.
Collapse
Affiliation(s)
- Ibrahim Mahmood
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Ahmad Azfaralariff
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Azhar Mohamad
- Malaysian Nuclear Agency, Bangi 43000, Kajang, Selangor, Malaysia
| | - Othman B Airianah
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Tasik Chini Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Innovative Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Douglas Law
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Herryawan Ryadi Eziwar Dyari
- Tasik Chini Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Yi Chieh Lim
- Danish Cancer Society Research Centre, Strand boulevard 49, Copenhagen 2100, Denmark
| | - Shazrul Fazry
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Tasik Chini Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Innovative Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| |
Collapse
|
26
|
Pharmacological potential of ferulic acid for the treatment of metabolic diseases and its mechanism of action: A review. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.26.4.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Skin Antiaging Effects of the Fermented Outer Layers of Leaf Skin of Aloe barbadensis Miller Associated with the Enhancement of Mitochondrial Activities of UVb-Irradiated Human Skin Fibroblasts. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11125660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study is the first to show that increased mitochondrial activities improved the antiaging effects of Aloe vera leaf skin fermented by Lactobacillus plantarum on UVb-irradiated skin fibroblasts. The fermented extract (AF) increased the activities of mitochondrial reductase and the complex II and significantly reduced reactive oxygen species (ROS) production, even under UVb stress conditions, and also increased DPPH free radical scavenging activities compared with the hot water extract of outer layers of aloe leaf (AW) and quercetin itself. AF exerted a synergistic effect with quercetin and bioactive substances derived from the fermentation process. Moreover, mitochondrial activation of UVb-irradiated human skin fibroblasts by 0.3% (w/v) of the AF plays important roles in increasing collagen production up to 125 ± 5.45% and decreasing MMP-1 secretion down to 69.41 ± 2.63% of the control levels. The AF enhanced the upregulation of collagen gene expression, and this change was also greater than those induced by the AW and quercetin. Therefore, this study concludes that fermentation of the skin of aloe leaves increases the activation of mitochondria and inhibits the photo-aging of UVb-irradiated skin fibroblasts.
Collapse
|
28
|
Yu Q, Fan L. Understanding the combined effect and inhibition mechanism of 4-hydroxycinnamic acid and ferulic acid as tyrosinase inhibitors. Food Chem 2021; 352:129369. [PMID: 33706137 DOI: 10.1016/j.foodchem.2021.129369] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/11/2021] [Accepted: 02/12/2021] [Indexed: 12/27/2022]
Abstract
The development of tyrosinase inhibitors to prevent the enzymatic browning have become a research hotspot in food industry. 4-Hydroxycinnamic acid (CA) and ferulic acid (FA) are both the derivates of cinnamic acids, which are widely coexisted in plants seeds and leaves. CA combined with FA (inhibition rate of 90.44%) were found to effectively inhibit tyrosinase activity than employing CA and FA alone (inhibition rate of 12.15% and 22.17%, respectively). CA-FA-tyrosinase complex resulted in fluorescence quenching. The first-order kinetics and Weibull models well described the inactivation of tyrosinase at 2-4 mM and 6-10 mM of CA and FA, respectively. Additionally, UV-vis spectrum indicated that several characteristic groups such as hydroxyl group in CA competed with the nucleophilic attack of intramolecular cyclization, leading to the decrease of characteristic peak. Molecular docking further studied that CA and FA interacted with the activity cavity of tyrosinase by amino acids residues Ser282, His263, and Val283.
Collapse
Affiliation(s)
- Qun Yu
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Collaborat Innovat Ctr Food Safety & Qual Control, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
29
|
Identification of Mushroom and Murine Tyrosinase Inhibitors from Achillea biebersteinii Afan. Extract. Molecules 2021; 26:molecules26040964. [PMID: 33670416 PMCID: PMC7917799 DOI: 10.3390/molecules26040964] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
Growing scientific evidence indicates that Achillea biebersteinii is a valuable source of active ingredients with potential cosmetic applications. However, the data on its composition and pharmacological properties are still insufficient. This study aims to optimize the extraction procedure of the plant material, evaluate its phytochemical composition, and compare anti-tyrosinase potential of A. biebersteinii extracts obtained by various methods. In order to identify compounds responsible for the tyrosinase inhibitory activity of A. biebersteinii, the most active anti-tyrosinase extract was fractionated by column chromatography. The fractions were examined for their skin lightening potential by mushroom and murine tyrosinase inhibitory assays and melanin release assay. HPLC-ESI-Q-TOF-MS/MS analysis of the total extract revealed the presence of several phenolic acids, flavonoids, flavonoid glucosides, and carboxylic acid. Among them, fraxetin-8-O-glucoside, quercetin-O-glucopyranose, schaftoside/isoschaftoside, gmelinin B, 1,3-dicaffeoylquinic acid (1,3-DCQA), and ferulic acid were found in the fractions with the highest skin lightening potential. Based on obtained qualitative and quantitative analysis of the fractions, it was assumed that the caffeoylquinic acid derivatives and dicaffeoylquinic acid derivatives are more likely responsible for mushroom tyrosinase inhibitory activity of A. biebersteinii extracts and fractions. Ferulic acid was proposed as the most active murine tyrosinase inhibitor, responsible also for the reduced melanin release from B16F10 murine melanoma cells.
Collapse
|
30
|
Antiphotoaging Potential of Extracts of Yin-Tonic Herbal Medicine in Skin Cell and Human Skin Equivalent. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2020:8881270. [PMID: 33488755 PMCID: PMC7798114 DOI: 10.1155/2020/8881270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/25/2020] [Accepted: 11/06/2020] [Indexed: 12/19/2022]
Abstract
Yin-tonic herbal medicines have been shown to possess properties that make skin healthy by nourishing within various organs of the body. However, the antiphotoaging effect of these medicines on the skin has not been fully studied. Photoaging occurs with prolonged sun exposure and causes skin damage and aging, with depletion of the dermal extracellular matrix and chronic alterations in skin structure, such as wrinkles. In this study, we assessed the antiphotoaging effects of eight yin-tonic herbal medicines on human skin cells and skin equivalents. The levels of type I procollagen and matrix metalloproteinase-1 (MMP-1) in ultraviolet B- (UVB-) irradiated CCD-986sk fibroblasts were measured, and then three medicines were chosen based on screening results. Using UVB-irradiated human skin equivalents, we evaluated the effect of three yin-tonic herbal medicines on histological changes of skin, epidermal and dermal thickness, and MMP-1 production. Furthermore, we observed collagen fiber content and protein expression of filaggrin in UVB-irradiated human skin equivalents. Yin-tonic herbal medicines increased type I procollagen levels and decreased the production of MMP-1 in UVB-irradiated CCD-986sk fibroblasts. The three selected yin-tonic herbal medicines recovered the collagen content and filaggrin expression via MMP-1 downregulation in UVB-irradiated human skin equivalents. Our results show that yin-tonic herbal medicines can prevent skin photoaging by reduction of MMP-1 levels and increasing the expression of moisturizing factors. Based on these results, we suggest that yin-tonic herbal medicines have the potential to be used as helpful agent for skin photoaging.
Collapse
|
31
|
Paluch Z, Biriczová L, Pallag G, Carvalheiro Marques E, Vargová N, Kmoníčková E. The therapeutic effects of Agrimonia eupatoria L. Physiol Res 2020; 69:S555-S571. [PMID: 33646008 DOI: 10.33549/physiolres.934641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Agrimonia eupatoria L. is an herb of the Rosaceae family, widely used in traditional (folk) medicine for its beneficial effects. Its water extracts (infusions and decoctions) are used in the treatment of airway and urinary system diseases, digestive tract diseases, and chronic wounds. Phytochemical analyses of Agrimonia eupatoria L. identified a variety of bioactive compounds including tannins, flavonoids, phenolic acids, triterpenoids and volatile oils possessing antioxidant, immunomodulatory and antimicrobial activities. The authors review the available literature sources examining and discussing the therapeutic and pharmacological effects of Agrimonia eupatoria L. at the molecular level in vitro and in vivo.
Collapse
Affiliation(s)
- Z Paluch
- Department of Pharmacology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
32
|
Stabilization of ferulic acid in topical gel formulation via nanoencapsulation and pH optimization. Sci Rep 2020; 10:12288. [PMID: 32703966 PMCID: PMC7378829 DOI: 10.1038/s41598-020-68732-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Ferulic acid is a potent anti-oxidant with scientifically proven skin care efficacies. However, instability of this active in the skin care products restricted its wide application in beauty and skin care industries. This study aimed to stabilize ferulic acid in topical hydrogel formulation via nanoencapsulation technique. Ferulic acid loaded nanocapsules were prepared via high pressure homogenization method and physicochemically characterized. Mean particle size of ferulic acid loaded nanocapsules was < 300 nm. TEM and SEM images exhibited spherical particles with smooth surface. DSC and XRD results indicated that ferulic acid was completely dissolved in the lipid matrix of the nanocapsules and remained in amorphous form. Two types of hydrogel formulations containing ferulic acid loaded nanocapsules were prepared: Gel A with pH higher and Gel B with pH lower than pKa of ferulic acid. Cross-polarized microscopic image of the gel formulations did not show presence of any un-encapsulated and un-dissolved crystal. Gel B showed slower and controlled release of ferulic acid than Gel A. Ferulic acid permeation through skin mimic from the gel formulation demonstrated controlled permeation. Color stability of the gel and chemical stability of ferulic acid were very good in Gel B, while poor in Gel A (although significantly better than the gel with un-encapsulated ferulic acid). The result clearly indicates that together with nanoencapsulation, low pH (less than pKa of ferulic acid) of the hydrogel was crucial for both product appearance and chemical stability of ferulic acid. In fact, it has been proved that skin care product with low pH is good for skin as it can maintain skin homeostasis and microbiome. Furthermore, the permeation result suggests that ferulic acid may penetrate into deep skin layers and at the same time avoid systemic circulation. Overall, this low pH hydrogel formulation containing nanoencapsulated ferulic acid demonstrates great promise for commercialization.
Collapse
|
33
|
Kamila MZP, Helena R. The effectiveness of ferulic acid and microneedling in reducing signs of photoaging: A split-face comparative study. Dermatol Ther 2020; 33:e14000. [PMID: 32654286 DOI: 10.1111/dth.14000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/05/2020] [Accepted: 07/08/2020] [Indexed: 11/30/2022]
Abstract
Photoaging is closely related to ultraviolet-induced oxidative stress. Ferulic acid is a plant-based antioxidant with antiaging activity. Combining ferulic acid peel with microneedling enhances its transdermal penetration. This study was designed to evaluate the efficacy of 14% ferulic acid peel combined with microneedling for facial photoaging. Sixteen women aged 45 to 60 years with Fitzpatrick skin types II and III were enrolled in this trial. All patients received eight treatment sessions with a full face application of chemical peeling based on 14% ferulic acid in 1-week intervals. During each session, on the right half of patient's face, peeling application was followed by microneedling. Efficacy was measured using Multi Probe Adapter (Courage + Khazaka electronic). The measurement of hydration, elasticity, melanin index, and erythema index were taken before treatments, after eighth session and 1 month after the last application. The objective evaluation showed statistically significant improvement in all measured skin parameters (P < .05), after ferulic acid peel application, as well as ferulic acid peel followed by microneedling. Combined therapy showed significantly greater improvement especially in skin elasticity, comparing to peeling administered alone. Ferulic acid has a significant bleaching, antiredness, smoothing, and moisturizing activity. When combined with microneedling, the efficiency is increased, in particular regarding skin elasticity.
Collapse
Affiliation(s)
- Master Zduńska-Pęciak Kamila
- Chair of Cosmetology, Department of Cosmetology and Aesthetic Dermatology, Faculty of Pharmacy, Medical University of Łódź, Łódź, Poland
| | | |
Collapse
|
34
|
Valanciene E, Jonuskiene I, Syrpas M, Augustiniene E, Matulis P, Simonavicius A, Malys N. Advances and Prospects of Phenolic Acids Production, Biorefinery and Analysis. Biomolecules 2020; 10:E874. [PMID: 32517243 PMCID: PMC7356249 DOI: 10.3390/biom10060874] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
Biotechnological production of phenolic acids is attracting increased interest due to their superior antioxidant activity, as well as other antimicrobial, dietary, and health benefits. As secondary metabolites, primarily found in plants and fungi, they are effective free radical scavengers due to the phenolic group available in their structure. Therefore, phenolic acids are widely utilised by pharmaceutical, food, cosmetic, and chemical industries. A demand for phenolic acids is mostly satisfied by utilising chemically synthesised compounds, with only a low quantity obtained from natural sources. As an alternative to chemical synthesis, environmentally friendly bio-based technologies are necessary for development in large-scale production. One of the most promising sustainable technologies is the utilisation of microbial cell factories for biosynthesis of phenolic acids. In this paper, we perform a systematic comparison of the best known natural sources of phenolic acids. The advances and prospects in the development of microbial cell factories for biosynthesis of these bioactive compounds are discussed in more detail. A special consideration is given to the modern production methods and analytics of phenolic acids.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Naglis Malys
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų pl. 19, Kaunas LT-50254, Lithuania; (E.V.); (I.J.); (M.S.); (E.A.); (P.M.); (A.S.)
| |
Collapse
|
35
|
Qian W, Liu W, Zhu D, Cao Y, Tang A, Gong G, Su H. Natural skin-whitening compounds for the treatment of melanogenesis (Review). Exp Ther Med 2020; 20:173-185. [PMID: 32509007 PMCID: PMC7271691 DOI: 10.3892/etm.2020.8687] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 03/17/2020] [Indexed: 01/23/2023] Open
Abstract
Melanogenesis is the process for the production of melanin, which is the primary cause of human skin pigmentation. Skin-whitening agents are commercially available for those who wish to have a lighter skin complexions. To date, although numerous natural compounds have been proposed to alleviate hyperpigmentation, insufficient attention has been focused on potential natural skin-whitening agents and their mechanism of action from the perspective of compound classification. In the present article, the synthetic process of melanogenesis and associated core signaling pathways are summarized. An overview of the list of natural skin-lightening agents, along with their compound classifications, is also presented, where their efficacy based on their respective mechanisms of action on melanogenesis is discussed.
Collapse
Affiliation(s)
- Wenhui Qian
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China.,School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Wenya Liu
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Dong Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Yanli Cao
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Anfu Tang
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Guangming Gong
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Hua Su
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
36
|
Kim E, Kim M, Choi HK. Alteration of metabolic profiles in Lemna paucicostata culture and enhanced production of GABA and ferulic acid by ethephon treatment. PLoS One 2020; 15:e0231652. [PMID: 32298342 PMCID: PMC7162458 DOI: 10.1371/journal.pone.0231652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/27/2020] [Indexed: 11/23/2022] Open
Abstract
Lemna species have been used in the food, feed, and pharmaceutical industries, as they are inexpensive sources of proteins, starches, and fatty acids. In this study, we treated L. paucicostata with different concentrations (0.05, 0.1, 0.2, 0.5, or 1 mM) of ethephon. The total dry weight decreased in all ethephon-treated groups compared to the control group. We also investigated the alteration of metabolic profiles induced by ethephon treatment by using gas chromatography-mass spectrometry. This analysis identified 48 metabolites, and the relative levels of most of alcohols, amino acids, fatty acids, and phenols increased by the ethephon treatment, whereas levels of organic acids and sugars decreased. Among these, the highest production of γ-aminobutyric acid (GABA, 5.041 ± 1.373 mg/L) and ferulic acid (0.640 ± 0.071 mg/L) was observed in the 0.5 mM and the 0.2 mM ethephon treatment groups, respectively. These results could be useful for large-scale culture of L. paucicostata with enhanced GABA and ferulic acid content for utilization in the food, feed, cosmetic, and pharmaceutical industries.
Collapse
Affiliation(s)
- EunBi Kim
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Myeongsun Kim
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
37
|
Kang YM, Hong CH, Kang SH, Seo DS, Kim SO, Lee HY, Sim HJ, An HJ. Anti-Photoaging Effect of Plant Extract Fermented with Lactobacillus buchneri on CCD-986sk Fibroblasts and HaCaT Keratinocytes. J Funct Biomater 2020; 11:jfb11010003. [PMID: 31936562 PMCID: PMC7151581 DOI: 10.3390/jfb11010003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 12/14/2022] Open
Abstract
Ultraviolet (UV) exposure triggers the abnormal production of reactive oxygen (ROS) species and the expression of matrix metalloproteinases (MMPs) that are responsible for photoaging. Probiotics are widely used in healthcare and for immune enhancement. One probiotic, Lactobacillus buchneri is found in Kimchi. This study was aimed at assessing the anti-photoaging effect of plant extracts fermented with L. buchneri (PELB) to develop functional cosmetics. We investigated the anti-photoaging effect of PELB in a UVB-induced photoaging in vitro model and selected effective extracts using the elastase inhibition assay, ELISA for Type I procollagen and collagenase-1, and quantitative real time PCR. Normal human dermal fibroblasts and epidermal keratinocytes were pre-treated with PELB and exposed to UVB. We found that PELB decreased elastase activity and increased type I collagen expression in a UVB-induced photoaging in vitro model. In addition, PELB greatly reduced collagenase activity and MMP mRNA levels in a UVB-induced photoaging in vitro model. Furthermore, PELB promoted the expression of moisture factor and anti-oxidant enzymes in a UVB-induced photoaging in vitro model. These results indicated that the PELB could be potential candidates for the protective effects against UVB-induced photoaging. Overall, these results suggest that PELB might be useful natural components of cosmetic products.
Collapse
Affiliation(s)
- Yun-Mi Kang
- Department of Pharmacology, College of Korean Medicine, Sangji University, Gangwon-do 26339, Korea;
| | - Chul-Hee Hong
- Department of Korean Ophthalmology and Otolaryngology and Dermatology, College of Korean Medicine, Sangji University, Wonju, Gangwon 26339, Korea;
| | - Sa-Haeng Kang
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Iksan, Jeonbuk 59338, Korea;
| | - Dong-Seok Seo
- WonNature, Wonkwang University, Iksan, Jeonbuk 54538, Korea;
| | - Seong-Oh Kim
- Research Institute, Wonkwang herb Co., Ltd., Jinan, Jeonbuk 55442, Korea; (S.-O.K.); (H.-Y.L.); (H.-J.S.)
| | - Hoon-Yeon Lee
- Research Institute, Wonkwang herb Co., Ltd., Jinan, Jeonbuk 55442, Korea; (S.-O.K.); (H.-Y.L.); (H.-J.S.)
| | - Hyeon-Jae Sim
- Research Institute, Wonkwang herb Co., Ltd., Jinan, Jeonbuk 55442, Korea; (S.-O.K.); (H.-Y.L.); (H.-J.S.)
| | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sangji University, Gangwon-do 26339, Korea;
- Correspondence: ; Tel.: +82-33-738-7503; Fax: +82-33-730-0679
| |
Collapse
|
38
|
Anis E, Zafeer MF, Firdaus F, Islam SN, Anees Khan A, Ali A, Hossain MM. Ferulic acid reinstates mitochondrial dynamics through PGC1α expression modulation in 6-hydroxydopamine lesioned rats. Phytother Res 2020; 34:214-226. [PMID: 31657074 DOI: 10.1002/ptr.6523] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 08/10/2019] [Accepted: 09/21/2019] [Indexed: 12/15/2022]
Abstract
Disruption of the tightly regulated mitochondrial dynamics and energy homeostasis leads to oxidative stress and apoptotic cell death, as observed in neurodegenerative disorders such as Parkinson's disease (PD). Polyphenolic plant derivatives have been shown to alleviate such pathological features and have been used in models of neurodegenerative disorders in previous reports. In the current study, we utilized a 6-hydroxydopamine (6-OHDA) lesioned rat model of PD to explore the protective efficacy of polyphenolic phytochemical ferulic acid (FA) against mitochondrial dysfunction and explored its effect on gene and protein expression of mitochondrial dynamics regulators dynamin-related protein 1 (Drp1)/mitofusin 2 (Mfn2) in lesioned animals. We also evaluated its effect on expression of mitochondrial biogenesis regulator PGC1α and apoptotic regulators BAX, cyt c, p53, and cleaved PARP. We found that oral FA supplementation alleviated 6-OHDA induced oxidative stress, DNA fragmentation, morphological changes, and blocked apoptotic cascade. FA also reduced mitochondrial Drp1 expression and increased gene and protein expression of PGC1α, thereby regulating expression of its downstream target Mfn2 and restoring mitochondrial dynamics in lesioned animals. Our data suggest that targeting mitochondrial dynamics through modulation of PGC1α can prove to be a potent preventive strategy against PD pathology.
Collapse
Affiliation(s)
- Ehraz Anis
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Mohd Faraz Zafeer
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Fakiha Firdaus
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Shireen Naaz Islam
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Azka Anees Khan
- Department of Pathology, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Asif Ali
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - M Mobarak Hossain
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
39
|
Kim M, Kim J, Shin YK, Kim KY. Gentisic Acid Stimulates Keratinocyte Proliferation through ERK1/2 Phosphorylation. Int J Med Sci 2020; 17:626-631. [PMID: 32210712 PMCID: PMC7085212 DOI: 10.7150/ijms.36484] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 02/03/2020] [Indexed: 11/29/2022] Open
Abstract
Keratinocyte proliferation is important for skin wound healing. The wound healing process includes blood clotting around the wound, removal of dead cells and pathogens through inflammation, and then re-epithelialization through proliferation and maturation. Proliferation assay was performed on acid natural compounds to identify candidates for natural-derived components of skin injury treatment. We found that gentisic acid promoted high cell proliferation activity compared with other compounds. Gentisic acid improved HaCaT cell proliferation by over 20% in MTT assay. Gentisic acid also had higher healing activity in an in vitro wound healing assay than allantoin as a positive control. Furthermore, we have identified how the treatment of gentisic acid can increase proliferation in the cell. Western blot analysis of proteins in the mitogen-activated protein (MAP) kinase signaling pathway showed that ERK1/2 phosphorylation was increased by gentisic acid treatment. Thus, our study indicates that gentisic acid promotes the proliferation of keratinocyte by phosphorylation of ERK1/2.
Collapse
Affiliation(s)
- Minho Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - JaeGoo Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Yu-Kyong Shin
- College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Ki-Young Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea.,College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
40
|
Kamm A, Przychodzeń P, Kuban–Jankowska A, Marino Gammazza A, Cappello F, Daca A, Żmijewski MA, Woźniak M, Górska–Ponikowska M. 2-Methoxyestradiol and Its Combination with a Natural Compound, Ferulic Acid, Induces Melanoma Cell Death via Downregulation of Hsp60 and Hsp90. JOURNAL OF ONCOLOGY 2019; 2019:9293416. [PMID: 32082378 PMCID: PMC7012217 DOI: 10.1155/2019/9293416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 12/15/2022]
Abstract
Melanoma is an aggressive type of skin cancer with one of the highest mortality rates. Notably, its incidence in the last few decades has increased faster than any other cancer. Therefore, searching for novel anticancer therapies is of great clinical importance. In the present study, we investigated the anticancer potential of 2-methoxyestradiol, potent chemotherapeutic, in the A375 melanoma cellular model. In order to furthermore evaluate the anticancer efficacy of 2-methoxyestradiol, we have additionally combined the treatment with a naturally occurring polyphenol, ferulic acid. The results were obtained using the melanoma A375 cellular model. In the study, we used MTT assay, flow cytometry, and western blot techniques. Herein, we have evidenced that the molecular mechanism of action of 2-methoxyestradiol and ferulic acid is partly related to the reduction of Hsp60 and Hsp90 levels and the induction of nitric oxide in the A375 melanoma cell model, while no changes were observed in Hsp70 expression after 2-methoxyestradiol and ferulic acid treatment separately or in combination. This is especially important in case of chemoresistance mechanisms because the accumulation of Hsp70 reduces induction of cancer cell death, thus decreasing antitumour efficacy.
Collapse
Affiliation(s)
- Anna Kamm
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Paulina Przychodzeń
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk 80-211, Poland
| | | | - Antonella Marino Gammazza
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Francesco Cappello
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Agnieszka Daca
- Department of Pathology and Rheumatology, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Michał A. Żmijewski
- Department of Histology, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Michał Woźniak
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Magdalena Górska–Ponikowska
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk 80-211, Poland
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
41
|
Yu Q, Fan L, Duan Z. Five individual polyphenols as tyrosinase inhibitors: Inhibitory activity, synergistic effect, action mechanism, and molecular docking. Food Chem 2019; 297:124910. [PMID: 31253292 DOI: 10.1016/j.foodchem.2019.05.184] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/07/2019] [Accepted: 05/27/2019] [Indexed: 01/01/2023]
Abstract
Polyphenols can inhibit the enzymatic browning in food, but their indistinct synergistic effect and conformational change have limited their applications. In this paper, the mixture of quercetin, cinnamic acid and ferulic acid (Group 11, KI = 0.239 mM) possessed a higher inhibition ability than quercetin (KI = 0.361 mM), which could promote the spontaneous binding process. The final Group 11-tyrosinase complex is more stable, and the hydrophobic effect is the major driving force during the binding process. Moreover, there is not a direct relationship between the destruction of secondary structures and catalytic activity of tyrosinase. The interaction between ferulic acid and tyrosinase could destroy the secondary structures of enzyme but it had little impact on the tyrosinase activity. Molecular docking suggested that three polyphenols from Group 11 have synergistic effect on tyrosinase. This study provides new perspectives about the development of tyrosinase inhibitors in food products.
Collapse
Affiliation(s)
- Qun Yu
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| | - Zhenhua Duan
- Institute of Food Research, Hezhou University, Guangxi 542899, China
| |
Collapse
|
42
|
Effects of Galgeungyulpitang on Cellular Production of Melanin and Elastase. JOURNAL OF ACUPUNCTURE RESEARCH 2019. [DOI: 10.13045/jar.2019.00017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
43
|
Wang YL, Dong PP, Liang JH, Li N, Sun CP, Tian XG, Huo XK, Zhang BJ, Ma XC, Lv CZ. Phytochemical constituents from Uncaria rhynchophylla in human carboxylesterase 2 inhibition: Kinetics and interaction mechanism merged with docking simulations. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 51:120-127. [PMID: 30466609 DOI: 10.1016/j.phymed.2018.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 09/27/2018] [Accepted: 10/09/2018] [Indexed: 05/14/2023]
Abstract
BACKGROUND Carboxylesterases (CEs) belong to the serine hydrolase family, and are in charge of hydrolyzing chemicals with carboxylic acid ester and amide functional groups via Ser-His-Glu. Uncaria rhynchophylla (Miq.) Miq. ex Havil. is a famous traditional Chinese medicine used in managing hyperpyrexia, epilepsy, preeclampsia, and hypertension in China. HYPOTHESIS/PURPOSE To discover the potential natural human carboxylesterase 2 (hCE 2) inhibitors from U. rhynchophylla. METHODS Compounds were obtained from the hooks of U. rhynchophylla by silica gel and preparative HPLC. Their structures were elucidated by using HRESIMS, 1D and 2D NMR spectra. Their inhibitory activeties and inhibition kinetics against hCE 2 were assayed by the fluorescent probe, and potential mechanisms were also investigated by molecular docking. RESULTS Twenty-three compounds, including a new phenolic acid uncariarhyine A (1), eight known triterpenoids (2-9), and ten known aromatic derivatives (10, 13-16, and 19-23), were isolated from U. rhynchophylla. Compounds 1-5, 7, 9, and 15 showed significant inhibitory activities against hCE 2 with IC50 values from 4.01 ± 0.61 µM to 18.60 ± 0.21 µM, and their inhibition kinetic analysis results revealed that compounds 1, 5, 9, and 15 were non-competitive; compounds 3 and 4 were mixed-type, and compounds 2 and 7 were uncompetitive. Molecular docking studies indicated inhibition mechanisms of compounds 1-5, 7, 9, and 15 against hCE 2. CONCLUSION Our present findings highlight potential natural hCE 2 inhibitors from U. rhynchophylla.
Collapse
Affiliation(s)
- Ya-Li Wang
- College of Pharmacy, College (Institute) of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, Dalian Medical University, Dalian, China.; Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Pei-Pei Dong
- College of Pharmacy, College (Institute) of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, Dalian Medical University, Dalian, China
| | - Jia-Hao Liang
- College of Pharmacy, College (Institute) of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, Dalian Medical University, Dalian, China
| | - Ning Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Cheng-Peng Sun
- College of Pharmacy, College (Institute) of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, Dalian Medical University, Dalian, China..
| | - Xiang-Ge Tian
- College of Pharmacy, College (Institute) of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, Dalian Medical University, Dalian, China
| | - Xiao-Kui Huo
- College of Pharmacy, College (Institute) of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, Dalian Medical University, Dalian, China
| | - Bao-Jing Zhang
- College of Pharmacy, College (Institute) of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, Dalian Medical University, Dalian, China
| | - Xiao-Chi Ma
- College of Pharmacy, College (Institute) of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, Dalian Medical University, Dalian, China
| | - Chuan-Zhu Lv
- Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou, China
| |
Collapse
|