1
|
Wang Q, Li Y, Wang S, Xiang Z, Dong W, Li X, Wei Y, Gao P, Dai L. A review of the historical records, chemistry, pharmacology, pharmacokinetics and edibility of Angelica dahurica. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
|
2
|
Pyrrole-2-carboxaldehydes: Origins and Physiological Activities. Molecules 2023; 28:molecules28062599. [PMID: 36985566 PMCID: PMC10058459 DOI: 10.3390/molecules28062599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Pyrrole-2-carboxaldehyde (Py-2-C) derivatives have been isolated from many natural sources, including fungi, plants (roots, leaves, and seeds), and microorganisms. The well-known diabetes molecular marker, pyrraline, which is produced after sequential reactions in vivo, has a Py-2-C skeleton. Py-2-Cs can be chemically produced by the strong acid-catalyzed condensation of glucose and amino acid derivatives in vitro. These observations indicate the importance of the Py-2-C skeleton in vivo and suggest that molecules containing this skeleton have various biological functions. In this review, we have summarized Py-2-C derivatives based on their origins. We also discuss the structural characteristics, natural sources, and physiological activities of isolated compounds containing the Py-2-C group.
Collapse
|
3
|
Wang Y, Shi F, Lu Z, Zhang M, Zhang Z, Jia F, Zhang B, Ouyang L, Zhu Z, Shi S. Seven new 3,4-dihydro-furanocoumarin derivatives from Angelica dahurica. CHINESE HERBAL MEDICINES 2023. [PMID: 37538857 PMCID: PMC10394322 DOI: 10.1016/j.chmed.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023] Open
Abstract
Objective To study the chemical constituents of the roots of Angelica dahurica, a well-known Chinese herbal medicine named Baizhi in Chinese. Methods Compounds were separated by various chromatographies, and the structures of new compounds were elucidated based on the analysis of their spectroscopic and spectrometric data (1D, 2D NMR, HRESI MS, IR, and UV). The absolute configurations of new compounds were determined by the calculated electronic circular dichroism and chemical derivatization. The inhibitory activities of all isolates against nitric oxide (NO) production were evaluated using lipopolysaccharide-activated RAW 264.7 macrophage cells. Results Seven new 3,4-dihydro-furanocoumarin derivatives (1a/1b, 2a/2b, 3a/3b, 4) together with a known furanocoumarin (5) were isolated from the roots of A. dahurica. The new compounds included three pairs of enantiomers, (4S, 2''R)-angelicadin A (1a)/(4R, 2''S)-angelicadin A (1b), (4S, 2''S)-angelicadin A (2a)/(4R, 2''R)-angelicadin A (2b), and (4S, 2''S)-secoangelicadin A (3a)/(4R, 2''R)-secoangelicadin A (3b), together with (4R, 2''R)-secoangelicadin A methyl ester (4). The known xanthotoxol (5) inhibited the NO production with the half-maximal inhibitory concentration (IC50) value of (32.8 ± 0.8) µmol/L, but all the new compounds showed no inhibitory activities at the concentration of 100 µmol/L. Conclusion This is the first report of the discovery of 3,4-dihydro-furanocoumarins from A. dahurica. The results are not only meaningful for the understanding of the chemical constituents of A. dahurica, but also enrich the reservoir of natural products.
Collapse
|
4
|
Kil YS, Baral A, Jeong BS, Laatikainen P, Liu Y, Han AR, Hong MJ, Kim JB, Choi H, Park PH, Nam JW. Combining NMR and MS to Describe Pyrrole-2-Carbaldehydes in Wheat Bran of Radiation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13002-13014. [PMID: 36167496 DOI: 10.1021/acs.jafc.2c04771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) are indispensable analytical tools to provide chemical fingerprints in metabolomics studies. The present study evaluated radiation breeding wheat lines for chemical changes by non-targeted NMR-based metabolomics analysis of bran extracts. Multivariate analysis following spectral binning suggested pyrrole-2-carbaldehydes as chemical markers of four mutant lines with distinct NMR fingerprints in a δH range of 9.28-9.40 ppm. Further NMR and MS data analysis, along with chromatographic fractionation and synthetic preparation, aimed at structure identification of marker metabolites and identified five pyrrole-2-carbaldehydes. Quantum-mechanical driven 1H iterative full spin analysis (QM-HiFSA) on synthetic pyrrole-2-carbaldehydes provided a precise description of complex peak patterns. Biological evaluation of pyrrole-2-carbaldehydes was performed with nine synthetic products, and six compounds showed hepatoprotective effects via modulation of reactive oxygen species production. Given that three out of five identified in wheat bran of radiation were described for hepatoprotective activity, the value of radiation mutation to greatly enhance pyrrole-2-carbaldehyde production was supported.
Collapse
Affiliation(s)
- Yun-Seo Kil
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, South Korea
| | - Ananda Baral
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, South Korea
| | - Byeong-Seon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, South Korea
| | | | - Yang Liu
- Product Quality & Analytical Method Department, United States Pharmacopeial Convention, Rockville, Maryland 20852, United States
| | - Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 56212, South Korea
| | - Min-Jeong Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 56212, South Korea
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 56212, South Korea
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, South Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, South Korea
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, South Korea
| |
Collapse
|
5
|
Zhao H, Feng YL, Wang M, Wang JJ, Liu T, Yu J. The Angelica dahurica: A Review of Traditional Uses, Phytochemistry and Pharmacology. Front Pharmacol 2022; 13:896637. [PMID: 35847034 PMCID: PMC9283917 DOI: 10.3389/fphar.2022.896637] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Angelica dahurica (A. dahurica) root is a famous edible medicinal herb that has been used in China for thousands of years. To date, more than 300 chemical constituents have been discovered from A. dahurica. Among these ingredients, coumarins and volatile oils are the major active compounds. Moreover, a few other compounds have also been isolated from the root of A. dahurica, such as alkaloids, phenols, sterols, benzofurans, polyacetylenes and polysaccharides. Modern pharmacological studies demonstrated that the root of A. dahurica and its active components displayed various bioactivities such as anti-inflammation, anti-tumor, anti-oxidation, analgesic activity, antiviral and anti-microbial effects, effects on the cardiovascular system, neuroprotective function, hepatoprotective activity, effects on skin diseases and so on. Based on these studies, this review focused on the research publications of A. dahurica and aimed to summarize the advances in the traditional uses, phytochemistry and pharmacology which will provide reference for the further studies and applications of A. dahurica.
Collapse
Affiliation(s)
- Hui Zhao
- Clinical Experimental Center, Xi’an International Medical Center Hospital, Xi’an, China
- Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, Xi’an, China
| | - Ya-Long Feng
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, China
| | - Ming Wang
- College of Food Science and Engineering, Northwest University, Xi’an, China
| | - Jing-Jing Wang
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Science, Northwest University, Xi’an, China
| | - Tian Liu
- Clinical Experimental Center, Xi’an International Medical Center Hospital, Xi’an, China
- Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, Xi’an, China
| | - Jun Yu
- Clinical Experimental Center, Xi’an International Medical Center Hospital, Xi’an, China
- Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, Xi’an, China
- *Correspondence: Jun Yu,
| |
Collapse
|
6
|
Qi B, Jia F, Luo Y, Ding N, Li S, Shi F, Hai Y, Wang L, Zhu ZX, Liu X, Tu P, Shi SP. Two new diterpenoids from Penicillium chrysogenum MT-12, an endophytic fungus isolated from Huperzia serrata. Nat Prod Res 2020; 36:814-821. [PMID: 32840396 DOI: 10.1080/14786419.2020.1808637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Two new diterpenoids, penicichrysogene A (1) and penicichrysogene B (2), were isolated from the solid substrate fermentation cultures of Penicillium chrysogenum MT-12, an endophytic fungus isolated from the medicinal plant of Huperzia serrata. Their structures were elucidated on the basis of extensive spectroscopic and spectrometric data (1D and 2D NMR, UV, IR, and HRESIMS). The absolute configurations of 1 and 2 were assigned on the basis of experimental and calculated electronic circular dichroism spectra. Compound 1 exhibited inhibitory activity on ATP release of thrombin-activated platelets with IC50 = 42.7 ± 3.5 μM.
Collapse
Affiliation(s)
- Bowen Qi
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Fangfang Jia
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yuan Luo
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Ning Ding
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Sainan Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Fanyu Shi
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yan Hai
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Lili Wang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Zhi-Xiang Zhu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Xiao Liu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - She-Po Shi
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| |
Collapse
|
7
|
Hwangbo H, Choi EO, Kim MY, Kwon DH, Ji SY, Lee H, Hong SH, Kim GY, Hwang HJ, Hong SH, Choi YH. Suppression of tumor growth and metastasis by ethanol extract of Angelica dahurica Radix in murine melanoma B16F10 cells. Biosci Trends 2020; 14:23-34. [PMID: 32092745 DOI: 10.5582/bst.2019.01230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The roots of Angelica dahurica have long been used as a traditional medicine in Korea to treat various diseases such as toothache and cold. In this study, we investigated the effect of ethanol extract from the roots of this plant on metastatic melanoma, a highly aggressive skin cancer, in B16F10 melanoma cells and B16F10 cell inoculated-C57BL/6 mice. Our results showed that the ethanol extracts of Angelicae dahuricae Radix (EEAD) suppressed cell growth and induced apoptotic cell death in B16F10 cells. EEAD also activated the mitochondria-mediated intrinsic apoptosis pathway, with decreased mitochondrial membrane potential, and increased production of intracellular reactive oxygen species and ration of Bax/Bcl-2 expression. Furthermore, EEAD reduced the migration, invasion, and colony formation of B16F10 cells through the reduced expression and activity of matrix metalloproteinase (MMP)-2 and -9. In addition, in vivo results demonstrated that oral administration of EEAD inhibited lactate dehydrogenase activity, hepatotoxicity, and nephrotoxicity without weight loss in B16F10 cell inoculated-mice. Importantly, EEAD was able to markedly suppress lung hypertrophy, the incidence of B16F10 cells lung metastasis, and the expression of tumor necrosis factor-alpha in lung tissue. Taken together, our findings suggest that EEAD may be useful for managing metastasis and growth of malignant cancers, including melanoma.
Collapse
Affiliation(s)
- Hyun Hwangbo
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Eun Ok Choi
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Min Yeong Kim
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Da Hye Kwon
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Seon Yeong Ji
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Hyesook Lee
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Sang Hoon Hong
- Department of Internal Medicine, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju, Korea
| | - Hye Jin Hwang
- Department of Food and Nutrition, Dong-eui University, Busan, Korea
| | - Su Hyun Hong
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| |
Collapse
|
8
|
Isolation, structure elucidation, tyrosinase inhibitory, and antioxidant evaluation of the constituents from Angelica dahurica roots. J Nat Med 2019; 74:456-462. [DOI: 10.1007/s11418-019-01375-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/16/2019] [Indexed: 10/25/2022]
|
9
|
Yang H, Qi B, Ding N, Jiang F, Jia F, Luo Y, Xu X, Wang L, Zhu Z, Liu X, Tu P, Shi S. Polyketides from Alternaria alternata MT-47, an endophytic fungus isolated from Huperzia serrata. Fitoterapia 2019; 137:104282. [PMID: 31381956 DOI: 10.1016/j.fitote.2019.104282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/28/2019] [Accepted: 07/28/2019] [Indexed: 12/29/2022]
Abstract
Four new polyketides, alternatains A-D (1-4), along with 17 known compounds (5-21) were obtained from the solid substrate fermentation cultures of Alternaria alternata MT-47, an endophytic fungus isolated from the medicinal plant of Huperzia serrata. Their structures were elucidated by extensive spectroscopic and spectrometric techniques (1D and 2D NMR, IR, and HRESIMS) and calculated electronic circular dichroism (ECD) method. Compounds 4, 6, 15, and 21 exhibited inhibitory activities on ATP release of thrombin-activated platelets with IC50 values in the range of 18.2-68.8 μM.
Collapse
Affiliation(s)
- Hongyun Yang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Bowen Qi
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Ning Ding
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Fangfang Jiang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Fangfang Jia
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Yuan Luo
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Xiping Xu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Lili Wang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Zhixiang Zhu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Xiao Liu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Shepo Shi
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China; Beijing Key Lab for Quality Evaluation of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China.
| |
Collapse
|