1
|
Ge Y, Wang J, Wu L, Wu J. Gut microbiota: a potential new regulator of hypertension. Front Cardiovasc Med 2024; 11:1333005. [PMID: 38993521 PMCID: PMC11236727 DOI: 10.3389/fcvm.2024.1333005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/16/2024] [Indexed: 07/13/2024] Open
Abstract
Hypertension is a significant risk factor for cardiovascular and cerebrovascular diseases and has become a global public health concern. Although hypertension results from a combination of factors, the specific mechanism is still unclear. However, increasing evidence suggests that gut microbiota is closely associated with the development of hypertension. We provide a summary of the composition and physiological role of gut microbiota. We then delve into the mechanism of gut microbiota and its metabolites involved in the occurrence and development of hypertension. Finally, we review various regimens for better-controlling hypertension from the diet, exercise, drugs, antibiotics, probiotics, and fecal transplantation perspectives.
Collapse
Affiliation(s)
- Yanmin Ge
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jiaxin Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lincong Wu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Junduo Wu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Yang Z, Lin S, Liu Y, Song Z, Ge Z, Fan Y, Chen L, Bi Y, Zhao Z, Wang X, Wang Y, Mao J. Targeting intestinal microecology: potential intervention strategies of traditional Chinese medicine for managing hypertension. Front Pharmacol 2023; 14:1171119. [PMID: 37324472 PMCID: PMC10264781 DOI: 10.3389/fphar.2023.1171119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Hypertension has become one of the major public health problems in the world. At present, the pathogenesis of hypertension has still not been completely elucidated. In recent years, an increasing evidence shows that intestinal microecology is closely related to hypertension, which provides a new thinking for the prevention and treatment of hypertension. Traditional Chinese medicine (TCM) has unique advantages in the treatment of hypertension. Taking intestinal microecology as the target, it is possible to interpreting the scientific connotation of TCM prevention and treatment of hypertension by updating the treatment concept of hypertension, so as to improve the therapeutic effect. In our study, the clinical evidence for TCM treatment of hypertension was systematicly summarized. And the relationship among TCM, intestinal microecology and hypertension was analyzed. In addition, the methods by which TCM regulates intestinal microecology to prevent and treat hypertension were presented, to provide new research ideas for prevention and treatment of hypertension.
Collapse
Affiliation(s)
- Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shanshan Lin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yangxi Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhihui Song
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhao Ge
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yujian Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lu Chen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingfei Bi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhiqiang Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yi Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
3
|
Wang L, Wang S, Zhang Q, He C, Fu C, Wei Q. The role of the gut microbiota in health and cardiovascular diseases. MOLECULAR BIOMEDICINE 2022; 3:30. [PMID: 36219347 PMCID: PMC9554112 DOI: 10.1186/s43556-022-00091-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
The gut microbiota is critical to human health, such as digesting nutrients, forming the intestinal epithelial barrier, regulating immune function, producing vitamins and hormones, and producing metabolites to interact with the host. Meanwhile, increasing evidence indicates that the gut microbiota has a strong correlation with the occurrence, progression and treatment of cardiovascular diseases (CVDs). In patients with CVDs and corresponding risk factors, the composition and ratio of gut microbiota have significant differences compared with their healthy counterparts. Therefore, gut microbiota dysbiosis, gut microbiota-generated metabolites, and the related signaling pathway may serve as explanations for some of the mechanisms about the occurrence and development of CVDs. Several studies have also demonstrated that many traditional and latest therapeutic treatments of CVDs are associated with the gut microbiota and its generated metabolites and related signaling pathways. Given that information, we summarized the latest advances in the current research regarding the effect of gut microbiota on health, the main cardiovascular risk factors, and CVDs, highlighted the roles and mechanisms of several metabolites, and introduced corresponding promising treatments for CVDs regarding the gut microbiota. Therefore, this review mainly focuses on exploring the role of gut microbiota related metabolites and their therapeutic potential in CVDs, which may eventually provide better solutions in the development of therapeutic treatment as well as the prevention of CVDs.
Collapse
Affiliation(s)
- Lu Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Shiqi Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Qing Zhang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chengqi He
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chenying Fu
- grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,grid.412901.f0000 0004 1770 1022Aging and Geriatric Mechanism Laboratory, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Quan Wei
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| |
Collapse
|
4
|
Martín Giménez VM, Rukavina Mikusic NL, Lee HJ, García Menéndez S, Choi MR, Manucha W. Physiopathological mechanisms involved in the development of hypertension associated with gut dysbiosis and the effect of nutritional/pharmacological interventions. Biochem Pharmacol 2022; 204:115213. [PMID: 35985404 DOI: 10.1016/j.bcp.2022.115213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022]
Abstract
The gut microbiota dysbiosis represents a triggering factor for cardiovascular diseases, including hypertension. In addition to the harmful impact caused by hypertension on different target organs, gut dysbiosis is capable of causing direct damage to critical organs such as the brain, heart, blood vessels, and kidneys. In this sense, it should be noted that pharmacological and nutritional interventions may influence gut microbiota composition, either inducing or preventing the development of hypertension. Some of the most important nutritional interventions at this level are represented by pro-, pre-, post- and/or syn-biotics, as well as polysaccharides, polyunsaturated fatty acids ω-3, polyphenols and fiber contained in different foods. Meanwhile, certain natural and synthetic active pharmaceutical ingredients, including antibiotics, antihypertensive and immunosuppressive drugs, vegetable extracts and vitamins, may also have a key role in the modulation of both gut microbiota and cardiovascular health. Additionally, gut microbiota may influence drugs and food-derived bioactive compounds metabolism, positively or negatively affecting their biological behavior facing established hypertension. The understanding of the complex interactions between gut microbiome and drug/food response results of great importance to developing improved pharmacological therapies for hypertension prevention and treatment. The purpose of this review is to critically outline the most relevant and recent findings on cardiovascular, renal and brain physiopathological mechanisms involved in the development of hypertension associated with changes in gut microbiota, besides the nutritional and pharmacological interventions potentially valuable for the prevention and treatment of this prevalent pathology. Finally, harmful food/drug interventions on gut microbiota are also described.
Collapse
Affiliation(s)
- Virna Margarita Martín Giménez
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, Sede San Juan, Argentina
| | - Natalia Lucía Rukavina Mikusic
- Universidad de Buenos Aires. CONICET. Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina; Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Ciencias Biológicas. Cátedra de Anatomía e Histología, Buenos Aires, Argentina
| | - Hyun Jin Lee
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Ciencias Biológicas. Cátedra de Anatomía e Histología, Buenos Aires, Argentina
| | - Sebastián García Menéndez
- Laboratorio de Farmacología Experimental Básica y Traslacional. Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina; Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Argentina
| | - Marcelo Roberto Choi
- Universidad de Buenos Aires. CONICET. Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina; Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Ciencias Biológicas. Cátedra de Anatomía e Histología, Buenos Aires, Argentina
| | - Walter Manucha
- Laboratorio de Farmacología Experimental Básica y Traslacional. Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina; Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Argentina.
| |
Collapse
|
5
|
Yan D, Sun Y, Zhou X, Si W, Liu J, Li M, Wu M. Regulatory effect of gut microbes on blood pressure. Animal Model Exp Med 2022; 5:513-531. [PMID: 35880388 PMCID: PMC9773315 DOI: 10.1002/ame2.12233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/25/2022] [Indexed: 12/30/2022] Open
Abstract
Hypertension is an important global public health issue because of its high morbidity as well as the increased risk of other diseases. Recent studies have indicated that the development of hypertension is related to the dysbiosis of the gut microbiota in both animals and humans. In this review, we outline the interaction between gut microbiota and hypertension, including gut microbial changes in hypertension, the effect of microbial dysbiosis on blood pressure (BP), indicators of gut microbial dysbiosis in hypertension, and the microbial genera that affect BP at the taxonomic level. For example, increases in Lactobacillus, Roseburia, Coprococcus, Akkermansia, and Bifidobacterium are associated with reduced BP, while increases in Streptococcus, Blautia, and Prevotella are associated with elevated BP. Furthermore, we describe the potential mechanisms involved in the regulation between gut microbiota and hypertension. Finally, we summarize the commonly used treatments of hypertension that are based on gut microbes, including fecal microbiota transfer, probiotics and prebiotics, antibiotics, and dietary supplements. This review aims to find novel potential genera for improving hypertension and give a direction for future studies on gut microbiota in hypertension.
Collapse
Affiliation(s)
- Dong Yan
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical SciencesXinxiang Medical UniversityXinxiangChina
| | - Ye Sun
- Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| | - Xiaoyue Zhou
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical SciencesXinxiang Medical UniversityXinxiangChina
| | - Wenhao Si
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical SciencesXinxiang Medical UniversityXinxiangChina,Department of Dermatologythe First Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
| | - Jieyu Liu
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical SciencesXinxiang Medical UniversityXinxiangChina
| | - Min Li
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical SciencesXinxiang Medical UniversityXinxiangChina
| | - Minna Wu
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical SciencesXinxiang Medical UniversityXinxiangChina
| |
Collapse
|
6
|
Cheng TY, Li JX, Chen JY, Chen PY, Ma LR, Zhang GL, Yan PY. Gut microbiota: a potential target for traditional Chinese medicine intervention in coronary heart disease. Chin Med 2021; 16:108. [PMID: 34686199 PMCID: PMC8540100 DOI: 10.1186/s13020-021-00516-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023] Open
Abstract
Coronary heart disease (CHD) is a common ischaemic heart disease whose pathological mechanism has not been fully elucidated. Single target drugs, such as antiplatelet aggregation, coronary artery dilation and lipid-lowering medicines, can relieve some symptoms clinically but cannot effectively prevent and treat CHD. Accumulating evidence has revealed that alterations in GM composition, diversity, and richness are associated with the risk of CHD. The metabolites of the gut microbiota (GM), including trimethylamine N-oxide (TMAO), short-chain fatty acids (SCFAs) and bile acids (BAs), affect human physiology by activating numerous signalling pathways. Due to the advantage of multiple components and multiple targets, traditional Chinese medicine (TCM) can intervene in CHD by regulating the composition of the GM, reducing TMAO, increasing SCFAs and other CHD interventions. We have searched PubMed, Web of science, Google Scholar Science Direct, and China National Knowledge Infrastructure (CNKI), with the use of the keywords "gut microbiota, gut flora, traditional Chinese medicine, herbal medicine, coronary heart disease". This review investigated the relationship between GM and CHD, as well as the intervention of TCM in CHD and GM, and aims to provide valuable insights for the treatments of CHD by TCM.
Collapse
Affiliation(s)
- Tian-Yi Cheng
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, People's Republic of China
| | - Jia-Xin Li
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, People's Republic of China
| | - Jing-Yi Chen
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, People's Republic of China
| | - Pei-Ying Chen
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, People's Republic of China
| | - Lin-Rui Ma
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, People's Republic of China
| | - Gui-Lin Zhang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, People's Republic of China.
| | - Pei-Yu Yan
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, People's Republic of China.
| |
Collapse
|
7
|
Yang Q, Hori M. Characterization of Contractile Machinery of Vascular Smooth Muscles in Hypertension. Life (Basel) 2021; 11:life11070702. [PMID: 34357074 PMCID: PMC8304034 DOI: 10.3390/life11070702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Hypertension is a key risk factor for cardiovascular disease and it is a growing public health problem worldwide. The pathophysiological mechanisms of vascular smooth muscle (VSM) contraction contribute to the development of hypertension. Calcium (Ca2+)-dependent and -independent signaling mechanisms regulate the balance of the myosin light chain kinase and myosin light chain phosphatase to induce myosin phosphorylation, which activates VSM contraction to control blood pressure (BP). Here, we discuss the mechanism of the contractile machinery in VSM, especially RhoA/Rho kinase and PKC/CPI-17 of Ca2+ sensitization pathway in hypertension. The two signaling pathways affect BP in physiological and pathophysiological conditions and are highlighted in pulmonary, pregnancy, and salt-sensitive hypertension.
Collapse
Affiliation(s)
- Qunhui Yang
- Correspondence: ; Tel.: +81-3-5841-7940; Fax: +81-3-5841-8183
| | | |
Collapse
|
8
|
Influence of Dietary Components and Traditional Chinese Medicine on Hypertension: A Potential Role for Gut Microbiota. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5563073. [PMID: 33986817 PMCID: PMC8079198 DOI: 10.1155/2021/5563073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/10/2021] [Accepted: 04/10/2021] [Indexed: 12/11/2022]
Abstract
Hypertension (HTN) is an important worldwide public health issue affecting human health. The pathogenesis of HTN involves complex factors such as genetics, external environment, diet, and the gut microbial dysbiosis. The gut microbiota, as a medium of diet and drug metabolism, is closely correlated to host's health and disease (including HTN). Literatures were randomly collected from various databases including PubMed, ScienceDirect, Google Scholar, and China National Knowledge Infrastructure (CNKI). In this review, we elucidate the relationship between HTN and gut microbiota, as well as concerning the effects of different dietary components, diet-derived microbial metabolites, and traditional Chinese medicine (TCM) on intestinal flora. These studies have shown that diet and TCM can regulate and balance the intestinal flora, which are inclined to increasing the abundance of Akkermansia, Bifidobacterium, and Bacteroides and reducing the ratio of Firmicutes and Bacteroidetes. Moreover, monitoring the dynamic change of gut microflora may indicate patient prognosis and personalized response to treatment. This review aims to provide novel perspectives and potential personalized interventions for future HTN management from the perspective of gut microbiota.
Collapse
|
9
|
Evans L, Shen Y, Bender A, Burnett LE, Li M, Habibian JS, Zhou T, Ferguson BS. Divergent and Overlapping Roles for Selected Phytochemicals in the Regulation of Pathological Cardiac Hypertrophy. Molecules 2021; 26:molecules26051210. [PMID: 33668293 PMCID: PMC7956446 DOI: 10.3390/molecules26051210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
Plant-based foods, like fruits, vegetables, whole grains, legumes, nuts, seeds and other foodstuffs, have been deemed as heart healthy. The chemicals within these plant-based foods, i.e., phytochemicals, are credited with protecting the heart. However, the mechanistic actions of phytochemicals, which prevent clinical endpoints, such as pathological cardiac hypertrophy, are still being elucidated. We sought to characterize the overlapping and divergent mechanisms by which 18 selected phytochemicals prevent phenylephrine- and phorbol 12-myristate 13-acetate-mediated cardiomyocyte enlargement. Of the tested 18 compounds, six attenuated PE- and PMA-mediated enlargement of neonatal rat ventricular myocytes. Cell viability assays showed that apigenin, baicalein, berberine hydrochloride, emodin, luteolin and quercetin dihydrate did not reduce cell size through cytotoxicity. Four of the six phytochemicals, apigenin, baicalein, berberine hydrochloride and emodin, robustly inhibited stress-induced hypertrophy and were analyzed further against intracellular signaling and genome-wide changes in mRNA expression. The four phytochemicals differentially regulated mitogen-activated protein kinases and protein kinase D. RNA-sequencing further showed divergence in gene regulation, while pathway analysis demonstrated overlap in the regulation of inflammatory pathways. Combined, this study provided a comprehensive analysis of cardioprotective phytochemicals. These data highlight two defining observations: (1) that these compounds predominantly target divergent gene pathways within cardiac myocytes and (2) that regulation of overlapping signaling and gene pathways may be of particular importance for the anti-hypertrophic actions of these phytochemicals. Despite these new findings, future works investigating rodent models of heart failure are still needed to understand the roles for these compounds in the heart.
Collapse
Affiliation(s)
- Levi Evans
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA; (L.E.); (Y.S.); (A.B.); (L.E.B.)
- Environmental Sciences Program, University of Nevada, Reno, NV 89557, USA
| | - Yiqui Shen
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA; (L.E.); (Y.S.); (A.B.); (L.E.B.)
| | - Abigail Bender
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA; (L.E.); (Y.S.); (A.B.); (L.E.B.)
| | - Leah E. Burnett
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA; (L.E.); (Y.S.); (A.B.); (L.E.B.)
| | - Musheng Li
- Department of Pharmacology and Physiology, University of Nevada, Reno, NV 89557, USA; (M.L.); (T.Z.)
| | | | - Tong Zhou
- Department of Pharmacology and Physiology, University of Nevada, Reno, NV 89557, USA; (M.L.); (T.Z.)
| | - Bradley S. Ferguson
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA; (L.E.); (Y.S.); (A.B.); (L.E.B.)
- Environmental Sciences Program, University of Nevada, Reno, NV 89557, USA
- Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, NV 89557, USA
- Correspondence:
| |
Collapse
|
10
|
Wu J, Chen H, Qin J, Chen N, Lu S, Jin J, Li Y. Baicalin Improves Cardiac Outcome and Survival by Suppressing Drp1-Mediated Mitochondrial Fission after Cardiac Arrest-Induced Myocardial Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8865762. [PMID: 33603953 PMCID: PMC7870315 DOI: 10.1155/2021/8865762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/15/2020] [Accepted: 01/18/2021] [Indexed: 02/08/2023]
Abstract
Myocardial injury after cardiac arrest (CA) often results in severe myocardial dysfunction and death involving mitochondrial dysfunction. Here, we sought to investigate whether baicalin, a natural flavonoid compound, exerts cardioprotection against CA-induced injury via regulating mitochondrial dysfunction. We subjected the rats to asphyxia CA after a daily baicalin treatment for 4 weeks. After the return of spontaneous circulation, baicalin treatment significantly improved cardiac function performance, elevated survival rate from 35% to 75%, prevented necrosis and apoptosis in the myocardium, which was accompanied by reduced phosphorylation of Drp1 at serine 616, inhibited Drp1 translocation to the mitochondria and mitochondrial fission, and improved mitochondrial function. In H9c2 cells subjected to simulated ischemia/reperfusion, increased phosphorylation of Drp1 at serine 616 and subsequently enhanced mitochondrial Drp1 translocation as well as mitochondrial fission, augmented cardiomyocyte death, increased reactive oxygen species production, released cytochrome c from mitochondria and injured mitochondrial respiration were efficiently improved by baicalin and Drp1 specific inhibitor with Mdivi-1. Furthermore, overexpression of Drp1 augmented excessive mitochondrial fission and abolished baicalin-afforded cardioprotection, indicating that the protective impacts of baicalin are linked to the inhibition of Drp1. Altogether, our findings disclose for the first time that baicalin offers cardioprotection against ischemic myocardial injury after CA by inhibiting Drp1-mediated mitochondrial fission. Baicalin might be a prospective therapy for the treatment of post-CA myocardial injury.
Collapse
Affiliation(s)
- Jun Wu
- Department of Ultrasonography Medicine, Suzhou Hospital of Traditional Chinese Medicine, 215009 Suzhou, China
- Suzhou Research Institute of Traditional Chinese Medicine, Suzhou Hospital of Traditional Chinese Medicine, 215009 Suzhou, China
| | - Hui Chen
- Department of Emergency Medicine, Traditional Chinese Medicine Hospital of Kunshan, 215300 Kunshan, China
| | - Jiahong Qin
- Department of Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, 650032 Kunming, China
| | - Nan Chen
- Department of Intensive Care Unit, The First Affiliated Hospital of Soochow University, 215006 Suzhou, China
| | - Shiqi Lu
- Department of Intensive Care Unit, The First Affiliated Hospital of Soochow University, 215006 Suzhou, China
| | - Jun Jin
- Department of Intensive Care Unit, The First Affiliated Hospital of Soochow University, 215006 Suzhou, China
| | - Yi Li
- Department of Intensive Care Unit, The First Affiliated Hospital of Soochow University, 215006 Suzhou, China
| |
Collapse
|
11
|
Xin L, Gao J, Lin H, Qu Y, Shang C, Wang Y, Lu Y, Cui X. Regulatory Mechanisms of Baicalin in Cardiovascular Diseases: A Review. Front Pharmacol 2020; 11:583200. [PMID: 33224035 PMCID: PMC7667240 DOI: 10.3389/fphar.2020.583200] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular diseases (CVDs) is the leading cause of high morbidity and mortality worldwide, which emphasizes the urgent necessity to develop new pharmacotherapies. In eastern countries, traditional Chinese medicine Scutellaria baicalensis Georgi has been used clinically for thousands of years. Baicalin is one of the main active ingredients extracted from Chinese herbal medicine S. baicalensis. Emerging evidence has established that baicalin improves chronic inflammation, immune imbalance, disturbances in lipid metabolism, apoptosis and oxidative stress. Thereby it offers beneficial roles against the initiation and progression of CVDs such as atherosclerosis, hypertension, myocardial infarction and reperfusion, and heart failure. In this review, we summarize the pharmacological features and relevant mechanisms by which baicalin regulates CVDs in the hope to reveal its application for CVDs prevention and/or therapy.
Collapse
Affiliation(s)
- Laiyun Xin
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jialiang Gao
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongchen Lin
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Qu
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chang Shang
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuling Wang
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingdong Lu
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiangning Cui
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Effects of Sanoshashinto on left ventricular hypertrophy and gut microbiota in spontaneously hypertensive rats. J Nat Med 2020; 74:482-486. [PMID: 31956959 DOI: 10.1007/s11418-020-01387-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/04/2020] [Indexed: 10/25/2022]
Abstract
In our previous study, we found that the methanolic extract of Sanoshashinto () (SHXXTM) exhibited significant vasorelaxant effects in vitro and antihypertensive effects in vivo, and baicalin and berberine were the main antihypertensive constituents in SHXXTM. We also speculated that the baicalin-berberine (BB) combination produced vasorelaxant effects by activating the NO/cGMP pathway, and the BKCa channel and the DAG/PKC/CPI-17 pathway were involved. In this study, we examined the vasorelaxant effects using helical strips of rat aorta pretreated with different activators or inhibitors. The results suggested that the KATP channel and the voltage-dependent Ca2+ channel (VDCC) were also involved in the vasorelaxant effects. Furthermore, we found that SHXXTM and the BB combination reduced left ventricular hypertrophy and altered gut microbiota. Together, the results indicated that Sanoshashinto might have comprehensive effects on ameliorating hypertension.
Collapse
|