1
|
Benedetti B, Conte C, Bergamin E, Di Santo R, Ciasca G, Corkery JM, Bassi M, Corli G, Bilel S, Schifano F, Marti M, De-Giorgio F. Postmortem findings of organ damage in novel psychoactive substances users: A comprehensive review. Neurosci Biobehav Rev 2024; 167:105927. [PMID: 39442774 DOI: 10.1016/j.neubiorev.2024.105927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Despite the rising number of NPS-related deaths, comprehensive data on their prevalence, identification, and associated organ damage remain scarce. MATERIALS AND METHODS A literature search was conducted. Predefined inclusion and exclusion criteria were applied, resulting in the identification of 197 articles. RESULTS We identified 446 cases of NPS-related deaths, involving a total of 176 different substances. Synthetic opioids were the most prevalent class (34 %), followed by synthetic cannabinoids (22 %) and cathinones (21 %). Co-ingestion of NPS with other substances occurred in 77 % of cases. Macroscopic findings varied across organs, with congestion and edema most observed in the brain (23 %) and lung (56 %), respectively. DISCUSSION The existing literature lacks comprehensive descriptions of organs subjected to autopsy and histological examination in NPS-positive subjects. Despite this limitation, our findings underscore the prominence of lung pathology. Moreover, the prevalence of normal organs in cases of acute intoxication is a significant observation. We advocate for future research to provide more detailed insights to enhance our understanding of the multifaceted landscape of NPS-related deaths.
Collapse
Affiliation(s)
- Beatrice Benedetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Department of Healthcare Surveillance and Bioethics, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Celeste Conte
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Department of Healthcare Surveillance and Bioethics, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Eva Bergamin
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Department of Healthcare Surveillance and Bioethics, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Riccardo Di Santo
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Rome 00168, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome 00168, Italy
| | - Gabriele Ciasca
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Rome 00168, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome 00168, Italy
| | - John M Corkery
- Psychopharmacology, Drug Misuse & Novel Psychoactive Substances Research Unit, University of Hertfordshire, Hatfield AL10 9AB, UK; Dipartimento di Scienze Cliniche e Sperimentali, Università degli Studi di Brescia, Brescia, Italy
| | - Marta Bassi
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Fabrizio Schifano
- Psychopharmacology, Drug Misuse & Novel Psychoactive Substances Research Unit, University of Hertfordshire, Hatfield AL10 9AB, UK; Dipartimento di Scienze Cliniche e Sperimentali, Università degli Studi di Brescia, Brescia, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy; Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, Rome, Italy
| | - Fabio De-Giorgio
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Department of Healthcare Surveillance and Bioethics, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
2
|
Júlio S, Ferro RA, Santos S, Alexandre A, Caldeira MJ, Franco J, Barroso M, Gaspar H. Synthesis of emerging cathinones and validation of a SPE GC-MS method for their simultaneous quantification in blood. Anal Bioanal Chem 2023; 415:571-589. [PMID: 36494605 DOI: 10.1007/s00216-022-04440-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/18/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022]
Abstract
Over the past 15 years, synthetic cathinones have emerged as an important class of new psychoactive substances (NPS) worldwide. The proliferation of these psychostimulants and their sought-after effects among recreational drug users pose a serious threat to public health and enormous challenges to forensic laboratories. For forensic institutions, it is essential to be one step ahead of covert laboratories, foreseeing the structural changes possible to introduce in the core skeleton of cathinones while maintaining their stimulating activity. In this manner, it is feasible to equip themselves with standards of possible new cathinones and validated analytical methods for their qualitative and quantitative detection. Therefore, the aim of the work herein described was to synthesize emerging cathinones based on the evolving patterns in the illicit drug market, and to develop an analytical method for their accurate determination in forensic situations. Five so far unreported cathinones [4'-methyl-N-dimethylbuphedrone (4-MDMB), 4'-methyl-N-ethylbuphedrone (4-MNEB), 4'-methyl-N-dimethylpentedrone (4-MDMP), 4'-methyl-N-dimethylhexedrone (4-MDMH), and 4'-methyl-N-diethylbuphedrone (4-MDEB)] and a sixth one, 4'-methyl-N-ethylpentedrone, already reported to EMCDDA and also known as 4-MEAP, were synthesized and fully characterized by nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). An analytical method for the simultaneous quantification of these cathinones in blood, using solid phase extraction (SPE) combined with gas chromatography-mass spectrometry (GC-MS) was developed and validated. The results prove that this methodology is selective, linear, precise, and accurate. For all target cathinones, the extraction efficiency was higher than 73%, linearity was observed in the range of 10 (lower limit of quantification, LLOQ) to 800 ng/mL, with coefficients of determination higher than 0.99, and the limits of detection (LODs) were 5 ng/mL for all target cathinones. The stability of these cathinones in blood matrices is dependent on the storage conditions; 4-MNEB is the most stable compound and 4-MDMH is the least stable compound. The low limits obtained allow the detection of the compounds in situations where they are involved, even if present at low concentrations.
Collapse
Affiliation(s)
- Sara Júlio
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal.,Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Rua Larga, 3004-535, Coimbra, Portugal
| | - Raquel A Ferro
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Susana Santos
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Andrea Alexandre
- Laboratório de Polícia Científica da Polícia Judiciária - Setor de Drogas e Toxicologia, Rua Gomes Freire, 1169-007, Lisbon, Portugal
| | - Maria João Caldeira
- Laboratório de Polícia Científica da Polícia Judiciária - Setor de Drogas e Toxicologia, Rua Gomes Freire, 1169-007, Lisbon, Portugal
| | - João Franco
- Instituto Nacional de Medicina Legal e Ciências Forenses, I.P. - Delegação do Sul, Serviço de Química e Toxicologia Forenses, Rua Manuel Bento de Sousa, 3, 1169-201, Lisbon, Portugal
| | - Mário Barroso
- Instituto Nacional de Medicina Legal e Ciências Forenses, I.P. - Delegação do Sul, Serviço de Química e Toxicologia Forenses, Rua Manuel Bento de Sousa, 3, 1169-201, Lisbon, Portugal.
| | - Helena Gaspar
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal. .,MARE - Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630, Peniche, Portugal.
| |
Collapse
|
3
|
Zawadzki M, Kowalski G, Chłopaś-Konowałek A, Siczek M, Sobieszczańska M, Leppert W, Wieczorowska-Tobis K, Szpot P. Rapid Determination of Sufentanil in Human Plasma by UHPLC-QqQ-MS-MS. J Anal Toxicol 2021; 45:605-611. [PMID: 32901795 DOI: 10.1093/jat/bkaa123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/11/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022] Open
Abstract
This paper presents a rapid, sensitive and precise method developed and validated for the quantification of sufentanil in biological samples using ultra-performance liquid chromatography coupled with QqQ-MS-MS. Plasma samples were extracted with simple and fast liquid-liquid extraction (ethyl acetate, pH 9). Calibration curve showed linearity in the concentration range of 0.005-30 µg/L. The lower limit of quantification was 0.010 µg/L. The most important method features are low lower limit of quantification value, simple plasma extraction and small sample volume. This method is suitable not only for evaluation of the pharmacokinetics, toxicology, bioavailability and clinical pharmacology of sufentanil but also for the detection and identification of this compound in human plasma samples for forensic purposes.
Collapse
Affiliation(s)
- Marcin Zawadzki
- Department of Forensic Medicine, Wroclaw Medical University, 4 J. Mikulicza-Radeckiego Street, 50-345 Wrocław, Poland.,Institute of Toxicology Research, 45 Kasztanowa Street, 55-093 Borowa, Poland
| | - Grzegorz Kowalski
- Department of Palliative Medicine, Poznan University of Medical Sciences, 55 Rusa Street, 61-245 Poznań, Poland
| | | | - Marta Siczek
- Department of Forensic Medicine, Wroclaw Medical University, 4 J. Mikulicza-Radeckiego Street, 50-345 Wrocław, Poland
| | - Małgorzata Sobieszczańska
- Department and Clinic of Geriatrics, Wroclaw Medical University, 66 Marii Skłodowskiej-Curie Street, 50-369 Wrocław, Poland
| | - Wojciech Leppert
- Department of Palliative Medicine, Poznan University of Medical Sciences, 55 Rusa Street, 61-245 Poznań, Poland
| | | | - Paweł Szpot
- Department of Forensic Medicine, Wroclaw Medical University, 4 J. Mikulicza-Radeckiego Street, 50-345 Wrocław, Poland.,Institute of Toxicology Research, 45 Kasztanowa Street, 55-093 Borowa, Poland
| |
Collapse
|
4
|
Detection of 4-FMC, 4-MeO-α-PVP, 4-F-α-PVP, and PV8 in blood in a forensic case using liquid chromatography-electrospray ionization linear ion trap mass spectrometry. Forensic Sci Int 2021; 325:110888. [PMID: 34186472 DOI: 10.1016/j.forsciint.2021.110888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 01/06/2023]
Abstract
We present a case of fatal poisoning by 4-F-methcathinone (4-FMC; also called flephedrone), 4-methoxy-α-pyrrolidinopentiophenone (4-MeO-α-PVP), 4-fluoro-α-pyrrolidinopentiophenone (4-F-α-PVP), and α-pyrrolidinohepatanophenone (PV8). In this study, we compared the mass spectra of 4-FMC, 4-MeO-α-PVP, 4-F-α-PVP, PV8, and α-pyrrolidinohexanophenone between LC-ESI-LIT-MS and GC-EI-MS analyses. Subsequently, we applied LC-ESI-LIT-MS for detection and quantification analyses of 4-FMC, 4-MeO-α-PVP, 4-F-α-PVP, and PV8 in human authentic whole blood samples. More specific mass spectra for the target compounds were obtained with the LC-ESI-LIT-MS qualitative analyses than with the GC-EI-MS analyses, indicating that LC-ESI-LIT-MS was more suitable for the qualitative analysis of cathinones. The LC-ESI-LIT-MS validation data showed moderately good linearity and reproducibility for the compounds in the quantitative analyses at the range of 1-500 ng/mL. The detection limits of four cathinones ranged from 0.1 to 1 ng/mL. The concentrations of 4-FMC, 4-MeO-α-PVP, 4-F-α-PVP, and PV8 in heart whole blood samples were 365, 449, 145, and 218 ng/mL, respectively. Those of the 4 cathinones in femoral vein whole blood samples were 397, 383, 127, and 167 ng/mL, respectively. We can then assume that the cause of death was acute poisoning by a combination of 4-FMC, 4-MeO-α-PVP, 4-F-α-PVP, and PV8. In this article, we present a detailed LC-ESI-LIT-MS procedure for detection and quantification analyses of 4-FMC, 4-MeO-α-PVP, 4-F-α-PVP, and PV8 in authentic human whole blood samples.
Collapse
|
5
|
Soares J, Costa VM, Bastos MDL, Carvalho F, Capela JP. An updated review on synthetic cathinones. Arch Toxicol 2021; 95:2895-2940. [PMID: 34100120 DOI: 10.1007/s00204-021-03083-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
Cathinone, the main psychoactive compound found in the plant Catha edulis Forsk. (khat), is a β-keto analogue of amphetamine, sharing not only the phenethylamine structure, but also the amphetamine-like stimulant effects. Synthetic cathinones are derivatives of the naturally occurring cathinone that largely entered the recreational drug market at the end of 2000s. The former "legal status", impressive marketing strategies and their commercial availability, either in the so-called "smartshops" or via the Internet, prompted their large spread, contributing to their increasing popularity in the following years. As their popularity increased, the risks posed for public health became clear, with several reports of intoxications and deaths involving these substances appearing both in the social media and scientific literature. The regulatory measures introduced thereafter to halt these trending drugs of abuse have proved to be of low impact, as a continuous emergence of new non-controlled derivatives keep appearing to replace those prohibited. Users resort to synthetic cathinones due to their psychostimulant properties but are often unaware of the dangers they may incur when using these substances. Therefore, studies aimed at unveiling the pharmacological and toxicological properties of these substances are imperative, as they will provide increased expertise to the clinicians that face this problem on a daily basis. The present work provides a comprehensive review on history and legal status, chemistry, pharmacokinetics, pharmacodynamics, adverse effects and lethality in humans, as well as on the current knowledge of the neurotoxic mechanisms of synthetic cathinones.
Collapse
Affiliation(s)
- Jorge Soares
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Vera Marisa Costa
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Maria de Lourdes Bastos
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - João Paulo Capela
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
- FP-ENAS (Fernando Pessoa Energy, Environment and Health Research Unit), CEBIMED (Biomedical Research Centre), Faculty of Health Sciences, University of Fernando Pessoa, Porto, Portugal.
| |
Collapse
|
6
|
Paul LD, Welter-Luedeke J, Penzel S, Zangl A, Graw M. Alpha-Pyrrolidinopentiothiophenone (α-PVT): A forensic case study including plasma concentrations. Forensic Sci Int 2021; 321:110721. [PMID: 33640778 DOI: 10.1016/j.forsciint.2021.110721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
Alpha-Pyrrolidinopentiothiophenone (α-PVT) belongs to the drug class of pyrrolidinophenones, a subgroup of synthetic cathinones, which are among the most prevalent new psychoactive substances. The study describes a series of 44 authentic forensic cases with analytical confirmed intake of α-PVT. Plasma concentrations, determined by a validated LC-MS/MS method, ranged from ca. 0.9 to 306 µg/L (median 35.6; mean 66.6 µg/L). Comprehensive toxicological analysis proved excessive co-consumption in almost all cases, including other pyrovalerones and classic stimulants as well as central depressant drugs such as opiates/opioids, benzodiazepines, pregabalin and/or ethanol. Subjects were aged between 26 and 54 years (median 35 years, mean 36 years) and appeared to be mainly experienced intravenous drug consumers. A high incidence of aberrant behavior in terms of aggressive, combative behavior and psychotic changes could be observed, as also reflected in accused offences, which frequently presented violent crimes. In consideration of several confounding factors, the study suggests a relationship between frequency of such impairment and plasma concentrations of α-PVT, but individual cases without signs of behavioral changes and high plasma concentrations also occurred, which might be explained by developed tolerance and/or individual vulnerably for the psychotic effects of pyrovalerones.
Collapse
Affiliation(s)
- Liane D Paul
- Department of Forensic Toxicology, Institute of Legal Medicine, Ludwig-Maximilians-University Munich, Nussbaumstraße 26, 80336 Munich, Germany.
| | - Jessica Welter-Luedeke
- Department of Forensic Toxicology, Institute of Legal Medicine, Ludwig-Maximilians-University Munich, Nussbaumstraße 26, 80336 Munich, Germany
| | - Saskia Penzel
- Department of Forensic Toxicology, Institute of Legal Medicine, Ludwig-Maximilians-University Munich, Nussbaumstraße 26, 80336 Munich, Germany
| | - Anna Zangl
- Department of Forensic Toxicology, Institute of Legal Medicine, Ludwig-Maximilians-University Munich, Nussbaumstraße 26, 80336 Munich, Germany
| | - Matthias Graw
- Institute of Legal Medicine, Ludwig-Maximilians-University Munich, Nussbaumstraße 26, 80336 Munich, Germany
| |
Collapse
|
7
|
Affiliation(s)
- Piotr Adamowicz
- Department of Forensic Toxicology, Institute of Forensic Research, Kraków, Poland
| |
Collapse
|
8
|
Mercurio I, Pellegrino A, Panata L, Filippucci F, Melai P, Gili A, Capano D, Troiano G, Rettagliata G, Lancia M, Bacci M. Toxicological findings in fatal intoxications from synthetic cathinones: a narrative review. AUST J FORENSIC SCI 2020. [DOI: 10.1080/00450618.2020.1841291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Isabella Mercurio
- Section of Legal Medicine, Forensic Science and Sports Medicine, University of Perugia, Perugia, Italy
| | | | - Laura Panata
- Section of Legal Medicine, Forensic Science and Sports Medicine, University of Perugia, Perugia, Italy
| | | | | | - Alessio Gili
- Department of Experimental Medicine, Hygiene and Public Health Section, University of Perugia, Perugia, Italy
| | | | | | - George Rettagliata
- Former Clinical Assistant Professor of Medicine at New York Medical College, New York, NY, USA
| | - Massimo Lancia
- Section of Legal Medicine, Forensic Science and Sports Medicine, University of Perugia, Perugia, Italy
| | - Mauro Bacci
- Section of Legal Medicine, Forensic Science and Sports Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
9
|
Flakka: New Dangerous Synthetic Cathinone on the Drug Scene. Int J Mol Sci 2020; 21:ijms21218185. [PMID: 33142953 PMCID: PMC7663692 DOI: 10.3390/ijms21218185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/24/2022] Open
Abstract
New psychoactive substances are being used as drugs and appear to be quite popular nowadays. Thanks to their specific properties, these drugs create inimitable experiences for intoxicated people. Synthetic cathinones are the most common compounds in these new drugs. Among them, α-pyrrolidopentadione (α-PVP), or “Flakka” (street name), is one of the most famous cathinone-designed drugs. Similar to other synthetic cathinone drugs, α-PVP can effectively inhibit norepinephrine and dopamine transmitters. The adverse reactions of α-PVP mainly include mania, tachycardia, and hallucinations. An increasing number of people are being admitted to emergency wards due to the consequences of their use. This work mainly summarizes the history, synthesis, pharmacology, toxicology, structure–activity relationship, metabolism, clinical process and health risks, poisoning and death, forensic toxicology, and legal status of α-PVP. We hope this review will help bring more attention to the exploration of this substance in order to raise awareness of its negative impacts on humans.
Collapse
|
10
|
Prado E, Matos RR, de Lima Gomes GM, de Sá CBL, da Costa Nunes IK, de Souza Anselmo C, de Oliveira AS, do Amaral Cohen LS, de Siqueira DS, de Oliveira MAM, Ambrosio JCL, Costa GV, de Aquino Neto FR, Padilha MC, Pereira HMG. Metabolism of synthetic cathinones through the zebrafish water tank model: a promising tool for forensic toxicology laboratories. Forensic Toxicol 2020. [DOI: 10.1007/s11419-020-00543-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Purpose
The aim of this study was to identify in vivo phase I metabolites of five psychoactive substances: N-ethylpentylone, ethylone, methylone, α-PVP and 4-CDC, using the in house developed experimental set-up zebrafish (Danio rerio) water tank (ZWT). High-resolution mass spectrometry allowed for metabolite identification. A pilot study of reference standard collection of N-ethylpentylone from the water tank was conducted.
Methods
ZWT consisted in 8 fish placed in a 200 mL recipient-containing water for a single cathinone. Experiments were performed in triplicate. Water tank samples were collected after 8 h and pretreated through solid-phase extraction. Separation and accurate-mass spectra of metabolites were obtained using liquid chromatography–high resolution tandem mass spectrometry.
Results
Phase I metabolites of α-PVP were identified, which were formed involving ketone reduction, hydroxylation, and 2″-oxo-pyrrolidine formation. The lactam derivative was the major metabolite observed for α-PVP in ZWT. N-Ethylpentylone and ethylone were transformed into phase I metabolites involving reduction, hydroxylation, and dealkylation. 4-CDC was transformed into phase I metabolites, reported for the first time, involving N-dealkylation, N,N-bis-dealkylation and reduction of the ketone group, the last one being the most intense after 8 h of the experiment.
Conclusions
ZWT model indicated to be very useful to study the metabolism of the synthetic cathinones, such as N-ethylpentylone, ethylone, α-PVP and 4-CDC. Methylone seems to be a potent CYP450 inhibitor in zebrafish. More experiments are needed to better evaluate this issue. Finally, this approach was quite simple, straightforward, extremely low cost, and fast for “human-like” metabolic studies of synthetic cathinones.
Collapse
|
11
|
Cheng KW, Hsieh CM, Chen HW, Chi PC, Yang DP, Chan SH, Chen JY, Hwa HL, Fang CC, Weng TI, Chen PS. Determination of synthetic cathinone α-pyrrolidinovalero-phenone and its metabolite in urine using solid-phase extraction and gas chromatography-mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 1:e8579. [PMID: 31502287 DOI: 10.1002/rcm.8579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/15/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE The presence of α-pyrrolidinovalerophenone (α-PVP) and its metabolites in urine is evidence of the administration of α-PVP. A toxicological challenge is that the metabolites of α-PVP exhibit amphoteric properties, which make them unsuitable for detection using gas chromatography-mass spectrometry (GC/MS). In the study reported, proper derivatization and sample extraction were essential for improving the sensitivity for GC/MS analysis. METHODS An automated solid-phase extraction (SPE) method has been developed and optimized. The derivatization efficiency was tested using longer reaction time and the addition of polar pyridine into a mixture of N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) with 1% trimethylchlorosilane. Method validation, including linearity, limit of detection, precision, accuracy, and recovery, was evaluated using automatic SPE and GC/MS. RESULTS The results suggested that adding pyridine to BSTFA (1:1, v/v) significantly improved derivatization efficiency and precision. After optimization, the linear range was from 25 to 1000 ng mL-1 with R2 > 0.9950. The limit of detection was 5 ng mL-1 for α-PVP and 25 ng mL-1 for OH-α-PVP. The recovery for SPE was over 88%. The inter-day and intra-day precisions were less than 15%. A forensic sample has been found containing α-PVP (67.3 ng mL-1 ) and OH-α-PVP (560.2 ng mL-1 ). CONCLUSIONS This study is the first to validate an auto-SPE-GC/MS method for the quantification and qualification of α-PVP and OH-α-PVP in urine. We have successfully improved the derivatization efficiency and developed a sensitive and semi-automatic approach. This approach is desirable for the detection of synthetic cathinone at trace levels in biological samples.
Collapse
Affiliation(s)
- Kai-Wen Cheng
- Department of Cosmetic Science, Providence University, Taichung, 433, Taiwan
| | - Chien-Ming Hsieh
- School of Pharmacy, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110, Taiwan
| | - Huei-Wen Chen
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, 1 Jen Ai Road Section 1, Taipei, 100, Taiwan
| | - Pin-Chieh Chi
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, 1 Jen Ai Road Section 1, Taipei, 100, Taiwan
| | - Da-Peng Yang
- Department and Graduate Institute of Forensic Medicine, College of Medicine, National Taiwan University, 7 Chung-Shan S. Road., Taipei, 100, Taiwan
| | - She-Hung Chan
- Department of Cosmetic Science, Providence University, Taichung, 433, Taiwan
| | - Ju-Yu Chen
- Department and Graduate Institute of Forensic Medicine, College of Medicine, National Taiwan University, 7 Chung-Shan S. Road., Taipei, 100, Taiwan
| | - Hsaio-Lin Hwa
- Department and Graduate Institute of Forensic Medicine, College of Medicine, National Taiwan University, 7 Chung-Shan S. Road., Taipei, 100, Taiwan
| | - Cheng-Chung Fang
- Department of Emergency Medicine, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Te-I Weng
- Department and Graduate Institute of Forensic Medicine, College of Medicine, National Taiwan University, 7 Chung-Shan S. Road., Taipei, 100, Taiwan
| | - Pai-Shan Chen
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, 1 Jen Ai Road Section 1, Taipei, 100, Taiwan
- Department and Graduate Institute of Forensic Medicine, College of Medicine, National Taiwan University, 7 Chung-Shan S. Road., Taipei, 100, Taiwan
| |
Collapse
|
12
|
Bakdash A. Simultaneous Quantification of the New Psychoactive Substances 3-FMC, 3-FPM, 4-CEC, and 4-BMC in Human Blood using GC-MS. OPEN CHEM 2019. [DOI: 10.1515/chem-2019-0101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
AbstractA gas chromatography-mass spectrometry (GC-MS) method for simultaneous quantification of 3-fluoromethcathinone (3-FMC), (±)-3-fluorophenmetrazine (3-FPM), 4-chloroethcathinone (4-CEC) and 4-Bromomethcathinone (4-BMC) in human blood with (±)-methcathinone-D3 as internal standard has been developed and validated. Whole blood samples were treated with 10% trichloroacetic acid for protein precipitation before solid phase extraction. The method was selective, the calibration curves showed linearity for all substances with R2 ranging from 0.991 to 0.998 in the range 5-1.000 ng/mL. Analysis of blank samples showed no-sign of carryover. Precision and accuracy were acceptable with values less than 20% (RSD) and ± 20% (Bias). The limit of quantification (LOQ) for all substances was 5ng/mL. Intra-day and inter-day precision were 2.111.7% and 1.3 -10.2% respectively and accuracy biases were between -10.6-19.6% % (intra-day) and 11-12.1% (inter-day). The extraction efficiencies were 85.4, 82.8, 79.1 and 74.9% for 3-FMC, 3-FPM, 4-CEC and 4-BMC respectively.A robust and reliable simultaneous quantification method using gas chromatography-mass spectrometry in selected ion monitoring mode (GC-MS-SIM) is reported.
Collapse
Affiliation(s)
- Abdulsallam Bakdash
- Department of Forensic Chemistry, College of Forensic Sciences, Naif Arab University for Security Sciences (NAUSS), Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
13
|
Development and validation of a GC–MS/MS method for the determination of 11 amphetamines and 34 synthetic cathinones in whole blood. Forensic Toxicol 2019. [DOI: 10.1007/s11419-019-00485-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Kolesnikova TO, Khatsko SL, Eltsov OS, Shevyrin VA, Kalueff AV. When fish take a bath: Psychopharmacological characterization of the effects of a synthetic cathinone bath salt ‘flakka’ on adult zebrafish. Neurotoxicol Teratol 2019; 73:15-21. [DOI: 10.1016/j.ntt.2019.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/16/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022]
|
15
|
Kraemer M, Boehmer A, Madea B, Maas A. Death cases involving certain new psychoactive substances: A review of the literature. Forensic Sci Int 2019; 298:186-267. [PMID: 30925344 DOI: 10.1016/j.forsciint.2019.02.021] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/28/2019] [Accepted: 02/12/2019] [Indexed: 11/25/2022]
Abstract
In the last decades, more and more new psychoactive substances (NPS) were introduced on the drug market which were sold as "legal" alternatives for classic drugs and misused medications. Due to an increased number of available substances and a growing utilization by users of common drugs but also by inexperienced users because of the supposed "legal" status, also undesired adverse effects of these NPS, at worst leading to death, became apparent. This review summarizes fatalities previously described in scientific literature which were attributed to the use of NPS or such cases, in which intake of NPS was proven or even assumed to contribute to death. This summary includes an overview of substances involved (particularly synthetic cannabinoids ("spice"), novel opioids and synthetic cathinones ("bath salts")) as well as of postmortem concentrations determined in various biological matrices. The compiled data assist forensic toxicologists with the interpretation of death cases involving NPS.
Collapse
Affiliation(s)
- Michael Kraemer
- University of Bonn, Institute of Forensic Medicine, Stiftsplatz 12, 53111 Bonn, Germany.
| | - Anna Boehmer
- University of Bonn, Institute of Forensic Medicine, Stiftsplatz 12, 53111 Bonn, Germany.
| | - Burkhard Madea
- University of Bonn, Institute of Forensic Medicine, Stiftsplatz 12, 53111 Bonn, Germany.
| | - Alexandra Maas
- University of Bonn, Institute of Forensic Medicine, Stiftsplatz 12, 53111 Bonn, Germany.
| |
Collapse
|
16
|
Ballesteros S, Almarza E, Quintela O, Martínez MA. The risk of consuming “Bath Salts”. Exemplification through four forensic cases in Spain. Forensic Chem 2018. [DOI: 10.1016/j.forc.2018.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
A case of intoxication with a mixture of synthetic cannabinoids EAM-2201, AB-PINACA and AB-FUBINACA, and a synthetic cathinone α-PVP. Leg Med (Tokyo) 2018; 35:44-49. [DOI: 10.1016/j.legalmed.2018.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/01/2018] [Accepted: 08/05/2018] [Indexed: 01/21/2023]
|
18
|
Fujita Y, Mita T, Usui K, Kamijo Y, Kikuchi S, Onodera M, Fujino Y, Inoue Y. Toxicokinetics of the Synthetic Cathinone α-Pyrrolidinohexanophenone. J Anal Toxicol 2018; 42:e1-e5. [PMID: 29036640 DOI: 10.1093/jat/bkx080] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Indexed: 01/14/2023] Open
Abstract
Synthetic cathinones inhibit monoamine transporters, such as serotonin, norepinephrine, and dopamine transporters, and act on the central nervous system via increasing synaptic concentrations of monoamines. These compounds, which are highly addictive and potentially poisonous, are new psychoactive substances. In this study, we investigated the toxicokinetics of the synthetic cathinone, α-pyrrolidinohexanophenone (α-PHP), and assessed the relationship between the toxicokinetics and the long-term clinical symptoms induced by α-PHP in a male patient. The patient (39 years old) suddenly started uttering inarticulate words and demonstrating incomprehensible behavior in his house, and was brought to the emergency department of Iwate Medical University hospital. He presented with psychotic symptoms, such as hallucinations and delusion; however, his vital signs were normal. The hallucinations and delusion improved by the third day of hospitalization. Toxicological analysis was performed using liquid chromatography-tandem mass spectrometry with QuEChERS extraction. α-PHP was detected in his serum at a concentration of 175 ng/mL on his arrival at the hospital. His serum concentrations of α-PHP were serially determined and their natural logarithms were plotted against time after arrival. Although serum concentrations at early time points were lacking, the obtained curve was consistent with a two-compartment model and indicated a serum elimination half-life of 37 h. The long-lasting psychotic symptoms induced by synthetic cathinones appear to be correlated with their toxicokinetic characteristics, such as their long half-lives. Finally, interpreting the toxicokinetics of synthetic cathinones may provide useful information for the toxicological assessment of new psychoactive substances for forensic and clinical purposes.
Collapse
Affiliation(s)
- Yuji Fujita
- Division of Emergency Medicine, Department of Emergency, Disaster and General Medicine, Iwate Medical University School of Medicine, Morioka, Iwate, Japan.,Poisoning and Drug Laboratory Division, Critical Care and Emergency Center, Iwate Medical University Hospital, Morioka, Iwate, Japan
| | - Toshinori Mita
- Department of Neuropsychiatry, Iwate Medical University School of Medicine, Morioka, Iwate, Japan
| | - Kiyotaka Usui
- Division of Forensic Medicine, Department of Public Health and Forensic Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yoshito Kamijo
- Emergency Medical Center and Poison Center, Saitama Medical University Hospital, Moroyama, Iruma-gun, Saitama, Japan
| | - Satoshi Kikuchi
- Division of Emergency Medicine, Department of Emergency, Disaster and General Medicine, Iwate Medical University School of Medicine, Morioka, Iwate, Japan
| | - Makoto Onodera
- Division of Emergency Medicine, Department of Emergency, Disaster and General Medicine, Iwate Medical University School of Medicine, Morioka, Iwate, Japan
| | - Yasuhisa Fujino
- Division of Emergency Medicine, Department of Emergency, Disaster and General Medicine, Iwate Medical University School of Medicine, Morioka, Iwate, Japan
| | - Yoshihiro Inoue
- Division of Emergency Medicine, Department of Emergency, Disaster and General Medicine, Iwate Medical University School of Medicine, Morioka, Iwate, Japan
| |
Collapse
|
19
|
Nagasawa S, Saitoh H, Kasahara S, Chiba F, Torimitsu S, Abe H, Yajima D, Iwase H. Relationship between KCNQ1 (LQT1) and KCNH2 (LQT2) gene mutations and sudden death during illegal drug use. Sci Rep 2018; 8:8443. [PMID: 29855564 PMCID: PMC5981596 DOI: 10.1038/s41598-018-26723-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 05/17/2018] [Indexed: 11/22/2022] Open
Abstract
Long QT syndrome (LQTS), a congenital genetic disorder, can cause torsades de pointes (TdP), and lethal cardiac arrhythmia may result from ingestion of cardiotoxic drugs. Methamphetamine (MP) and new psychoactive substances (NPSs) can trigger TdP due to QT prolongation, leading to sudden death. We therefore analysed variations in the LQTS-associated genes KCNQ1 (LQT1) and KCNH2 (LQT2) using cardiac blood and myocardial tissue from subjects having died suddenly during MP or NPS use to investigate the relationship between congenital genetic abnormalities and sudden death during illegal drug use. We amplified and sequenced all exons of these genes using samples from 20 subjects, half of whom had died taking MP and half after using NPSs. G643S, a KCNQ1 missense polymorphism, was significantly more common among sudden deaths involving NPSs (6 subjects) than those involving MP (1 subject) and healthy Japanese subjects (P = 0.001). Notably, synthetic cathinones were detected in 2 of 3 cases involving G643S carriers. Previous functional analyses have indicated that the G643S polymorphism in the KCNQ1 potassium channel gene causes mild IKs channel dysfunction. Our data suggest that use of NPSs, particularly synthetic cathinones, is associated with elevated risk of serious cardiac arrhythmia and sudden death for subjects carrying KCNQ1 G643S.
Collapse
Affiliation(s)
- Sayaka Nagasawa
- Department of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8670, Japan.
| | - Hisako Saitoh
- Department of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8670, Japan
| | - Shiori Kasahara
- Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Fumiko Chiba
- Department of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8670, Japan
- Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Suguru Torimitsu
- Department of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8670, Japan
- Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroko Abe
- Department of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8670, Japan
| | - Daisuke Yajima
- Department of Forensic Medicine, Graduate School of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita City, Chiba, 286-8686, Japan
| | - Hirotaro Iwase
- Department of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8670, Japan
- Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
20
|
Majchrzak M, Celiński R, Kowalska T, Sajewicz M. Fatal case of poisoning with a new cathinone derivative: α-propylaminopentiophenone (N-PP). Forensic Toxicol 2018; 36:525-533. [PMID: 29963213 PMCID: PMC6002430 DOI: 10.1007/s11419-018-0417-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/12/2018] [Indexed: 10/25/2022]
Abstract
PURPOSE Similar to synthetic cannabinoids, synthetic cathinone derivatives are the most popular compounds among novel psychoactive substances. Along with a growing number of new cathinones, the number of consumers wishing to enrich their experience with these compounds is also growing, and the same can be said about the growing numbers of poisonings. The reason for overdosing is a lack of consumer awareness regarding composition of the product, with which they experiment, and even more, regarding concentration of psychoactive substances contained in the taken product. In this paper, we report a case of the purposeful intake of a high dose of powder containing a novel cathinone derivative, α-propylaminopentiophenone, which resulted in the deadly poisoning of a woman. METHODS Aiming to identify this psychoactive substance causing the fatality, the postmortem specimens collected from the autopsy was analyzed by means of high-performance liquid chromatography coupled with mass spectrometry, and the analysis of a powder material found with the victim was additionally analyzed by means of gas chromatography with mass spectrometric detection. RESULTS In the course of analysis performed on the specimens originating from autopsy (blood, eyeball fluid, liver, kidney and brain), high concentrations of α-propylaminopentiophenone were established, which was responsible for the death of a young woman. The same psychoactive compound was also identified in the powder material. CONCLUSIONS To the best of the authors' knowledge, this is the first case reported in the literature on fatal poisoning with α-propyloaminopentiophenone.
Collapse
Affiliation(s)
- Milena Majchrzak
- Department of General Chemistry and Chromatography, University of Silesia, 9 Szkolna Street, 40-006 Katowice, Poland
- Toxicological Laboratory ToxLab, 6 Kossutha Street, 40-844 Katowice, Poland
| | - Rafał Celiński
- Toxicological Laboratory ToxLab, 6 Kossutha Street, 40-844 Katowice, Poland
| | - Teresa Kowalska
- Department of General Chemistry and Chromatography, University of Silesia, 9 Szkolna Street, 40-006 Katowice, Poland
| | - Mieczysław Sajewicz
- Department of General Chemistry and Chromatography, University of Silesia, 9 Szkolna Street, 40-006 Katowice, Poland
| |
Collapse
|
21
|
Lehmann S, Schulze B, Thomas A, Kamphausen T, Thevis M, Rothschild MA, Mercer-Chalmers-Bender K. Organ distribution of 4-MEC, MDPV, methoxetamine and α-PVP: comparison of QuEChERS and SPE. Forensic Toxicol 2018. [DOI: 10.1007/s11419-018-0408-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Kubo SI, Waters B, Hara K, Fukunaga T, Ikematsu K. A report of novel psychoactive substances in forensic autopsy cases and a review of fatal cases in the literature. Leg Med (Tokyo) 2017; 26:79-85. [PMID: 28549554 DOI: 10.1016/j.legalmed.2017.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/15/2017] [Accepted: 03/27/2017] [Indexed: 11/18/2022]
Affiliation(s)
- Shin-Ichi Kubo
- Department of Forensic Medicine, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Brian Waters
- Department of Forensic Medicine, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kenji Hara
- Department of Forensic Medicine, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Tatsushige Fukunaga
- Tokyo Medical Examiner's Office Tokyo Metropolitan Government, Otsuka 4-21-18, Bunkyo-ku, Tokyo 112-0012, Japan
| | - Kazuya Ikematsu
- Department of Forensic Pathology and Science, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-12-4, Nagasaki City, Nagasaki 852-8523, Japan
| |
Collapse
|
23
|
Byrska B, Stanaszek R, Zuba D. Alpha-PVP as an active component of herbal highs in Poland between 2013 and 2015. Drug Test Anal 2017; 9:1267-1274. [DOI: 10.1002/dta.2151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Bogumiła Byrska
- Institute of Forensic Research; Westerplatte 9, 31-033 Krakow Poland
| | - Roman Stanaszek
- Institute of Forensic Research; Westerplatte 9, 31-033 Krakow Poland
| | - Dariusz Zuba
- Institute of Forensic Research; Westerplatte 9, 31-033 Krakow Poland
| |
Collapse
|
24
|
Potocka-Banaś B, Janus T, Majdanik S, Banaś T, Dembińska T, Borowiak K. Fatal Intoxication with α-PVP, a Synthetic Cathinone Derivative. J Forensic Sci 2016; 62:553-556. [DOI: 10.1111/1556-4029.13326] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/22/2016] [Accepted: 06/04/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Barbara Potocka-Banaś
- Department of Clinical and Forensic Toxicology; Pomeranian Medical University in Szczecin; al. Powstańców Wlkp. 72 70-111 Szczecin Poland
| | - Tomasz Janus
- Department of Clinical and Forensic Toxicology; Pomeranian Medical University in Szczecin; al. Powstańców Wlkp. 72 70-111 Szczecin Poland
| | - Sławomir Majdanik
- Department of Forensic Medicine; Pomeranian Medical University in Szczecin; al. Powstańców Wlkp. 72 70-111 Szczecin Poland
| | - Tomasz Banaś
- District Court Szczecin-Centrum in Szczecin; ul. Kaszubska 42 70-952 Szczecin Poland
| | - Teresa Dembińska
- Department of Clinical and Forensic Toxicology; Pomeranian Medical University in Szczecin; al. Powstańców Wlkp. 72 70-111 Szczecin Poland
| | - Krzysztof Borowiak
- Department of Clinical and Forensic Toxicology; Pomeranian Medical University in Szczecin; al. Powstańców Wlkp. 72 70-111 Szczecin Poland
| |
Collapse
|
25
|
Peters JR, Keasling R, Brown SD, Pond BB. Quantification of Synthetic Cathinones in Rat Brain Using HILIC-ESI-MS/MS. J Anal Toxicol 2016; 40:718-725. [PMID: 27474358 PMCID: PMC5181524 DOI: 10.1093/jat/bkw074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 05/03/2016] [Accepted: 05/15/2016] [Indexed: 11/15/2022] Open
Abstract
The abuse of synthetic cathinones, formerly marketed as "bath salts", has emerged over the last decade. Three common drugs in this class include 3,4-methylenedioxypyrovalerone (MDPV), 4-methylmethcathinone (mephedrone), and 3,4-methylenedioxymethcathinone (methylone). An LC-MS/MS method has been developed and validated for the simultaneous quantification of MDPV, mephedrone, and methylone in brain tissue. Briefly, MDPV, mephedrone, methylone, and their deuterium-labeled analogs were subjected to solid phase extraction (SPE) and separated using an HILIC Silica Column. The HPLC was coupled to a Shimadzu IT-TOF (ion trap-time of flight) system with the electrospray source running in positive mode (+ESI). The method was validated for precision, accuracy, and extraction efficiency. All inter-day and intra-day % RSD (percent relative standard deviation) and % error values were less than 15% and extraction efficiency exceeded 80%. These conditions allowed for limits of detection of 1ng/mL for MDPV, and 5 ng/mL for both mephedrone and methylone. The limits of quantification were determined to be 5ng/mL for MDPV and 10 ng/mL for mephedrone and methylone. The method was utilized to evaluate the pharmacokinetics of these drugs in adult male rats following administration of a drug cocktail including MDPV, mephedrone, and methylone. All three compounds reached peak concentrations in the brain within 15 min. Although methylone and mephedrone were administered at the same dose, the peak concentration (Cmax) of mephedrone in the brain was significantly higher than that for methylone, as was the area under the curve (AUC). In summary, this quick and sensitive method for measuring synthetic cathinones may be used for future pharmacokinetic investigations of these drugs in target tissue.
Collapse
Affiliation(s)
- Jacob R Peters
- Department of Pharmaceutical Sciences, East Tennessee State University Bill Gatton College of Pharmacy, Box 70594, Johnson City, TN 37614, USA
| | - Robert Keasling
- Department of Pharmaceutical Sciences, East Tennessee State University Bill Gatton College of Pharmacy, Box 70594, Johnson City, TN 37614, USA
| | - Stacy D Brown
- Department of Pharmaceutical Sciences, East Tennessee State University Bill Gatton College of Pharmacy, Box 70594, Johnson City, TN 37614, USA
| | - Brooks B Pond
- Department of Pharmaceutical Sciences, East Tennessee State University Bill Gatton College of Pharmacy, Box 70594, Johnson City, TN 37614, USA
| |
Collapse
|
26
|
Ellefsen KN, Concheiro M, Huestis MA. Synthetic cathinone pharmacokinetics, analytical methods, and toxicological findings from human performance and postmortem cases. Drug Metab Rev 2016; 48:237-65. [PMID: 27249313 DOI: 10.1080/03602532.2016.1188937] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Synthetic cathinones are commonly abused novel psychoactive substances (NPS). We present a comprehensive systematic review addressing in vitro and in vivo synthetic cathinone pharmacokinetics, analytical methods for detection and quantification in biological matrices, and toxicological findings from human performance and postmortem toxicology cases. Few preclinical administration studies examined synthetic cathinone pharmacokinetic profiles (absorption, distribution, metabolism, and excretion), and only one investigated metabolite pharmacokinetics. Synthetic cathinone metabolic profiling studies, primarily with human liver microsomes, elucidated metabolite structures and identified suitable biomarkers to extend detection windows beyond those provided by parent compounds. Generally, cathinone derivatives underwent ketone reduction, carbonylation of the pyrrolidine ring, and oxidative reactions, with phase II metabolites also detected. Reliable analytical methods are necessary for cathinone identification in biological matrices to document intake and link adverse events to specific compounds and concentrations. NPS analytical methods are constrained in their ability to detect new emerging synthetic cathinones due to limited commercially available reference standards and continuous development of new analogs. Immunoassay screening methods are especially affected, but also gas-chromatography and liquid-chromatography mass spectrometry confirmation methods. Non-targeted high-resolution-mass spectrometry screening methods are advantageous, as they allow for retrospective data analysis and easier addition of new synthetic cathinones to existing methods. Lack of controlled administration studies in humans complicate interpretation of synthetic cathinones in biological matrices, as dosing information is typically unknown. Furthermore, antemortem and postmortem concentrations often overlap and the presence of other psychoactive substances are typically found in combination with cathinones derivatives, further confounding result interpretation.
Collapse
Affiliation(s)
- Kayla N Ellefsen
- a Chemistry and Drug Metabolism, IRP , National Institute on Drug Abuse, National Institutes of Health , Baltimore , MD , USA ;,b Program in Toxicology , University of Maryland Baltimore , Baltimore , MD , USA
| | - Marta Concheiro
- c Department of Sciences, John Jay College of Criminal Justice , City University of New York , New York , NY , USA
| | - Marilyn A Huestis
- a Chemistry and Drug Metabolism, IRP , National Institute on Drug Abuse, National Institutes of Health , Baltimore , MD , USA
| |
Collapse
|
27
|
Umebachi R, Aoki H, Sugita M, Taira T, Wakai S, Saito T, Inokuchi S. Clinical characteristics of α-pyrrolidinovalerophenone (α-PVP) poisoning. Clin Toxicol (Phila) 2016; 54:563-7. [PMID: 27227375 DOI: 10.3109/15563650.2016.1166508] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT α-Pyrrolidinovalerophenone (α-PVP) is a synthetic cathinone that has been abused in recent years. The clinical presentation of acute α-PVP poisoning has not been well characterized. OBJECTIVE To elucidate the clinical features of acute α-PVP poisoning. MATERIALS AND METHODS This retrospective case series included eight subjects that visited our hospital emergency department (ED) between March 2012 and November 2014 and had analytically confirmed blood α-PVP levels. Data related to subject demographics, clinical history, laboratory findings, blood drug levels, and outcome were collected. RESULTS The median age of the eight study subjects was 27 (range; 21-63) years, and six were male. Drug preparations had been administered by rectal insertion (three subjects) or inhalation (five subjects). The time between drug exposure and presentation at the ED was 8.5 (1-24) h and blood α-PVP concentrations ranged from 1.0 to 52.5 ng/ml. Although psychiatric and neurological findings were reported before arrival at the ED in 5/8 and 7/8 subjects, respectively, these were only observed in 1/8 and 2/8 subjects, respectively, at the ED. Symptoms of high body temperature (3/8), tachycardia (5/8), hypertension (3/8), acid-base balance disorder (5/8), coagulopathy (4/6), blood creatinine phosphokinase >190 U/l (6/8), and a blood lactate level > 1.7 mmol/l (5/7) were observed. All subjects survived and were discharged. CONCLUSIONS This retrospective case series showed that after acute exposure to α-PVP, transient neuropsychiatric findings were accompanied by more persistent sympathomimetic physical findings, disorders of acid-base balance and blood coagulation, high blood creatinine phosphokinase, and hyperlactacidemia.
Collapse
Affiliation(s)
- Rimako Umebachi
- a Department of Emergency and Critical Care Medicine , Tokai University School of Medicine , Kanagawa , Japan
| | - Hiromichi Aoki
- a Department of Emergency and Critical Care Medicine , Tokai University School of Medicine , Kanagawa , Japan
| | - Mariko Sugita
- a Department of Emergency and Critical Care Medicine , Tokai University School of Medicine , Kanagawa , Japan
| | - Takayuki Taira
- a Department of Emergency and Critical Care Medicine , Tokai University School of Medicine , Kanagawa , Japan
| | - Shinjirou Wakai
- a Department of Emergency and Critical Care Medicine , Tokai University School of Medicine , Kanagawa , Japan
| | - Takeshi Saito
- a Department of Emergency and Critical Care Medicine , Tokai University School of Medicine , Kanagawa , Japan
| | - Sadaki Inokuchi
- a Department of Emergency and Critical Care Medicine , Tokai University School of Medicine , Kanagawa , Japan
| |
Collapse
|
28
|
Szpot P, Chłopaś A, Buszewicz G, Teresiński G. Application of high-resolution mass spectrometry to determination of baclofen in a case of fatal intoxication. Forensic Toxicol 2016; 34:268-276. [PMID: 27429654 PMCID: PMC4929172 DOI: 10.1007/s11419-016-0314-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/15/2016] [Indexed: 11/24/2022]
Abstract
The study focused on the application of high-resolution mass spectrometry (HRMS) to postmortem toxicological analysis. Fast and simple sample preparation involved precipitation with acetonitrile, removal of phospholipids using special columns and filtration. Qualitative and quantitative analyses were performed using ultra-performance liquid chromatography coupled with quadrupole time-of–flight mass spectrometry. The method was validated by determining the limit of quantification, precision, recovery and matrix effect. The use of a high-resolution spectrometer allowed us to determine the precise masses of the fragments of interest and to suggest the fragmentation pathway of baclofen. The usefulness, effectiveness and assets of the procedure were confirmed by an authentic case of a 25-year-old woman fatally intoxicated with baclofen who was found dead in her apartment. Toxicological analysis of postmortem blood samples demonstrated that the baclofen concentration was 30.7 μg/mL. In only one published case describing fatal baclofen intoxication were no other xenobiotics (that could interact with baclofen) found. To our knowledge, this is the first report dealing with analysis of baclofen by HRMS.
Collapse
Affiliation(s)
- Paweł Szpot
- Department of Forensic Medicine, Wroclaw Medical University, ul. J. Mikulicza-Radeckiego 4, 50-345 Wrocław, Poland ; Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Agnieszka Chłopaś
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Grzegorz Buszewicz
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| |
Collapse
|
29
|
Adamowicz P, Gieroń J, Gil D, Lechowicz W, Skulska A, Tokarczyk B, Zuba D. Blood concentrations of α-pyrrolidinovalerophenone (α-PVP) determined in 66 forensic samples. Forensic Toxicol 2016. [DOI: 10.1007/s11419-016-0306-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Grapp M, Sauer C, Vidal C, Müller D. GC–MS analysis of the designer drug α-pyrrolidinovalerophenone and its metabolites in urine and blood in an acute poisoning case. Forensic Sci Int 2016; 259:e14-9. [DOI: 10.1016/j.forsciint.2015.12.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/17/2015] [Accepted: 12/13/2015] [Indexed: 11/27/2022]
|
31
|
Katselou M, Papoutsis I, Nikolaou P, Spiliopoulou C, Athanaselis S. α-PVP (“flakka”): a new synthetic cathinone invades the drug arena. Forensic Toxicol 2015. [DOI: 10.1007/s11419-015-0298-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
|
33
|
Ellefsen KN, Wohlfarth A, Swortwood MJ, Diao X, Concheiro M, Huestis MA. 4-Methoxy-α-PVP: in silico prediction, metabolic stability, and metabolite identification by human hepatocyte incubation and high-resolution mass spectrometry. Forensic Toxicol 2015; 34:61-75. [PMID: 26793277 PMCID: PMC4705136 DOI: 10.1007/s11419-015-0287-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/12/2015] [Indexed: 11/23/2022]
Abstract
Novel psychoactive substances are continuously developed to circumvent legislative and regulatory efforts. A new synthetic cathinone, 4-methoxy-α-PVP, was identified for the first time in illegal products; however, the metabolism of this compound is not known. Complete metabolic profiles are needed for these novel psychoactive substances to enable identification of their intake and to link adverse effects to the causative agent. This study assessed 4-methoxy-α-PVP metabolic stability with human liver microsomes (HLMs) and identified its metabolites after HLM and hepatocyte incubations followed by high-resolution mass spectrometry (HRMS). A Thermo QExactive high-resolution mass spectrometer (HRMS) was used with full scan data-dependent mass spectrometry, with (1) and without (2) an inclusion list of predicted metabolite, and with full scan and all-ion fragmentation (3) to identify potential unexpected metabolites. In silico predictions were performed and compared to in vitro results. Scans were thoroughly mined with different data processing algorithms using WebMetabase (Molecular Discovery). 4-Methoxy-α-PVP exhibited a long half-life of 79.7 min in HLM, with an intrinsic clearance of 8.7 µL min−1 mg−1. In addition, this compound is predicted to be a low-clearance drug with an estimated human hepatic clearance of 8.2 mL min−1 kg−1. Eleven 4-methoxy-α-PVP metabolites were identified, generated by O-demethylation, hydroxylation, oxidation, ketone reduction, N-dealkylation, and glucuronidation. The most dominant metabolite in HLM and human hepatocyte samples was 4-hydroxy-α-PVP, also predicted as the #1 in silico metabolite, and is suggested to be a suitable analytical target in addition to the parent compound.
Collapse
Affiliation(s)
- Kayla N Ellefsen
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Boulevard, Suite 200 Room 05A-721, Baltimore, MD 21224 USA ; Program in Toxicology, University of Maryland Baltimore, Baltimore, MD USA
| | - Ariane Wohlfarth
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Boulevard, Suite 200 Room 05A-721, Baltimore, MD 21224 USA
| | - Madeleine J Swortwood
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Boulevard, Suite 200 Room 05A-721, Baltimore, MD 21224 USA
| | - Xingxing Diao
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Boulevard, Suite 200 Room 05A-721, Baltimore, MD 21224 USA
| | - Marta Concheiro
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Boulevard, Suite 200 Room 05A-721, Baltimore, MD 21224 USA ; Department of Sciences, John Jay College of Criminal Justice, City University of New York, New York, NY USA
| | - Marilyn A Huestis
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Boulevard, Suite 200 Room 05A-721, Baltimore, MD 21224 USA
| |
Collapse
|
34
|
Kudo K, Usumoto Y, Kikura-Hanajiri R, Sameshima N, Tsuji A, Ikeda N. A fatal case of poisoning related to new cathinone designer drugs, 4-methoxy PV8, PV9, and 4-methoxy PV9, and a dissociative agent, diphenidine. Leg Med (Tokyo) 2015; 17:421-6. [PMID: 26162997 DOI: 10.1016/j.legalmed.2015.06.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/27/2015] [Accepted: 06/17/2015] [Indexed: 11/25/2022]
Abstract
A woman in her thirties was found dead on a bed. Considerable amounts of "aroma liquid" and "bath salt" products and hypnotic drug tablets were scattered beside the bed. Autopsy showed pulmonary congestion and edema. Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) analyses of "aroma liquid" and "bath salt" products showed the presence of new cathinone designer drugs, 4-methoxy PV8 (4-methoxy PHPP), PV9 (α-POP), and 4-methoxy PV9 (4-methoxy α-POP), and a dissociative agent, diphenidine. Drug screening in stomach contents, blood and hydrolyzed urine of the woman by GC-MS and liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed the presence of the above 4 types of drugs and 3 types of benzodiazepines, triazolam, flunitrazepam, and nitrazepam, and their metabolites. The above 7 drugs and 3 benzodiazepine metabolites were simultaneously determined by LC-MS/MS after modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged, Safe) extraction using diazepam-d5 as the internal standard. The concentrations of 4-methoxy PV8, PV9, 4-methoxy PV9, and diphenidine in the femoral blood were 2.69, 0.743, 0.261, and 1.38μg/ml, respectively, which were significantly higher than concentrations reported in previous cases. Alcohol concentration in the femoral blood was 1.52mg/ml. Based on the pathological and toxicological findings, the cause of death was determined to be 3 types of cathinone drugs, 4-methoxy PV8, PV9, and 4-methoxy PV9, and diphenidine poisoning under the influence of 3 benzodiazepines and alcohol.
Collapse
Affiliation(s)
- Keiko Kudo
- Department of Forensic Pathology and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yosuke Usumoto
- Department of Forensic Pathology and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Ruri Kikura-Hanajiri
- Division of Pharmacognosy, Phytochemistry and Narcotics, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Naomi Sameshima
- Department of Forensic Pathology and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Akiko Tsuji
- Department of Forensic Pathology and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Noriaki Ikeda
- Department of Forensic Pathology and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
35
|
Yap S, Drummer OH. Prevalence of new psychoactive substances in Victorian fatally-injured drivers. AUST J FORENSIC SCI 2015. [DOI: 10.1080/00450618.2015.1050066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Identification and quantification of 4′-methoxy-α-pyrrolidinobutiophenone (4-MeOPBP) in human plasma and urine using LC–TOF-MS in an autopsy case. Forensic Toxicol 2015. [DOI: 10.1007/s11419-015-0281-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Shima N, Kakehashi H, Matsuta S, Kamata H, Nakano S, Sasaki K, Kamata T, Nishioka H, Zaitsu K, Sato T, Miki A, Katagi M, Tsuchihashi H. Urinary excretion and metabolism of the α-pyrrolidinophenone designer drug 1-phenyl-2-(pyrrolidin-1-yl)octan-1-one (PV9) in humans. Forensic Toxicol 2015. [DOI: 10.1007/s11419-015-0274-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
In vivo and ex vivo SPME: a low invasive sampling and sample preparation tool in clinical bioanalysis. Bioanalysis 2015; 6:1227-39. [PMID: 24946923 DOI: 10.4155/bio.14.91] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Solid phase microextraction (SPME) is well-established technology in bioanalysis. Current review discusses the features of SPME, which determine the non- or low-invasiveness of the method in biomedical analysis. In the first section we analyze the factors, which have significant influence on the SPME sampling device performance in the view of sampling safety and efficiency. In the later sections applicability of various SPME approaches for analysis of easily accessible samples routinely used for analysis (e.g., urine, blood) as well as limited availability samples (tissues) is discussed. Moreover, the examples of sampling alternative matrices such as hair, saliva, sweat or breath are presented. The advantages and limitation of the technology in the view of future development of SPME are also reviewed.
Collapse
|
39
|
Namera A, Kawamura M, Nakamoto A, Saito T, Nagao M. Comprehensive review of the detection methods for synthetic cannabinoids and cathinones. Forensic Toxicol 2015; 33:175-194. [PMID: 26257831 PMCID: PMC4525208 DOI: 10.1007/s11419-015-0270-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/29/2015] [Indexed: 12/26/2022]
Abstract
A number of N-alkyl indole or indazole-3-carbonyl analogs, with modified chemical structures, are distributed throughout the world as synthetic cannabinoids. Like synthetic cannabinoids, cathinone analogs are also abused and cause serious problems worldwide. Acute deaths caused by overdoses of these drugs have been reported. Various analytical methods that can cope with the rapid changes in chemical structures are required for routine analysis and screening of these drugs in seized and biological materials for forensic and clinical purposes. Although many chromatographic methods to analyze each drug have been published, there are only a few articles summarizing these analytical methods. This review presents the various colorimetric detections, immunochemical assays, gas chromatographic-mass spectrometric methods, and liquid chromatographic-mass spectrometric methods proposed for the analysis of synthetic cannabinoids and cathinones.
Collapse
Affiliation(s)
- Akira Namera
- Department of Forensic Medicine, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553 Japan
| | - Maho Kawamura
- Forensic Science Laboratory, Hiroshima Prefectural Police Headquarters, Hiroshima, Japan
| | - Akihiro Nakamoto
- Forensic Science Laboratory, Hiroshima Prefectural Police Headquarters, Hiroshima, Japan
| | - Takeshi Saito
- Department of Emergency and Critical Care Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Masataka Nagao
- Department of Forensic Medicine, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553 Japan
| |
Collapse
|
40
|
Sykutera M, Cychowska M, Bloch-Boguslawska E. A Fatal Case of Pentedrone and -Pyrrolidinovalerophenone Poisoning. J Anal Toxicol 2015; 39:324-9. [DOI: 10.1093/jat/bkv011] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
41
|
Xu L, Suo H, Liang X, Wang L, guo Y, Jiang S. Au nanoparticle decorated graphene oxide as a novel coating for solid-phase microextraction. RSC Adv 2015. [DOI: 10.1039/c4ra16740f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A novel solid-phase microextraction (SPME) fiber based on a stainless steel wire coated with Au nanoparticle decorated graphene oxide was prepared using a novel protocol.
Collapse
Affiliation(s)
- Lili Xu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Hongbo Suo
- College of Chemistry and Chemical Engineering
- Qujing Normal University
- Qujing 655011
- China
| | - Xiaojing Liang
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Licheng Wang
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Yong guo
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Shengxiang Jiang
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| |
Collapse
|
42
|
Boyacı E, Rodríguez-Lafuente Á, Gorynski K, Mirnaghi F, Souza-Silva ÉA, Hein D, Pawliszyn J. Sample preparation with solid phase microextraction and exhaustive extraction approaches: Comparison for challenging cases. Anal Chim Acta 2014; 873:14-30. [PMID: 25911426 DOI: 10.1016/j.aca.2014.12.051] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/22/2014] [Accepted: 12/27/2014] [Indexed: 10/24/2022]
Abstract
In chemical analysis, sample preparation is frequently considered the bottleneck of the entire analytical method. The success of the final method strongly depends on understanding the entire process of analysis of a particular type of analyte in a sample, namely: the physicochemical properties of the analytes (solubility, volatility, polarity etc.), the environmental conditions, and the matrix components of the sample. Various sample preparation strategies have been developed based on exhaustive or non-exhaustive extraction of analytes from matrices. Undoubtedly, amongst all sample preparation approaches, liquid extraction, including liquid-liquid (LLE) and solid phase extraction (SPE), are the most well-known, widely used, and commonly accepted methods by many international organizations and accredited laboratories. Both methods are well documented and there are many well defined procedures, which make them, at first sight, the methods of choice. However, many challenging tasks, such as complex matrix applications, on-site and in vivo applications, and determination of matrix-bound and free concentrations of analytes, are not easily attainable with these classical approaches for sample preparation. In the last two decades, the introduction of solid phase microextraction (SPME) has brought significant progress in the sample preparation area by facilitating on-site and in vivo applications, time weighted average (TWA) and instantaneous concentration determinations. Recently introduced matrix compatible coatings for SPME facilitate direct extraction from complex matrices and fill the gap in direct sampling from challenging matrices. Following introduction of SPME, numerous other microextraction approaches evolved to address limitations of the above mentioned techniques. There is not a single method that can be considered as a universal solution for sample preparation. This review aims to show the main advantages and limitations of the above mentioned sample preparation approaches and the applicability and capability of each technique for challenging cases such as complex matrices, on-site applications and automation.
Collapse
Affiliation(s)
- Ezel Boyacı
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Ángel Rodríguez-Lafuente
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Krzysztof Gorynski
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada; Department of Pharmacodynamics and Molecular Pharmacology, Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Fatemeh Mirnaghi
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada; Emergency Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario K1A 0H3, Canada
| | - Érica A Souza-Silva
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Dietmar Hein
- Professional Analytical System (PAS) Technology, Magdala, Germany
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
43
|
Experimental study on external contamination of hair by synthetic cannabinoids and effect of hair treatment. Forensic Toxicol 2014. [DOI: 10.1007/s11419-014-0250-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
A case of death caused by abuse of a synthetic cannabinoid N-1-naphthalenyl-1-pentyl-1H-indole-3-carboxamide. Forensic Toxicol 2014. [DOI: 10.1007/s11419-014-0246-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Identification and quantitation of a new cathinone designer drug PV9 in an “aroma liquid” product, antemortem whole blood and urine specimens, and a postmortem whole blood specimen in a fatal poisoning case. Forensic Toxicol 2014. [DOI: 10.1007/s11419-014-0230-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Postmortem distribution of α-pyrrolidinovalerophenone and its metabolite in body fluids and solid tissues in a fatal poisoning case measured by LC–MS–MS with the standard addition method. Forensic Toxicol 2014. [DOI: 10.1007/s11419-014-0227-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Postmortem distribution of α-pyrrolidinobutiophenone in body fluids and solid tissues of a human cadaver. Leg Med (Tokyo) 2014; 16:241-6. [PMID: 24889409 DOI: 10.1016/j.legalmed.2014.05.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/01/2014] [Accepted: 05/06/2014] [Indexed: 11/22/2022]
Abstract
We experienced an autopsy case of a 21-year-old male Caucasian, in which the direct cause of his death was judged as subarachnoid hemorrhage. There was cerebral arteriovenous malformation, which seemed related to the subarachnoid hemorrhage. The postmortem interval was estimated to be about 2days. By our drug screening test using gas chromatography-mass spectrometry, we could identify α-pyrrolidinobutiophenone (α-PBP) in his urine specimen, which led us to investigate the postmortem distribution of α-PBP in this deceased. The specimens dealt with were right heart blood, left heart blood, femoral vein blood, cerebrospinal fluid, urine, stomach contents and five solid tissues. The extraction of α-PBP and α-pyrrolidinovalerophenone (α-PVP, internal standard) was performed by a modified QuEChERS (quick, easy, cheap, effective, rugged and safe) method, followed by the analysis by liquid chromatography-tandem mass spectrometry. Because this study included various kinds of human matrices, we used the standard addition method to overcome the matrix effects. The highest concentration was found in urine, followed by stomach contents, the kidney, lung, spleen, pancreas and liver. The blood concentrations were about halves of those of the solid tissues. The high concentrations of α-PBP in urine and the kidney suggest that the drug tends to be rapidly excreted into urine via the kidney after its absorption into the blood stream. The urine specimen is of the best choice for analysis. This is the first report describing the postmortem distribution of α-PBP in a human to our knowledge.
Collapse
|
48
|
Changes in the prevalence of new psychoactive substances before and after the introduction of the generic scheduling of synthetic cannabinoids in Japan. Drug Test Anal 2013; 6:832-9. [DOI: 10.1002/dta.1584] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 10/17/2013] [Accepted: 10/18/2013] [Indexed: 11/07/2022]
|
49
|
Recently abused synthetic cathinones, α-pyrrolidinophenone derivatives: a review of their pharmacology, acute toxicity, and metabolism. Forensic Toxicol 2013. [DOI: 10.1007/s11419-013-0218-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Minakata K, Yamagishi I, Nozawa H, Hasegawa K, Wurita A, Gonmori K, Suzuki M, Watanabe K, Suzuki O. MALDI-TOF mass spectrometric determination of four pyrrolidino cathinones in human blood. Forensic Toxicol 2013. [DOI: 10.1007/s11419-013-0212-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|