1
|
Mao Z, Yu Y, Sun H, Wu C, Jiang Q, Chu C, Zhao C, Zhou Y, Zhang J, Cao Y, Chen F. Simultaneous determination of diquat and its two primary metabolites in rat plasma by ultraperformance liquid chromatography-tandem mass spectrometry and its application to the toxicokinetic study. Forensic Toxicol 2022; 40:332-339. [PMID: 36454415 PMCID: PMC9715450 DOI: 10.1007/s11419-022-00623-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/18/2022] [Indexed: 01/26/2023]
Abstract
PURPOSE This study aimed to develop and validate an ultraperformance liquid chromatography-tandem mass spectrometry to simultaneously determine diquat (DQ) and its two primary metabolites in rat plasma and its application to the toxicokinetic study. METHOD The chromatographic separation of DQ and its two primary metabolites was performed with hydrophilic interaction chromatography column by adding formic acid and ammonium acetate in mobile phase in stepwise elution mode. DQ and its two primary metabolites were detected by liquid chromatography-tandem mass spectrometry in positive mode. RESULTS The lower limit of quantification ranging from 0.3 to 3.0 ng/mL for DQ and its two primary metabolites was achieved by using only 50 μL of rat plasma. The maximum concentration (Cmax) was 977 ng/mL, half-life (t1/2) was 13.1 h, and area under the plasma concentration-time curve (AUC0-t) was 2770 h*ng/mL for DQ, Cmax was 47.1 ng/mL, t1/2 was 25.1 h, and AUC0-t was 180 h·ng/mL for diquat monopyridone (DQ-M) and Cmax was 246 ng/mL, t1/2 was 8.2 h, and AUC0-t was 2430 h·ng/mL for diquat dipyridone (DQ-D), respectively. CONCLUSIONS The validated method was shown to be suitable for simultaneous determination of diquat and its two primary metabolites in rat plasma. This study is the first to study the toxicokinetics of DQ and its two primary metabolites.
Collapse
Affiliation(s)
- Zhengsheng Mao
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China.
| | - Youjia Yu
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Hao Sun
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Wu
- Department of Emergency, Suqian Hospital of Nanjing Drum Tower Hospital Group, The Affliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Qiaoyan Jiang
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Chunyan Chu
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Chongwen Zhao
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Yujie Zhou
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Jinsong Zhang
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Cao
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China.
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China.
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China.
| |
Collapse
|
2
|
Development and validation of a sensitive and high throughput UPLC–MS/MS method for determination of paraquat and diquat in human plasma and urine: application to poisoning cases at emergency departments of hospitals. Forensic Toxicol 2021; 40:102-110. [DOI: 10.1007/s11419-021-00603-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022]
|
3
|
Yuan J, Li A, Chen T, Du J, Ma A, Pan J. Micelle-dominated distribution strategy for non-matrix matched calibration without an internal standard: "Extract-and-shoot" approach for analyzing hydrophilic targets in blood and cell samples. Anal Chim Acta 2020; 1102:24-35. [PMID: 32043993 DOI: 10.1016/j.aca.2019.12.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/19/2019] [Accepted: 12/15/2019] [Indexed: 10/25/2022]
Abstract
The analysis of trace hydrophilic targets in complex aqueous-rich matrices is considerably challenging, generally requiring matrix-matched calibration, internal standard, or time-and-labor-intensive sample preparation. To address this analytical bottleneck, a non-matrix-matched calibration strategy without using internal standard was reported for the first time to analyze complicated biosamples such as whole blood, plasma, serum, and cell samples. This strategy, termed micelle-dominated distribution, also aimed at realizing the simple "extract-and-shoot" analytical process for such complex matrices. The micelle-matrix interaction was found to efficiently eliminate the matrix effect by dominating phase separation and analyte distribution between the extraction and matrix phases. Thus, calibration linear curves prepared in water were applicable to the analysis of all the above-mentioned sample types. Rapid distribution equilibrium within 4 min was achieved. This strategy could tolerate direct large volume injection, thereby providing two-order-of-magnitude enhancement in the sensitivity of ion-pair chromatography. The analytical method integrated cell rupture, matrix cleanup, analyte extraction, and on-column preconcentration into a fast and high-throughput operation. The successful application to the determination of exogenous pesticides and endogenous glutathione exhibited low limits of detection (0.0085-0.015 μg mL-1 for pesticides; 0.52 μg mL-1 for glutathione), wide linear ranges (0.028-50 μg mL-1 and 0.049-50 μg mL-1 for pesticides; 1.7-1000 μg mL-1 for glutathione), good linearies (R2 = 0.9994-0.9999), excellent accuracy (recoveries of 91.3-105.2%), and good precision (0.7-6.2% at the levels of 0.028 (or 0.049), 0.1, 0.5, and 50 μg mL-1 for pesticides; 0.5-8.7% at 1.7, 500, and 1000 μg mL-1 for glutathione).
Collapse
Affiliation(s)
- Jiahao Yuan
- Department of Hygiene Detection Center, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, China
| | - Anqi Li
- Department of Hygiene Detection Center, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, China
| | - Tingting Chen
- Department of Hygiene Detection Center, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, China
| | - Juan Du
- Department of Hygiene Detection Center, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, China
| | - Ande Ma
- Department of Hygiene Detection Center, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, China.
| | - Jialiang Pan
- Department of Hygiene Detection Center, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Hamamoto T, Katsuta S. An Ionic Liquid-based Microextraction Method for Ultra-High Preconcentration of Paraquat Traces in Water Samples Prior to HPLC Determination. ANAL SCI 2018; 34:1439-1444. [PMID: 30224568 DOI: 10.2116/analsci.18p369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An ionic liquid (IL)-based microextraction method was developed for the preconcentration of paraquat traces in water samples prior to HPLC determination. On the basis of the relationship between the aqueous solubility and the extractability of known ILs, 1-ethyl-3-methylimidazolium bis(nonafluorobutanesulfonyl)amide ([EMIm][NNf2]) was selected as the extractant for paraquat. The distribution ratio of paraquat dication in the [EMIm][NNf2]/water biphasic system was theoretically estimated to be nearly 108 at its maximum level, indicating that [EMIm][NNf2] was suitable for the ultra-high preconcentration (a maximum of 106-fold concentration) of paraquat with a quantitative recovery (more than 99%). The extraction procedure could be performed easily and quickly following the in situ solvent formation microextraction technique, and the paraquat traces in the IL phase could be determined by hydrophilic interaction chromatography with good detection limits and linearity ranges (0.16 and 1 - 50 ng mL-1 for paraquat, respectively). The combined method was successfully applied to four real environmental water samples spiked with paraquat and its analog, diquat at 5.0 ng mL-1.
Collapse
Affiliation(s)
- Takuya Hamamoto
- Department of Chemistry, Graduate School of Science, Chiba University.,Forensic Science Laboratory, Chiba Prefectural Police Headquarters
| | - Shoichi Katsuta
- Department of Chemistry, Graduate School of Science, Chiba University
| |
Collapse
|