1
|
Lea Houston M, Morgan J, Kelso C. Narrative Review of the Pharmacodynamics, Pharmacokinetics, and Toxicities of Illicit Synthetic Cannabinoid Receptor Agonists. Mini Rev Med Chem 2024; 24:92-109. [PMID: 37190813 DOI: 10.2174/1389557523666230515163107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/20/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Synthetic cannabinoid receptor agonists (SCRAs) are the most diverse class of new psychoactive substances worldwide, with approximately 300 unique SCRAs identified to date. While the use of this class of drug is not particularly prevalent, SCRAs are associated with several deaths every year due to their severe toxicity. METHODS A thorough examination of the literature identified 15 new SCRAs with a significant clinical impact between 2015 and 2021. RESULTS These 15 SCRAs have been implicated in 154 hospitalizations and 209 deaths across the US, Europe, Asia, and Australasia during this time period. CONCLUSION This narrative review provides pharmacodynamic, pharmacokinetic, and toxicologic data for SCRAs as a drug class, including an in-depth review of known pharmacological properties of 15 recently identified and emerging SCRAs for the benefit of researchers, policy makers, and clinicians who wish to be informed of developments in this field.
Collapse
Affiliation(s)
- Matilda Lea Houston
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Jody Morgan
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - Celine Kelso
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
- Molecular Horizons Institute, University of Wollongong, Wollongong, New South Wales, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
2
|
de Campos EG, de Almeida OGG, De Martinis ECP. The role of microorganisms in the biotransformation of psychoactive substances and its forensic relevance: a critical interdisciplinary review. Forensic Sci Res 2023; 8:173-184. [PMID: 38221972 PMCID: PMC10785599 DOI: 10.1093/fsr/owad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/24/2023] [Indexed: 01/16/2024] Open
Abstract
Microorganisms are widespread on the planet being able to adapt, persist, and grow in diverse environments, either rich in nutrient sources or under harsh conditions. The comprehension of the interaction between microorganisms and drugs is relevant for forensic toxicology and forensic chemistry, elucidating potential pathways of microbial metabolism and their implications. Considering the described scenario, this paper aims to provide a comprehensive and critical review of the state of the art of interactions amongst microorganisms and common drugs of abuse. Additionally, other drugs of forensic interest are briefly discussed. This paper outlines the importance of this area of investigation, covering the intersections between forensic microbiology, forensic chemistry, and forensic toxicology applied to drugs of abuse, and it also highlights research potentialities. Key points Microorganisms are widespread on the planet and grow in a myriad of environments.Microorganisms can often be found in matrices of forensic interest.Drugs can be metabolized or produced (e.g. ethanol) by microorganisms.
Collapse
Affiliation(s)
- Eduardo G de Campos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Chemistry and Fermentation Sciences, Appalachian State University, Boone, NC, USA
| | - Otávio G G de Almeida
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elaine C P De Martinis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
3
|
Malaca S, Busardò FP, Nittari G, Sirignano A, Ricci G. Fourth Generation of Synthetic Cannabinoid Receptor Agonists: A Review on the Latest Insights. Curr Pharm Des 2022; 28:2603-2617. [PMID: 34781870 DOI: 10.2174/1381612827666211115170521] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Over the past few years, an emerging number of new psychoactive substances (NPSs) entered the illicit market. NPSs are designed to resemble the effects of classical drugs of abuse, reinforcing their effects and duration. Among the most abused NPS, synthetic cannabinoids are cannabinoid receptor agonists (SCRAs) that mimic the effect of the main psychotropic phytocannabinoid Δ9-tetrahydrocannabinol (THC). METHODS We herein reviewed the international literature to provide available information on the newest SCRAs generation. RESULTS Compared to the previous SCRAs generations, the structures of the last generation result in increased affinity for and efficacy at cannabinoid CB1 receptors, which are thought to be mainly responsible for the psychoactive effects of THC and its analogues. Accordingly, these more potent cannabimimetic effects may increase the number of adverse reactions such as neurological disorders (e.g., psychosis, agitation, irritability, paranoia, confusion, and anxiety), psychiatric episodes (e.g., hallucinations, delusions, self-harm), other physical conditions (e.g., tachycardia, hypertension, arrhythmia, chest pain, nausea, vomiting, and fever) and deaths. In the last decade, more than a hundred SCRAs from different chemical classes emerged on the illicit web market. SCRAs have been thoroughly studied: they were physico-chemically characterized, and pharmaco-toxicological characteristics were investigated. The last SCRAs generations include increasingly potent and toxic compounds, posing a potential health threat to consumers. CONCLUSION From November 2017 to February 2021, at least 20 new "fourth-generation" SCRAs were formally reported to international drug agencies. Our understanding of the neurotoxicity of these compounds is still limited due to the lack of global data, but their potency and their toxicity are likely higher than those of the previous generations.
Collapse
Affiliation(s)
- Sara Malaca
- Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche" of Ancona, Ancona, Italy
| | - Francesco P Busardò
- Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche" of Ancona, Ancona, Italy
| | | | | | | |
Collapse
|
4
|
Gu K, Qin S, Zhang Y, Zhang W, Xin G, Shi B, Wang J, Wang Y, Lu J. Metabolic profiles and screening tactics for MDMB-4en-PINACA in human urine and serum samples. J Pharm Biomed Anal 2022; 220:114985. [PMID: 35985137 DOI: 10.1016/j.jpba.2022.114985] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/30/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022]
Abstract
MDMB-4en-PINACA (Methyl 3,3-dimethyl-2-[1-(pent-4-en-1-yl)-1H-indazole-3-carboxamido] butanoate) is a potent agonist of the CB1 receptor. In 2021, it was one of the most common synthetic cannabinoid receptor agonists (SCRAs) seized by the Beijing Drug Control Agency. MDMB-4en-PINACA can be hard to detect in biological specimens because of ester hydrolysis. In this work, a highly sensitive liquid chromatography-high-resolution mass spectrometry (LC-HRMS) method was developed for the detection of MDMB-4en-PINACA metabolites in urine, serum, and hair samples. Metabolites from authentic samples were compared with those from human liver microsomes (HLMs) in vitro and in zebrafish in vivo. A total of 75 metabolites, including 44 previously unreported metabolites, were identified from urine samples. We found that 11 metabolic pathways were involved in MDMB-4en-PINACA metabolism, including acetylation, a novel metabolic pathway for SCRAs. Our results revealed that ester hydrolysis and hydroxylation were to the major metabolic pathways involved in MDMB-4en-PINACA metabolism. Using serum samples, we detected 9 metabolites along with the parent drug. Only the parent drug was detected using hair samples. The existence of ADB-4en-PINACA makes the currently used biomarkers for MDMB-4enPINACA not very specific for the intake of MDMB-4en-PINACA. Therefore, based on the identified metabolites and their structural features, we propose more sensitive screening tactics for MDMB-4en-PINACA using urine and serum samples.
Collapse
Affiliation(s)
- Kunshan Gu
- School of investigation, People's Public Security University of China, 1st Muxidi South Lane, Xicheng District, Beijing, 100038, China
| | - Shiyang Qin
- The Criminal Investigation Department of Beijing Public Security Bureau (Key Laboratory of Forensic Toxicology, Ministry of Public Security), 1st Longgang Road, Haidian District, Beijing, 100085, China
| | - Ying Zhang
- The Criminal Investigation Department of Beijing Public Security Bureau (Key Laboratory of Forensic Toxicology, Ministry of Public Security), 1st Longgang Road, Haidian District, Beijing, 100085, China
| | - Wenfang Zhang
- The Criminal Investigation Department of Beijing Public Security Bureau (Key Laboratory of Forensic Toxicology, Ministry of Public Security), 1st Longgang Road, Haidian District, Beijing, 100085, China
| | - Guobin Xin
- The Criminal Investigation Department of Beijing Public Security Bureau (Key Laboratory of Forensic Toxicology, Ministry of Public Security), 1st Longgang Road, Haidian District, Beijing, 100085, China
| | - Boyuan Shi
- National Anti-Drug Laboratory Beijing Regional Center, 6th No.2 Hengdaogou West Street, Fengtai District, Beijing 100079, China
| | - Jifen Wang
- School of investigation, People's Public Security University of China, 1st Muxidi South Lane, Xicheng District, Beijing, 100038, China.
| | - Yuanfeng Wang
- Key Laboratory of Evidence Science, China University of Political Science and Law, No 26 Houtun South Road, Haidian District, Beijing 100025, China; China Collaborative Innivation Center of Judical Civilization, No 26 Houtun South Road, Haidian District, Beijing 100025, China.
| | - Jianghai Lu
- Drug and Food Anti-doping Laboratory, China Anti-Doping Agency, 1st Anding Road, Chaoyang District, Beijing 100029, China.
| |
Collapse
|
5
|
Comparison between human liver microsomes and the fungus Cunninghamella elegans for biotransformation of the synthetic cannabinoid JWH-424 having a bromo-naphthyl moiety analysed by high-resolution mass spectrometry. Forensic Toxicol 2022; 40:278-288. [PMID: 36454404 DOI: 10.1007/s11419-022-00612-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/09/2022] [Indexed: 01/26/2023]
Abstract
PURPOSE JWH-424, (8-bromo-1-naphthyl)(1-pentyl-1H-indol-3-yl)methanone, is a synthetic cannabinoid, which is a brominated analogue of JWH-018, one of the best-known synthetic cannabinoids. Despite the structural similarity to JWH-018, little is known about JWH-424 including its metabolism. The aim of the study was to compare human liver microsomes (HLM) and the fungus Cunninghamella elegans as the metabolism catalysts for JWH-424 to better understand the characteristic actions of the fungus in the synthetic cannabinoid metabolism. METHODS JWH-424 was incubated with HLM for 1 h and Cunninghamella elegans for up to 72 h. The HLM incubation mixtures were diluted with methanol and fungal incubation mixtures were extracted with dichloromethane and reconstituted in methanol before analyses by liquid chromatography-high-resolution mass spectrometry (LC-HRMS). RESULTS HLM incubation resulted in production of ten metabolites through dihydrodiol formation, hydroxylation, and/or ipso substitution of the bromine with a hydroxy group. Fungal incubation led to production of 23 metabolites through carboxylation, dihydrodiol formation, hydroxylation, ketone formation, glucosidation and/or sulfation. CONCLUSIONS Generally, HLM models give good predictions of human metabolites and structural analogues are metabolised in a similar fashion. However, major hydroxy metabolites produced by HLM were those hydroxylated at naphthalene instead of pentyl moiety, the major site of hydroxylation for JWH-018. Fungal metabolites, on the other hand, had undergone hydroxylation mainly at pentyl moiety. The metabolic disagreement suggests the necessity to verify the human metabolites in authentic urine samples, while H9 and H10 (hydroxynaphthalene), H8 (ipso substitution), F22 (hydroxypentyl), and F17 (dihydroxypentyl) are recommended for monitoring of JWH-424 in urinalysis.
Collapse
|
6
|
Li H, Qian Z, Zhao Y, Zheng H. Study on the metabolic process of synthetic cannabinoids 4F-MDMB-BINACA and 4F-MDMB-BICA in human liver microsome and zebrafish model via UHPLC-QE Orbitrap MS. Anal Bioanal Chem 2022; 414:3905-3916. [PMID: 35389093 DOI: 10.1007/s00216-022-04034-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/16/2022] [Accepted: 03/21/2022] [Indexed: 11/26/2022]
Abstract
In order to address the increasing abuse of synthetic cannabinoids, on July 1, 2021, China listed the whole category of synthetic cannabinoids in the Supplementary Catalog for the Control of Non-medicinal Narcotic Drugs and Psychotropic Substances. Because synthetic cannabinoids metabolize rapidly, techniques are urgently needed to identify the phase I metabolites of new synthetic cannabinoids, as well as the symbol metabolites, which can be used for detection in real cases. In this study, we used pooled human liver microsome (pHLM) and zebrafish combined with ultra-high-performance liquid chromatography (UHPLC) Q Exactive Orbitrap MS to identify the phase I metabolites of two new synthetic cannabinoids 4F-MDMB-BICA and 4F-MDMB-BINACA in vitro and in vivo, respectively. We studied the toxicokinetics of 4F-MDMB-BICA and 4F-MDMB-BINACA by sampling from a pHLM incubation system at different time points to study the change in metabolites over time. We detected a total of 14 metabolites of 4F-MDMB-BINACA and 16 metabolites of 4F-MDMB-BICA in this study. Metabolites of 4F-MDMB-BICA were detected in vitro for the first time. One metabolite of 4F-MDMB-BINACA, M05, was discovered for the first time. Based on the toxicokinetics results, we recommend three metabolites (M03, M11, M12) of 4F-MDMB-BINACA and three metabolites (M10, M12, M14) of 4F-MDMB-BICA as their symbol metabolites. The results showed that these two structurally similar synthetic cannabinoids 4F-MDMB-BINACA and 4F-MDMB-BICA had similar metabolic processes, as well as similar structures of their main symbol metabolites.
Collapse
Affiliation(s)
- Huan Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| | - Zhenhua Qian
- Institute of Forensic Science Ministry of Public Security, Beijing, China.
| | - Yanbiao Zhao
- Institute of Forensic Science Ministry of Public Security, Beijing, China
| | - Hui Zheng
- Institute of Forensic Science Ministry of Public Security, Beijing, China
| |
Collapse
|
7
|
Fabregat-Safont D, Mata-Pesquera M, Barneo-Muñoz M, Martinez-Garcia F, Mardal M, Davidsen AB, Sancho JV, Hernández F, Ibáñez M. In-depth comparison of the metabolic and pharmacokinetic behaviour of the structurally related synthetic cannabinoids AMB-FUBINACA and AMB-CHMICA in rats. Commun Biol 2022; 5:161. [PMID: 35210552 PMCID: PMC8873228 DOI: 10.1038/s42003-022-03113-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/01/2022] [Indexed: 12/01/2022] Open
Abstract
Synthetic cannabinoids receptor agonists (SCRAs) are often almost completely metabolised, and hence their pharmacokinetics should be carefully evaluated for determining the most adequate biomarker in toxicological analysis. Two structurally related SCRAs, AMB-FUBINACA and AMB-CHMICA, were selected to evaluate their in vivo metabolism and pharmacokinetics using male Sprague-Dawley rats. Brain, liver, kidney, blood (serum) and urine samples were collected at different times to assess the differences in metabolism, metabolic reactions, tissue distribution and excretion. Both compounds experimented O-demethyl reaction, which occurred more rapidly for AMB-FUBINACA. The parent compounds and O-demethyl metabolites were highly bioaccumulated in liver, and were still detected in this tissue 48 h after injection. The different indazole/indole N-functionalisation produced diverse metabolic reactions in this moiety and thus, different urinary metabolites were formed. Out of the two compounds, AMB-FUBINACA seemed to easily cross the blood-brain barrier, presenting higher brain/serum concentrations ratio than AMB-CHMICA. Synthetic cannabinoids are amongst the most widely used psychoactive drugs which are tightly controlled by government agencies around the world. Here, pharmacokinetics of two synthetic cannabinoids in rats are evaluated along with their metabolites and tissue distribution, aiding in identifying distinct biomarkers that reflect the consumption of synthetic cannabinoids based on the tissue.
Collapse
Affiliation(s)
- David Fabregat-Safont
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain
| | - María Mata-Pesquera
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain
| | - Manuela Barneo-Muñoz
- Predepartmental Unit of Medicine, Unitat Mixta de Neuroanatomia Funcional NeuroFun-UVEG-UJI, University Jaume I, Castellón, Spain
| | - Ferran Martinez-Garcia
- Predepartmental Unit of Medicine, Unitat Mixta de Neuroanatomia Funcional NeuroFun-UVEG-UJI, University Jaume I, Castellón, Spain
| | - Marie Mardal
- Section of Forensic Chemistry, Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anders B Davidsen
- Section of Forensic Chemistry, Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Juan V Sancho
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain
| | - Félix Hernández
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain
| | - María Ibáñez
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| |
Collapse
|
8
|
Park YM, Dahlem C, Meyer MR, Kiemer AK, Müller R, Herrmann J. Induction of Liver Size Reduction in Zebrafish Larvae by the Emerging Synthetic Cannabinoid 4F-MDMB-BINACA and Its Impact on Drug Metabolism. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041290. [PMID: 35209079 PMCID: PMC8879502 DOI: 10.3390/molecules27041290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/22/2022]
Abstract
Zebrafish (ZF; Danio rerio) larvae have become a popular in vivo model in drug metabolism studies. Here, we investigated the metabolism of methyl 2-[1-(4-fluorobutyl)-1H-indazole-3-carboxamido]-3,3-dimethylbutanoate (4F-MDMB-BINACA) in ZF larvae after direct administration of the cannabinoid via microinjection, and we visualized the spatial distributions of the parent compound and its metabolites by mass spectrometry imaging (MSI). Furthermore, using genetically modified ZF larvae, the role of cannabinoid receptor type 1 (CB1) and type 2 (CB2) on drug metabolism was studied. Receptor-deficient ZF mutant larvae were created using morpholino oligonucleotides (MOs), and CB2-deficiency had a critical impact on liver development of ZF larva, leading to a significant reduction of liver size. A similar phenotype was observed when treating wild-type ZF larvae with 4F-MDMB-BINACA. Thus, we reasoned that the cannabinoid-induced impaired liver development might also influence its metabolic function. Studying the metabolism of two synthetic cannabinoids, 4F-MDMB-BINACA and methyl 2-(1-(5-fluoropentyl)-1H-pyrrolo[2,3-b]pyridine-3-carboxamido)-3,3-dimethylbutanoate (7′N-5F-ADB), revealed important insights into the in vivo metabolism of these compounds and the role of cannabinoid receptor binding.
Collapse
Affiliation(s)
- Yu Mi Park
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8 1, Saarland University, 66123 Saarbrücken, Germany;
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Charlotte Dahlem
- Department of Pharmacy, Pharmaceutical Biology, Campus C2 3, Saarland University, 66123 Saarbrücken, Germany; (C.D.); (A.K.K.)
| | - Markus R. Meyer
- Center for Molecular Signaling (PZMS), Institute of Experimental and Clinical Pharmacology and Toxicology, Department of Experimental and Clinical Toxicology, Saarland University, 66421 Homburg, Germany;
| | - Alexandra K. Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Campus C2 3, Saarland University, 66123 Saarbrücken, Germany; (C.D.); (A.K.K.)
| | - Rolf Müller
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8 1, Saarland University, 66123 Saarbrücken, Germany;
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), 38124 Braunschweig, Germany
- Correspondence: (R.M.); (J.H.)
| | - Jennifer Herrmann
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8 1, Saarland University, 66123 Saarbrücken, Germany;
- German Center for Infection Research (DZIF), 38124 Braunschweig, Germany
- Correspondence: (R.M.); (J.H.)
| |
Collapse
|
9
|
Gilbert N, Costello A, Ellison JR, Khan U, Knight M, Linnell MJ, Ralphs R, Mewis RE, Sutcliffe OB. Synthesis, characterisation, detection and quantification of a novel hexyl-substituted synthetic cannabinoid receptor agonist: (S)-N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-hexyl-1H-indazole-3-carboxamide (ADB-HINACA). Forensic Chem 2021. [DOI: 10.1016/j.forc.2021.100354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Recent trends in drugs of abuse metabolism studies for mass spectrometry-based analytical screening procedures. Anal Bioanal Chem 2021; 413:5551-5559. [PMID: 33792746 PMCID: PMC8410689 DOI: 10.1007/s00216-021-03311-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/08/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022]
Abstract
The still increasing number of drugs of abuse, particularly the so-called new psychoactive substances (NPS), poses an analytical challenge for clinical and forensic toxicologists but also for doping control. NPS usually belong to various classes such as synthetic cannabinoids, phenethylamines, opioids, or benzodiazepines. Like other xenobiotics, NPS undergo absorption, distribution, metabolism, and excretion processes after consumption, but only very limited data concerning their toxicokinetics and safety properties is available once they appear on the market. The inclusion of metabolites in mass spectral libraries is often crucial for the detection of NPS especially in urine screening approaches. Authentic human samples may represent the gold standard for identification of metabolites but are often not available and clinical studies cannot be performed due to ethical concerns. However, numerous alternative in vitro and in vivo models are available. This trends article will give an overview on selected models, discuss current studies, and highlight recent developments.
Collapse
|