1
|
Anglada JM, Martins-Costa MTC, Francisco JS, Ruiz-López MF. Triplet State Radical Chemistry: Significance of the Reaction of 3SO 2 with HCOOH and HNO 3. J Am Chem Soc 2024; 146:14297-14306. [PMID: 38722613 PMCID: PMC11117184 DOI: 10.1021/jacs.4c03938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/23/2024]
Abstract
The triplet excited states of sulfur dioxide can be accessed in the UV region and have a lifetime large enough that they can react with atmospheric trace gases. In this work, we report high level ab initio calculations for the reaction of the a3B1 and b3A2 excited states of SO2 with weak and strong acidic species such as HCOOH and HNO3, aimed to extend the chemistry reported in previous studies with nonacidic H atoms (water and alkanes). The reactions investigated in this work are very versatile and follow different kinds of mechanisms, namely, proton-coupled electron transfer (pcet) and conventional hydrogen atom transfer (hat) mechanisms. The study provides new insights into a general and very important class of excited-state-promoted reactions, opening up interesting chemical perspectives for technological applications of photoinduced H-transfer reactions. It also reveals that atmospheric triplet chemistry is more significant than previously thought.
Collapse
Affiliation(s)
- Josep M. Anglada
- Departament
de Química Biològica (IQAC − CSIC), c/Jordi Girona 18, Barcelona E-08034, Spain
| | - Marilia T. C. Martins-Costa
- Laboratoire
de Physique et Chimie Théoriques, UMR CNRS 7019, University of Lorraine, CNRS, BP 70239, Vandoeuvre-lès-Nancy 54506, France
| | - Joseph S. Francisco
- Department
of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6316, United States
| | - Manuel F. Ruiz-López
- Laboratoire
de Physique et Chimie Théoriques, UMR CNRS 7019, University of Lorraine, CNRS, BP 70239, Vandoeuvre-lès-Nancy 54506, France
| |
Collapse
|
2
|
Pourestarabadi S, Dehestani M. Non-adiabatic coupling in the potential energy surfaces of SO 2 molecule. Phys Chem Chem Phys 2023; 25:24526-24538. [PMID: 37661660 DOI: 10.1039/d3cp02127k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
To investigate the potential energy surfaces and the coupling between the adiabatic states of SO2 molecules, it is necessary to consider the non-adiabatic coupling terms (NACTs), where the Born-Oppenheimer approximation breaks down. In this work, we analyze the conical intersections between 1 1A1 and 1 1B2 states (the A' states in Cs symmetry) and 1 1A2 and 1 1B1 states (the A'' states in Cs symmetry) using NACTs and adiabatic-to-diabatic transformation (ADT) angles. Our results confirm reasonable interaction between 1 1A1 and 1 1B2 states and strong interaction between 1 1A2 and 1 1B1 states.
Collapse
Affiliation(s)
- Sedigheh Pourestarabadi
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran.
- Young Researchers Society, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Maryam Dehestani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran.
| |
Collapse
|
3
|
Braïda B, Chen Z, Wu W, Hiberty PC. Valence Bond Alternative Yielding Compact and Accurate Wave Functions for Challenging Excited States. Application to Ozone and Sulfur Dioxide. J Chem Theory Comput 2020; 17:330-343. [PMID: 33319998 DOI: 10.1021/acs.jctc.0c00598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel state-averaged version of ab initio nonorthogonal valence bond method is described, for the sake of accurate theoretical studies of excited states in the valence bond framework. With respect to standard calculations in the molecular orbital framework, the state-averaged breathing-orbital valence bond (BOVB) method has the advantage to be free from the penalizing constraint for the ground and excited state(s) to share the same unique set of orbitals. The ability of the BOVB method to faithfully describe excited states and to compute accurate transition energies from the ground state is tested on the five lowest-lying singlet electronic states of ozone and sulfur dioxide, among which 11B2 and 21A1 are the challenging ones. As the 11A2, 11B1, and 11B2 states are of different symmetries than the ground state, they can be calculated at the state-specific BOVB level. On the other hand, the 21A1 states and the 11A1 ground states, which are of like symmetry, are calculated with the state-averaged BOVB technique. In all cases, the calculated vertical energies are close to the experimental values when available, and at par with the most sophisticated calculations in the molecular framework, despite the extreme compactness of the BOVB wave functions, made of no more than 5-9 valence bond structures in all cases. The features that allow the combination of compactness and accuracy in challenging cases are analyzed. For the "ionic" 11B2 states, which are the site of important charge fluctuations, it is because of the built-in dynamic correlation inherent to the BOVB method. For the 21A1 ones, this is the fact that these states have the degree of freedom of having different orbitals than the ground states, even though they are of like symmetry and calculated simultaneously using the newly implemented state-average BOVB algorithm. Finally, the description of the excited states in terms of Lewis structures is insightful, rationalizing the fast ring closure for the 21A1 state of ozone and predicting some diradical character in the so-called "ionic" 11B2 states.
Collapse
Affiliation(s)
- Benoît Braïda
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR7616 CNRS, Paris 75252 France
| | - Zhenhua Chen
- College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and the State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Wei Wu
- College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and the State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Philippe C Hiberty
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay 91405, France
| |
Collapse
|
4
|
Cabral Tenorio BN, Chaer Nascimento MA, Rocha AB, Coriani S. Lanczos-based equation-of-motion coupled-cluster singles-and-doubles approach to the total photoionization cross section of valence excited states. J Chem Phys 2019; 151:184106. [DOI: 10.1063/1.5125125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Bruno Nunes Cabral Tenorio
- Universidade Federal do Rio de Janeiro, UFRJ, Instituto de Química, Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ 21941-909, Brazil
| | - Marco Antonio Chaer Nascimento
- Universidade Federal do Rio de Janeiro, UFRJ, Instituto de Química, Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ 21941-909, Brazil
| | - Alexandre Braga Rocha
- Universidade Federal do Rio de Janeiro, UFRJ, Instituto de Química, Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ 21941-909, Brazil
| | - Sonia Coriani
- DTU Chemistry, Technical University of Denmark, Kemitorvet, Building 207, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
5
|
Kumar P, Jiang B, Guo H, Kłos J, Alexander MH, Poirier B. Photoabsorption Assignments for the C̃1B2 ← X̃1A1 Vibronic Transitions of SO2, Using New Ab Initio Potential Energy and Transition Dipole Surfaces. J Phys Chem A 2017; 121:1012-1021. [DOI: 10.1021/acs.jpca.6b12958] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Praveen Kumar
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Bin Jiang
- Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States,
| | - Hua Guo
- Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States,
| | - Jacek Kłos
- Department
of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Millard H. Alexander
- Department
of Chemistry and Biochemistry and Institute for Physical Science and
Technology, University of Maryland, College Park, Maryland 20742, United States
| | - Bill Poirier
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| |
Collapse
|
6
|
Kłos J, Alexander MH, Kumar P, Poirier B, Jiang B, Guo H. New ab initio adiabatic potential energy surfaces and bound state calculations for the singlet ground X̃1A1 and excited C̃1B2(21A′) states of SO2. J Chem Phys 2016; 144:174301. [DOI: 10.1063/1.4947526] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jacek Kłos
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - Millard H. Alexander
- Department of Chemistry and Biochemistry and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - Praveen Kumar
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| | - Bill Poirier
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| | - Bin Jiang
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
7
|
Wilkinson I, Boguslavskiy AE, Mikosch J, Bertrand JB, Wörner HJ, Villeneuve DM, Spanner M, Patchkovskii S, Stolow A. Excited state dynamics in SO2. I. Bound state relaxation studied by time-resolved photoelectron-photoion coincidence spectroscopy. J Chem Phys 2015; 140:204301. [PMID: 24880274 DOI: 10.1063/1.4875035] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The excited state dynamics of isolated sulfur dioxide molecules have been investigated using the time-resolved photoelectron spectroscopy and time-resolved photoelectron-photoion coincidence techniques. Excited state wavepackets were prepared in the spectroscopically complex, electronically mixed (B̃)(1)B1/(Ã)(1)A2, Clements manifold following broadband excitation at a range of photon energies between 4.03 eV and 4.28 eV (308 nm and 290 nm, respectively). The resulting wavepacket dynamics were monitored using a multiphoton ionisation probe. The extensive literature associated with the Clements bands has been summarised and a detailed time domain description of the ultrafast relaxation pathways occurring from the optically bright (B̃)(1)B1 diabatic state is presented. Signatures of the oscillatory motion on the (B̃)(1)B1/(Ã)(1)A2 lower adiabatic surface responsible for the Clements band structure were observed. The recorded spectra also indicate that a component of the excited state wavepacket undergoes intersystem crossing from the Clements manifold to the underlying triplet states on a sub-picosecond time scale. Photoelectron signal growth time constants have been predominantly associated with intersystem crossing to the (c̃)(3)B2 state and were measured to vary between 750 and 150 fs over the implemented pump photon energy range. Additionally, pump beam intensity studies were performed. These experiments highlighted parallel relaxation processes that occurred at the one- and two-pump-photon levels of excitation on similar time scales, obscuring the Clements band dynamics when high pump beam intensities were implemented. Hence, the Clements band dynamics may be difficult to disentangle from higher order processes when ultrashort laser pulses and less-differential probe techniques are implemented.
Collapse
Affiliation(s)
- Iain Wilkinson
- National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A OR6, Canada
| | - Andrey E Boguslavskiy
- National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A OR6, Canada
| | - Jochen Mikosch
- National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A OR6, Canada
| | - Julien B Bertrand
- National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A OR6, Canada
| | - Hans Jakob Wörner
- National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A OR6, Canada
| | - David M Villeneuve
- National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A OR6, Canada
| | - Michael Spanner
- National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A OR6, Canada
| | - Serguei Patchkovskii
- National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A OR6, Canada
| | - Albert Stolow
- National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A OR6, Canada
| |
Collapse
|
8
|
|
9
|
Mai S, Marquetand P, González L. Non-adiabatic and intersystem crossing dynamics in SO2. II. The role of triplet states in the bound state dynamics studied by surface-hopping simulations. J Chem Phys 2014; 140:204302. [DOI: 10.1063/1.4875036] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
10
|
Miliordos E, Xantheas SS. On the bonding nature of ozone (O3) and its sulfur-substituted analogues SO2, OS2, and S3: correlation between their biradical character and molecular properties. J Am Chem Soc 2014; 136:2808-17. [PMID: 24499187 DOI: 10.1021/ja410726u] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We investigate the bonding mechanism in ozone (O3) and its sulfur-substituted analogues, SO2, OS2, and S3. By analyzing their ground-state multireference configuration interaction wave functions, we demonstrate that the bonding in these systems can be represented as a mixture of a closed-shell structure with one and a half bonds between the central and terminal atoms and an open-shell structure with a single bond and two lone electrons on each terminal atom (biradical). The biradical character (β) further emerges as a simple measure of the relative contribution of those two classical Lewis structures emanating from the interpretation of the respective wave functions. Our analysis yields a biradical character of 3.5% for OSO, 4.4% for SSO, 11% for S3, 18% for O3, 26% for SOO, and 35% for SOS. The size/electronegativity of the end atoms relative to the central one is the prevalent factor for determining the magnitude of β: smaller and more electronegative central atoms better accommodate a pair of electrons facilitating the localization of the remaining two lone π-electrons on each of the end atoms, therefore increasing the weight of the second picture in the mixed bonding scenario (larger β). The proposed mixture of these two bonding scenarios allows for the definition of the bond order of the covalent bonds being (3-β)/2, and this accounts for the different O-O, S-S, or S-O bond lengths in the triatomic series. The biradical character was furthermore found to be a useful concept for explaining several structural and energetic trends in the series: larger values of β mark a smaller singlet-triplet splitting, closer bond lengths in the ground (1)A' and the first excited (3)A' states, and larger bond dissociation and atomization energies in the ground state. The latter explains the relative energy difference between the OSS/SOS and OOS/OSO isomers due to their different β values.
Collapse
Affiliation(s)
- Evangelos Miliordos
- Physical Sciences Division, Pacific Northwest National Laboratory , 902 Battelle Boulevard, P.O. Box 999, MS K1-83, Richland, Washington 99352, United States
| | | |
Collapse
|
11
|
Xie C, Hu X, Zhou L, Xie D, Guo H. Ab initio determination of potential energy surfaces for the first two UV absorption bands of SO2. J Chem Phys 2013; 139:014305. [DOI: 10.1063/1.4811840] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
12
|
Lévêque C, Komainda A, Taïeb R, Köppel H. Ab initio quantum study of the photodynamics and absorption spectrum for the coupled 11A2 and 11B1 states of SO2. J Chem Phys 2013; 138:044320. [DOI: 10.1063/1.4776758] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Theoretical investigation of absorption spectrum of SO2 molecule: Including S1–S2 vibronic coupling. COMPUT THEOR CHEM 2011. [DOI: 10.1016/j.comptc.2011.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
|