1
|
Zaman S, Nelson MI, Moores MT, Hai FI. A critical review of the mechanisms of virus removal by membrane bioreactors-Influencing factors and correlation with operating parameters. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124945. [PMID: 40101487 DOI: 10.1016/j.jenvman.2025.124945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/14/2025] [Accepted: 03/09/2025] [Indexed: 03/20/2025]
Abstract
Wastewater-borne virus pose significant risks to both environmental ecosystems and public health. Removal of virus from wastewater requires a rigorous treatment regime. Membrane bioreactor (MBR) systems are at the forefront of contemporary wastewater treatment technologies, offering a robust barrier against viruses. This review outlines the dual functionality of MBR systems, which combine membrane filtration with biological processes to efficiently target virus removal. It highlights the significant role of the biofilm (cake and gel layers) formed on the membrane surface, along with the critical influence of membrane pore size. This review further explores various operational parameters that maximize virus removal in MBRs, particularly highlighting the influence of membrane aging and cleaning. The impact of membrane aging varies as the chemical aging due to harsh cleaning agents tends to reduce efficiency by enlarging pores, whereas natural aging can enhance virus capture due to the development of irreversible fouling. The limited research on the effects of membrane flux, pH in the bioreactor and aeration condition on virus removal has resulted in varying and inconclusive findings. This review systematically investigates the correlation between operational parameters such as turbidity, mixed liquor suspended solids, transmembrane pressure, solids retention time, temperature, and hydraulic retention time and their impact on virus removal efficacy. Turbidity and transmembrane pressure are identified as potential indicators for indirectly monitoring virus removal. By integrating these insights, this paper contributes to an in depth understanding of MBR efficacy in virus removal and contributes to the ongoing refinement of operational strategies to ensure water safety and sustainability.
Collapse
Affiliation(s)
- Sharmin Zaman
- Strategic Water Infrastructure Lab, School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, New South Wales, 2522, Australia
| | - Mark I Nelson
- School of Mathematics and Applied Statistics, University of Wollongong, New South Wales, 2522, Australia
| | - Matthew T Moores
- School of Mathematics and Applied Statistics, University of Wollongong, New South Wales, 2522, Australia
| | - Faisal I Hai
- Strategic Water Infrastructure Lab, School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, New South Wales, 2522, Australia.
| |
Collapse
|
2
|
Yesilay G, Dos Santos OAL, A BR, Hazeem LJ, Backx BP, J JV, Kamel AH, Bououdina M. Impact of pathogenic bacterial communities present in wastewater on aquatic organisms: Application of nanomaterials for the removal of these pathogens. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106620. [PMID: 37399782 DOI: 10.1016/j.aquatox.2023.106620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 07/05/2023]
Abstract
Contaminated wastewater (WW) can cause severe hazards to numerous delicate ecosystems and associated life forms. In addition, human health is negatively impacted by the presence of microorganisms in water. Multiple pathogenic microorganisms in contaminated water, including bacteria, fungi, yeast, and viruses, are vectors for several contagious diseases. To avoid the negative impact of these pathogens, WW must be free from pathogens before being released into stream water or used for other reasons. In this review article, we have focused on pathogenic bacteria in WW and summarized the impact of the different types of pathogenic bacteria on marine organisms. Moreover, we presented a variety of physical and chemical techniques that have been developed to provide a pathogen-free aquatic environment. Among the techniques, membrane-based techniques for trapping hazardous biological contaminants are gaining popularity around the world. Besides, novel and recent advancements in nanotechnological science and engineering suggest that many waterborne pathogens could be inactivated using nano catalysts, bioactive nanoparticles, nanostructured catalytic membranes, nanosized photocatalytic structures, and electrospun nanofibers and processes have been thoroughly examined.
Collapse
Affiliation(s)
- Gamze Yesilay
- Molecular Biology and Genetics Department, Hamidiye Institute of Health Sciences, University of Health Sciences-Türkiye, Istanbul 34668, Türkiye; Experimental Medicine Application & Research Center, University of Health Sciences, Validebag Research Park, Uskudar, Istanbul 34662, Türkiye
| | | | - Bevin Roger A
- Department of Chemistry, Catalysis and Nanomaterials Research Laboratory, Loyola College, Chennai 600 034, India
| | - Layla J Hazeem
- Department of Biology, College of Science, University of Bahrain, 32038, Bahrain
| | | | - Judith Vijaya J
- Department of Chemistry, Catalysis and Nanomaterials Research Laboratory, Loyola College, Chennai 600 034, India
| | - Ayman H Kamel
- Department of Chemistry, College of Science, University of Bahrain, 32038, Bahrain; Department of Chemistry, Faculty of Science, Ain Shams University, Abbasia, Cairo 11566, Egypt
| | - Mohamed Bououdina
- Department of Mathematics and Science, Faculty of Humanities and Sciences, Prince Sultan University, Riyadh, Saudi Arabia.
| |
Collapse
|
3
|
Hu Y, Wu W. Application of Membrane Filtration to Cold Sterilization of Drinks and Establishment of Aseptic Workshop. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:89-106. [PMID: 36933166 PMCID: PMC10024305 DOI: 10.1007/s12560-023-09551-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/27/2023] [Indexed: 06/01/2023]
Abstract
Aseptic packaging of high quality beverage is necessary and its cold-pasteurization or sterilization is vital. Studies on application of ultrafiltration or microfiltration membrane to cold- pasteurization or sterilization for the aseptic packaging of beverages have been reviewed. Designing and manufacturing ultrafiltration or microfiltration membrane systems for cold-pasteurization or sterilization of beverage are based on the understanding of size of microorganisms and theoretical achievement of filtration. It is concluded that adaptability of membrane filtration, especially its combination with other safe cold method, to cold- pasteurization and sterilization for the aseptic packaging of beverages should be assured without a shadow of doubt in future.
Collapse
Affiliation(s)
- Yunhao Hu
- College of Food Science, Southwest University, No.2 Tian Shengqiao, Beibei, Chongqing, People's Republic of China
| | - Wenbiao Wu
- College of Food Science, Southwest University, No.2 Tian Shengqiao, Beibei, Chongqing, People's Republic of China.
- Research Center of Grains, Oils and Foods Engineering Design, Industrial Research Institute, Southwest University, No.2 Tian Shengqiao, Beibei, Chongqing, People's Republic of China.
| |
Collapse
|
4
|
El-Atab N, Mishra RB, Hussain MM. Toward nanotechnology-enabled face masks against SARS-CoV-2 and pandemic respiratory diseases. NANOTECHNOLOGY 2021; 33:062006. [PMID: 34727530 DOI: 10.1088/1361-6528/ac3578] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Wearing a face mask has become a necessity following the outbreak of the coronavirus (COVID-19) disease, where its effectiveness in containing the pandemic has been confirmed. Nevertheless, the pandemic has revealed major deficiencies in the ability to manufacture and ramp up worldwide production of efficient surgical-grade face masks. As a result, many researchers have focused their efforts on the development of low cost, smart and effective face covers. In this article, following a short introduction concerning face mask requirements, the different nanotechnology-enabled techniques for achieving better protection against the SARS-CoV-2 virus are reviewed, including the development of nanoporous and nanofibrous membranes in addition to triboelectric nanogenerators based masks, which can filter the virus using various mechanisms such as straining, electrostatic attraction and electrocution. The development of nanomaterials-based mask coatings to achieve virus repellent and sterilizing capabilities, including antiviral, hydrophobic and photothermal features are also discussed. Finally, the usability of nanotechnology-enabled face masks is discussed and compared with that of current commercial-grade N95 masks. To conclude, we highlight the challenges associated with the quick transfer of nanomaterials-enabled face masks and provide an overall outlook of the importance of nanotechnology in counteracting the COVID-19 and future pandemics.
Collapse
Affiliation(s)
- Nazek El-Atab
- Smart, Advanced Memory devices and Applications (SAMA) Lab, Electrical & Computer Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Rishabh B Mishra
- Smart, Advanced Memory devices and Applications (SAMA) Lab, Electrical & Computer Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- MMH Labs, Electrical & Computer Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Muhammad M Hussain
- MMH Labs, Electrical & Computer Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Electrical Engineering and Computer Sciences (EECS), University of California, Berkeley, CA 94720-1170, United States of America
| |
Collapse
|
5
|
Lesimple A, Jasim SY, Johnson DJ, Hilal N. The role of wastewater treatment plants as tools for SARS-CoV-2 early detection and removal. JOURNAL OF WATER PROCESS ENGINEERING 2020; 38:101544. [PMID: 38620686 PMCID: PMC7377730 DOI: 10.1016/j.jwpe.2020.101544] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 05/03/2023]
Abstract
The world is facing the third coronavirus caused pandemic in less than twenty years. The SARS-CoV-2 virus not only affects the human respiratory system, but also the gastrointestinal tract. The virus has been found in human feces, in sewage and in wastewater treatment plants. It has the potential to become a panzootic disease, as it is now proven that several mammalian species become infected. Since it has been shown that the virus can be detected in sewage even before the onset of symptoms in the local population, Wastewater Based Epidemiology should be developed not only to localize infection clusters of the primary wave but also to detect a potential second, or subsequent, wave. To prevent a panzootic, virus removal techniques from wastewater need to be implemented to prevent the virus dissemination into the environment. In that context, this review presents recent improvements in all the fields of wastewater treatment from treatment ponds to the use of algae or nanomaterials with a particular emphasis on membrane-based techniques.
Collapse
Affiliation(s)
- Alain Lesimple
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Saad Y Jasim
- SJ Environmental Consultants (Windsor) Inc., 4483 Cherry Hill Road, Windsor, Ontario, N9G 2W3 Canada
| | - Daniel J Johnson
- Centre for Water Advanced Technologies and Environmental Research (CWATER), College of Engineering, Swansea University, Fabian Way, Swansea SA1 8EN, United Kingdom
| | - Nidal Hilal
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
6
|
Singh R, Bhadouria R, Singh P, Kumar A, Pandey S, Singh VK. Nanofiltration technology for removal of pathogens present in drinking water. WATERBORNE PATHOGENS 2020. [PMCID: PMC7173494 DOI: 10.1016/b978-0-12-818783-8.00021-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
7
|
Li P, Liu L, Wu J, Cheng R, Shi L, Zheng X, Zhang Z. Identify driving forces of MBR applications in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:627-638. [PMID: 30092518 PMCID: PMC7112108 DOI: 10.1016/j.scitotenv.2018.07.412] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/29/2018] [Accepted: 07/29/2018] [Indexed: 06/08/2023]
Abstract
During the last two decades, MBR applications in China grow exponentially with the first pilot test of 10 m3/d in 1999 and the first application with capacity of 110,000 m3/d commissioned in 2009. It is critical to examine the drivers of MBR applications in China, which can provide sound scientific basis for future development of MBR applications. This study summarized the historical development of MBR applications and analyzed the driving forces by survey, literature review and interviews with MBR suppliers. The results showed that: (1) technical advantages of MBR and public policy related to water resources and environment promoted MBR beyond lab and pilot test into wide commercial applications in China; (2) petrochemical industry needs for wastewater treatment and reuse promoted medium-scale MBRs as public policy and regulation on water resources and environment tightens; (3) when the breakthrough of capacity of a single project above 10 thousand m3/d, the Green Olympic Games and Asian Games and tightening effluent regulations in environmentally sensitive areas incentivized MBR applications; and (4) the emergence of 100,000 m3/d MBR was mainly stimulated by water resources stress. Water resources stress and public policy related on resources and the environment are the primary driving forces in the last several decades. The future drivers of MBR applications in China appear to be decreasing operation cost.
Collapse
Affiliation(s)
- Ping Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Li Liu
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Jiaojiao Wu
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Rong Cheng
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Lei Shi
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Xiang Zheng
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China.
| | - Zhenxing Zhang
- Illinois State Water Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA.
| |
Collapse
|
8
|
Amarasiri M, Kitajima M, Nguyen TH, Okabe S, Sano D. Bacteriophage removal efficiency as a validation and operational monitoring tool for virus reduction in wastewater reclamation: Review. WATER RESEARCH 2017; 121:258-269. [PMID: 28551509 DOI: 10.1016/j.watres.2017.05.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/13/2017] [Accepted: 05/17/2017] [Indexed: 05/19/2023]
Abstract
The multiple-barrier concept is widely employed in international and domestic guidelines for wastewater reclamation and reuse for microbiological risk management, in which a wastewater reclamation system is designed to achieve guideline values of the performance target of microbe reduction. Enteric viruses are one of the pathogens for which the target reduction values are stipulated in guidelines, but frequent monitoring to validate human virus removal efficacy is challenging in a daily operation due to the cumbersome procedures for virus quantification in wastewater. Bacteriophages have been the first choice surrogate for this task, because of the well-characterized nature of strains and the presence of established protocols for quantification. Here, we performed a meta-analysis to calculate the average log10 reduction values (LRVs) of somatic coliphages, F-specific phages, MS2 coliphage and T4 phage by membrane bioreactor, activated sludge, constructed wetlands, pond systems, microfiltration and ultrafiltration. The calculated LRVs of bacteriophages were then compared with reported human enteric virus LRVs. MS2 coliphage LRVs in MBR processes were shown to be lower than those of norovirus GII and enterovirus, suggesting it as a possible validation and operational monitoring tool. The other bacteriophages provided higher LRVs compared to human viruses. The data sets on LRVs of human viruses and bacteriophages are scarce except for MBR and conventional activated sludge processes, which highlights the necessity of investigating LRVs of human viruses and bacteriophages in multiple treatment unit processes.
Collapse
Affiliation(s)
- Mohan Amarasiri
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Daisuke Sano
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
9
|
Yin Z, Tarabara VV, Xagoraraki I. Effect of pressure relaxation and membrane backwash on adenovirus removal in a membrane bioreactor. WATER RESEARCH 2016; 88:750-757. [PMID: 26595096 DOI: 10.1016/j.watres.2015.10.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 06/05/2023]
Abstract
Pressure relaxation and permeate backwash are two commonly used physical methods for membrane fouling mitigation in membrane bioreactor (MBR) systems. In order to assess the impact of these methods on virus removal by MBRs, experiments were conducted in a bench-scale submerged MBR treating synthetic wastewater. The membranes employed were hollow fibers with the nominal pore size of 0.45 μm. The experimental variables included durations of the filtration (tTMP>0), pressure relaxation (tTMP=0) and backwash (tTMP<0) steps. Both pressure relaxation and permeate backwash led to significant reductions in removal of human adenovirus (HAdV). For the same value of tTMP>0/tTMP=0, longer filtration/relaxation cycles (i.e. larger tTMP+tTMP=0) led to higher transmembrane pressure (TMP) but did not have a significant impact on HAdV removal. A shorter backwash (tTMP<0 = 10 min) at a higher flow rate (Q = 40 mL/min) resulted in more substantial decreases in TMP and HAdV removal than a longer backwash (tTMP<0 = 20 min) at a lower flow rate (Q = 20 mL/min) even though the backwash volume (QtTMP<0) was the same. HAdV removal returned to pre-cleaning levels within 16 h after backwash was applied. Moderate to strong correlations (R(2) = 0.63 to 0.94) were found between TMP and HAdV removal.
Collapse
Affiliation(s)
- Ziqiang Yin
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Volodymyr V Tarabara
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
10
|
Yin Z, Tarabara VV, Xagoraraki I. Human adenovirus removal by hollow fiber membranes: Effect of membrane fouling by suspended and dissolved matter. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.02.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Removal of Pathogens by Membrane Bioreactors: A Review of the Mechanisms, Influencing Factors and Reduction in Chemical Disinfectant Dosing. WATER 2014. [DOI: 10.3390/w6123603] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Sima LC, Schaeffer J, Le Saux JC, Parnaudeau S, Elimelech M, Le Guyader FS. Calicivirus removal in a membrane bioreactor wastewater treatment plant. Appl Environ Microbiol 2011; 77:5170-7. [PMID: 21666029 PMCID: PMC3147444 DOI: 10.1128/aem.00583-11] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 06/01/2011] [Indexed: 01/25/2023] Open
Abstract
To evaluate membrane bioreactor wastewater treatment virus removal, a study was conducted in southwest France. Samples collected from plant influent, an aeration basin, membrane effluent, solid sludge, and effluent biweekly from October 2009 to June 2010 were analyzed for calicivirus (norovirus and sapovirus) by real-time reverse transcription-PCR (RT-PCR) using extraction controls to perform quantification. Adenovirus and Escherichia coli also were analyzed to compare removal efficiencies. In the influent, sapovirus was always present, while the norovirus concentration varied temporally, with the highest concentration being detected from February to May. All three human norovirus genogroups (GI, GII, and GIV) were detected in effluent, but GIV was never detected in effluent; GI and GII were detected in 50% of the samples but at low concentrations. In the effluent, sapovirus was identified only once. An adenovirus titer showing temporal variation in influent samples was identified only twice in effluent. E. coli was always below the limit of detection in the effluent. Overall, the removal of calicivirus varied from 3.3 to greater than 6.8 log units, with no difference between the two main genogroups. Our results also demonstrated that the viruses are blocked by the membrane in the treatment plant and are removed from the plant as solid sludge.
Collapse
Affiliation(s)
- Laura C Sima
- Department of Chemical Engineering, Environmental Engineering Program, Yale University, New Haven, Connecticut, USA
| | | | | | | | | | | |
Collapse
|
13
|
Simmons FJ, Kuo DHW, Xagoraraki I. Removal of human enteric viruses by a full-scale membrane bioreactor during municipal wastewater processing. WATER RESEARCH 2011; 45:2739-50. [PMID: 21453953 DOI: 10.1016/j.watres.2011.02.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 01/24/2011] [Accepted: 02/02/2011] [Indexed: 05/19/2023]
Abstract
In the US, human enteric viruses are the main etiologic agents of childhood gastroenteritis, resulting in several hospitalizations and deaths each year. These viruses have been linked to several waterborne diseases, such as acute gastroenteritis, conjunctivitis and respiratory illness. The removal of human enterovirus (EV) and norovirus genogroup II (NoV GGII) was studied in a full-scale membrane bioreactor (MBR) wastewater treatment plant (WWTP) and compared with the removal of human adenovirus (HAdV). In total, 32 samples were quantified using real-time reverse transcription-PCR (RT-PCR) from four separate locations throughout the treatment process; influent, primary settling effluent, membrane influent (which includes the MLSS) and membrane effluent. EV was detected in all 32 samples (100%) with an average concentration of 1.1 × 10(7) and 7.8 × 10(1) viruses/L for the membrane influent and membrane effluent, respectively. NoV GGII was detected in 20 of 32 samples (63%) with an average membrane influent and membrane effluent concentration of 2.8 × 10(5) and 1.2 × 10(1) viruses/L, respectively. HAdV was detected in all 32 samples with an average membrane influent concentration of 5.2 × 10(8) and 2.7 × 10(3) viruses/L in the membrane effluent. Our findings indicate that this particular full-scale MBR treatment was able to reduce the viral loads by approximately 5.1 and 3.9 log units for EV and NoV GGII as compared to 5.5 log units for HAdV. This full-scale MBR system outperformed the removal observed in previous pilot and bench scale studies by 1 to 2 log units. To the best of our knowledge, this is the first study focusing on the removal of EV in a full-scale MBR WWTP using real-time RT-PCR, and on the solid-liquid distribution of EV and NoV GII in secondary biological treatment.
Collapse
Affiliation(s)
- Fredrick J Simmons
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
14
|
Huang X, Xiao K, Shen Y. Recent advances in membrane bioreactor technology for wastewater treatment in China. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11783-010-0240-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Liu Q, Zhou Y, Chen L, Zheng X. Application of MBR for hospital wastewater treatment in China. DESALINATION 2010; 250:605-608. [PMID: 32226093 PMCID: PMC7094538 DOI: 10.1016/j.desal.2009.09.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In China, the number of hospitals has increased to 19,712 in 2008, with the production of hospital wastewater reaching 1.29 × 106 m3/d. Membrane bioreactor (MBR) technology presents a more efficient system at removing pathological microorganism compared with existing wastewater treatment systems. In the past 8 yr, over 50 MBR plants have been successfully built for hospital wastewater treatments, with the capacity ranging from 20 to 2000 m3/d. MBR can effectively save disinfectant consumption (chlorine addition can decrease to 1.0 mg/L), shorten the reaction time (approximately 1.5 min, 2.5-5% of conventional wastewater treatment process), and attain a good effect of inactivation of microorganism. Higher disinfection efficacy is achieved in MBR effluents at lower dose of disinfectant with less disinfection by-products (DBPs). Moreover, when capacity of MBR plants increases from 20 to 1000 m3/d, their operating cost decreases sharply.
Collapse
Affiliation(s)
- Qiaoling Liu
- School of Environment and Natural Resources, Remin University of China, Beijing100872, China
- College of Environmental Science and Engineering, Peking University, Beijing, 100871, China
| | - Yufen Zhou
- School of Environment and Natural Resources, Remin University of China, Beijing100872, China
| | - Lingyun Chen
- Department of Agricultural, Food and Nutritional Science University of Alberta, Edmonton, AB, Canada T6G 2P5
| | - Xiang Zheng
- School of Environment and Natural Resources, Remin University of China, Beijing100872, China
| |
Collapse
|
16
|
Ravindran V, Tsai HH, Williams MD, Pirbazari M. Hybrid membrane bioreactor technology for small water treatment utilities: Process evaluation and primordial considerations. J Memb Sci 2009. [DOI: 10.1016/j.memsci.2009.07.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|