1
|
Jaiswal VV, Mishra S, Haranath D. Crystal Structure Induced Enhanced Afterglow Luminescence from Rare‐Earth Ion Doped Strontium Silicate Phosphors. ChemistrySelect 2021. [DOI: 10.1002/slct.202100619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Vishnu V. Jaiswal
- Luminescent Materials and Devices (LMD) Group Department of Physics National Institute of Technology Warangal 506 004 Telangana India
| | - Siju Mishra
- Luminescent Materials and Devices (LMD) Group Department of Physics National Institute of Technology Warangal 506 004 Telangana India
| | - D. Haranath
- Luminescent Materials and Devices (LMD) Group Department of Physics National Institute of Technology Warangal 506 004 Telangana India
| |
Collapse
|
2
|
Egorova DO, Buzmakov SA. Carcinogenic and teratogenic status of human population and polychlorinated biphenyls contaminations of soils and biota (European pied flycatcher) in a Perm (Western Ural, Russia). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:4299-4311. [PMID: 32557128 DOI: 10.1007/s10653-020-00615-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Polychlorinated biphenyls (PCBs) are included in the persistent organic pollutants designated by the Stockholm Convention and are hazardous compounds both for the environment and public health. The aim of this study was to determine the level of environmental pollution of PCBs in the Perm, in soil and biota (European pied flycatcher), and to analyze whether its presence was the cause of cancer and congenital malformations in the population. Soils in the study area had PCB concentrations of 101.87 µg/kg in the Industrialniy District and 27.81 µg/kg in the Leninskiy District of the Perm in 2005. The chemical composition of the individual PCBs and PCB groups were the same in the soils of both regions. The blood of nestlings of the European pied flycatcher raised in the Industrialniy District contained 9.61 ng PCB/ml, while those in the Leninskiy District had 5.64 ng PCB/ml in 2005. A linear correlation was established between the PCB contamination of soils and PCB contamination of pied flycatcher nestling's blood, and inverse linear correlation was established between the content of PCB in the blood of nestlings and the success of breeding of the pied flycatcher in Perm. An epidemiological analysis revealed a high incidence of cancer among the human population of the Industrialniy and Leninskiy districts (371.7 and 376.85 cases per 100,000 population, mean for the 2003-2018, respectively), which exceeded the figure for the whole of Perm (350.77 cases per 100,000 population, mean for the 2003-2018). The incidence rate of congenital malformations in Perm for the study period was 48.51 per 1000 human births. However, a decrease in the concentration of PCBs in soil and biota over a 15-year period (2005-2019) to the less than the detection limit did not lead to a decrease in the incidence of these diseases. Probably, PCB contamination was not the main cause of oncological diseases and congenital malformations in the population of the study area.
Collapse
Affiliation(s)
- D O Egorova
- Department of Biogeocenology and Nature Protection, Perm State University, Perm, Russian Federation.
| | - S A Buzmakov
- Department of Biogeocenology and Nature Protection, Perm State University, Perm, Russian Federation
| |
Collapse
|
3
|
Carbon nanotube–mediated antibody-free suspension array for determination of typical endocrine-disrupting chemicals. Mikrochim Acta 2020; 187:202. [DOI: 10.1007/s00604-020-4181-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 02/24/2020] [Indexed: 12/22/2022]
|
4
|
Shen X, Chen Y, Zhang J, Yan X, Liu W, Guo Y, Shan Q, Liu S. Low-dose PCB126 compromises circadian rhythms associated with disordered glucose and lipid metabolism in mice. ENVIRONMENT INTERNATIONAL 2019; 128:146-157. [PMID: 31055201 DOI: 10.1016/j.envint.2019.04.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
It has been documented that 3, 3', 4, 4', 5-pentachlorobiphenyl (PCB126) elicits diverse detrimental effects on human health including metabolic syndrome and non-alcoholic fatty-liver disease (NAFLD), through a wide array of non-carcinogenic mechanisms, which require further detailed investigations. The circadian clock system consists of central clock machinery (located in the suprachiasmatic nucleus in the hypothalamus) and the peripheral clocks (located in nearly all peripheral tissues). Peripheral clocks in the liver play fundamental roles in maintaining liver homeostasis, including the regulation of energy metabolism and the expression of enzymes that fine-tune the absorption and metabolism of xenobiotics. However, the molecular basis of whether PCB126 disrupts liver homeostasis (e.g., glucose and lipid metabolism) by dysregulating the circadian clock system is still unknown. Thus, we performed a set of comprehensive analyses of glucose and lipid metabolism in the liver tissues from low-dose PCB126-treated mice. Our results demonstrated that PCB126 diminished glucose and cholesterol levels in serum and elevated glucose and cholesterol levels in the liver. Moreover, PCB126 compromised PGC1α and PDHE1α, which are the driving force for mitochondrial biogenesis and entry of pyruvate into the tricarboxylic acid (TCA) cycle, respectively, and resulted in the accumulation of glucose, glycogen and pyruvate in the liver after PCB126 exposure. Additionally, PCB126 blocked hepatic cholesterol metabolism and export pathways, leading to an elevated localization of hepatic cholesterol. Mechanistic investigations illustrated that PCB126 greatly altered the expression profile of core clock genes and their target rhythm genes involved in orchestrating glucose and cholesterol metabolism. Together, our results demonstrated that a close correlation between PCB126-disturbed glucose and lipid metabolism and disordered physiological oscillation of circadian genes.
Collapse
Affiliation(s)
- Xinming Shen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yongjiu Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xu Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yifan Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qiuli Shan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Zhang W, Yang F, Ou D, Lin G, Huang A, Liu N, Li P. Prediction, docking study and molecular simulation of 3D DNA aptamers to their targets of endocrine disrupting chemicals. J Biomol Struct Dyn 2019; 37:4274-4282. [PMID: 30477404 DOI: 10.1080/07391102.2018.1547222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Typical endocrine disrupting chemicals, including BPA (Bisphenol A), E2 (17-β-Estradiol) and PCB 72 (polychlorinated biphenyl 72), are commonly and widely present in the environment with good chemical stability that are difficult to decompose in vitro and in vivo. Most of the high-qualified antibodies are required as the key biomaterials to fabricate the immunosensor for capturing and detecting. As an ideal alternative, the short-chain oligonucleotides (aptamer) are essentially and effectively employed with the advantages of small size, chemical stability and high effectiveness for monitoring these environmental contaminants. However, the molecular interaction, acting site and mode are still not well understood. In this work, we explored the binding features of the aptamers with their targeting ligands. The molecular dynamics simulations were performed on the aptamer-ligand complex systems. The stability of each simulation system was evaluated based on its root-mean-square deviation. The affinities of these proposed ligands and the predicted binding sites are analyzed. According to the binding energy analysis, the affinities between ligands and aptamers and the stability of the systems are BPA > PCB 72 >E2. Trajectory analysis for these three complexes indicated that these three ligands were able to steadily bind with aptamers at docking site from 0 to 50 ns and contributed to alteration of conformation of aptamers.
Collapse
Affiliation(s)
- Weiwen Zhang
- The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou , P. R. China
| | - Fengxiao Yang
- The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou , P. R. China
| | - Dejin Ou
- The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou , P. R. China
| | - Ge Lin
- The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou , P. R. China
| | - Aiyun Huang
- The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou , P. R. China
| | - Nan Liu
- General Practice Center, Nanhai Hospital, Southern Medical University , Foshan , P. R. China.,School of Public Health, Guangzhou Medical University , Guangzhou , P. R. China
| | - Pinle Li
- School of Public Health, Guangzhou Medical University , Guangzhou , P. R. China
| |
Collapse
|
6
|
Mehta J, Rouah-Martin E, Van Dorst B, Maes B, Herrebout W, Scippo ML, Dardenne F, Blust R, Robbens J. Selection and characterization of PCB-binding DNA aptamers. Anal Chem 2012; 84:1669-76. [PMID: 22166135 DOI: 10.1021/ac202960b] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs) that resist natural degradation and bioaccumulate in nature. Combined with their toxicity, this leads them to cause cancer and other health hazards. Thus, there is a vital need for rapid and sensitive methods to detect PCB residues in food and in the environment. In this study, PCB-binding DNA aptamers were developed using PCB72 and PCB106 as targets for aptamer selection. Aptamers are synthetic DNA recognition elements which form unique conformations that enable them to bind specifically to their targets. Using in vitro selection techniques and fluorometry, an aptamer that binds with nanomolar affinity to both the PCBs has been developed. It displayed high selectivity to the original target congeners and limited affinity toward other PCB congeners (105, 118, 153, and 169), suggesting general specificity for the basic PCB skeleton with varying affinities for different congeners. This aptamer provides a basis for constructing an affordable, sensitive, and high-throughput assay for the detection of PCBs in food and environmental samples and offers a promising alternative to existing methods of PCB quantitation. This study therefore advances aptamer technology by targeting one of the highly sought-after POPs, for the first time ever recorded.
Collapse
Affiliation(s)
- Jaytry Mehta
- Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|