1
|
Parambath S, Thannimangalath V, Parameswaran P. Dative quadruple bonds between d 10 transition metals and beryllium in BeM(PMe 3 ) 2 and BeM(CO) 2 (M = Ni, Pd, and Pt) complexes: Transition metal fragments as six-electron donor and two-electron acceptor. J Comput Chem 2023; 44:1645-1652. [PMID: 37185971 DOI: 10.1002/jcc.27115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023]
Abstract
The structure, chemical bonding, and reactivity of neutral 16 valence electrons (VE) transition metal complexes of beryllium, BeM(PMe3 )2 (1M-Be) and BeM(CO)2 (2M-Be, M = Ni, Pd, and Pt) were studied. The molecular orbital and EDA-NOCV analysis suggest dative quadruple bonds between the transition metal and beryllium, viz., one Be→M σ bond, one Be←M σ bond, and two Be←M π bonds. The strength of these bonding interactions varies based on the ligands coordinated to the transition metal. The Be←M σ bond is stronger than the Be→M σ bond when the ligand is PMe3, whereas the reverse order is observed when the ligand is CO. This is attributed to the higher π acceptor strength of CO as compared to PMe3 . Since these complexes have M-Be dative quadruple bonds, the beryllium center is susceptible to ambiphilic reactivity, as indicated by high proton and hydride affinity values.
Collapse
Affiliation(s)
- Sneha Parambath
- Department of Chemistry, National Institute of Technology, Calicut, Kozhikode, India
| | | | - Pattiyil Parameswaran
- Department of Chemistry, National Institute of Technology, Calicut, Kozhikode, India
| |
Collapse
|
2
|
Parambath S, Parameswaran P. Two σ- and two π-dative quadruple bonds between the s-block element and transition metal in [BeM(CO) 4; M = Fe - Os]. Phys Chem Chem Phys 2022; 24:20183-20188. [PMID: 35997149 DOI: 10.1039/d2cp02331h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the chemical bonding and reactivity of the first example of neutral 18 valence electron transition metal complexes of beryllium, [BeM(CO)4; M = Fe - Os], in trigonal bipyramidal coordination geometry, where the bonding between the transition metal and the s-block element beryllium (M-Be) can be best described by dative quadruple bonds. In contrast to the conventional multiple bonding pattern, the quadruple bonds comprise two σ-bonds and two π-bonds, viz., one Be → M σ-bond, one M → Be σ-bond, and two M → Be π-bonds. Since the M-Be quadruple bonds are described by dative interactions, the Be centre shows ambiphilic character as indicated by the high proton and hydride affinity values.
Collapse
Affiliation(s)
- Sneha Parambath
- Department of Chemistry, National Institute of Technology Calicut, Kerala, India.
| | | |
Collapse
|
3
|
Zhao J, Chi CX, Meng LY, Jiang XL, Grunenberg J, HU HS, Zhou M, Li J, Schwarz W. Cis- and Trans-Binding Influences in [NUO · (N2)n]+ . J Chem Phys 2022; 157:054301. [DOI: 10.1063/5.0098068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Uranium nitride-oxide cations [NUO]+ and their complexes with equatorial N2 ligands, [NUO·(N2) n]+ ( n=1-7), were synthesized in the gas phase. Mass-selected infrared photo-dissociation spectroscopy and quantum-chemical calculations confirm [NUO·(N2)5]+ as the sterically fully coordinated cation, with electronic singlet ground state of 1A1, linear [NUO]+ core, and C5v structure. The short N-U bond distances and high stretching modes, with slightly elongated U-O bond distances and lowered stretching modes, are rationalized as due to cooperative covalent and dative [ǀN≡U≡Oǀ]+ triple bonds. The mutual trans-interaction through the flexible electronic U-5f6d7sp valence shell, and the linearly increasing perturbation by an increasing number of equatorial dative N2 ligands are rationalized. It highlights the bonding and distinctiveness of uranium chemistry.
Collapse
Affiliation(s)
| | | | - Lu-Yan Meng
- East China University of Technology, Nanchang, China
| | - Xue-Lian Jiang
- Southern University of Science and Technology, Shenzhen, China
| | | | | | | | - Jun Li
- Tsinghua University, China
| | | |
Collapse
|
4
|
Kalita AJ, Rohman SS, Kashyap C, Ullah SS, Baruah I, Mazumder LJ, Sahu PP, Guha AK. Is a transition metal-silicon quadruple bond viable? Phys Chem Chem Phys 2021; 23:9660-9662. [PMID: 33870373 DOI: 10.1039/d1cp00598g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quadruple bonding in heavier main group elements is not known albeit having four valence orbitals accessible for bonding. Here we report the unprecedented quadruple bonding between a silicon atom and a transition metal fragment in the 1A1 electronic ground state of C3v symmetric SiRu(CO)3 based on high level theoretical calculations. Various bonding analyses reveal the nature of the Si[quadruple bond, length as m-dash]Ru quadruple bonding interaction, which involves one usual Si-Ru σ bond, two usual Si-Ru π bonds and one additional Si → Ru dative σ bond.
Collapse
Affiliation(s)
- Amlan J Kalita
- Advanced Computational Chemistry Centre, Department of Chemistry, Cotton University, Panbazar, Guwahati, Assam-781001, India.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Wang G, Zhao J, Hu H, Li J, Zhou M. Formation and Characterization of BeFe(CO)
4
−
Anion with Beryllium−Iron Bonding. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Guanjun Wang
- Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials Fudan University Shanghai 200438 China
| | - Jing Zhao
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education Tsinghua University Beijing 100084 China
| | - Han‐Shi Hu
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education Tsinghua University Beijing 100084 China
| | - Jun Li
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education Tsinghua University Beijing 100084 China
- Department of Chemistry School of Science Southern University of Science and Technology Shenzhen 518055 China
| | - Mingfei Zhou
- Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials Fudan University Shanghai 200438 China
| |
Collapse
|
6
|
Wang G, Zhao J, Hu HS, Li J, Zhou M. Formation and Characterization of BeFe(CO) 4 - Anion with Beryllium-Iron Bonding. Angew Chem Int Ed Engl 2021; 60:9334-9338. [PMID: 33400362 DOI: 10.1002/anie.202015760] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Indexed: 11/07/2022]
Abstract
Heteronuclear BeFe(CO)4 - anion complex is generated in the gas phase, which is detected by mass-selected infrared photodissociation spectroscopy in the carbonyl stretching frequency region. The complex is characterized to have a Be-Fe bonded Be-Fe(CO)4 - structure with C3v symmetry and all of the four carbonyl ligands bonded on the iron center. Quantum chemical studies indicate that the complex has a quite short Be-Fe bond. Besides one electron-sharing σ bond, there are two additional, albeit weak, Be ← Fe(CO)4 - dative π bonding interactions. The findings imply that metal-metal bonding between s-block and transition metals is viable under suitable coordination environment.
Collapse
Affiliation(s)
- Guanjun Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Jing Zhao
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Han-Shi Hu
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Jun Li
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, China.,Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Mingfei Zhou
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|
7
|
Kalita AJ, Rohman SS, Kashyap C, Ullah SS, Guha AK. Transition metal carbon quadruple bond: viability through single electron transmutation. Phys Chem Chem Phys 2020; 22:24178-24180. [PMID: 33089847 DOI: 10.1039/d0cp03436c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Quadruple bonding to main group elements is extremely rare although they have four valence orbitals accessible for bonding. Here we report the unprecedented quadruple bonding between a carbon atom and a transition metal fragment Fe(CO)3 based on high level theoretical calculations. Various bonding analyses reveal the unprecedented nature of the C[quadruple bond, length as m-dash]Fe quadruple bonding interaction. The validity of the single electron transmutation concept has been tested which fruitfully reproduces the structural and bonding similarities between the two neighbours in the periodic table.
Collapse
Affiliation(s)
- Amlan J Kalita
- Advanced Computational Chemistry Centre, Department of Chemistry, Cotton University, Panbazar, Guwahati, Assam, India.
| | | | | | | | | |
Collapse
|
8
|
Cheung LF, Chen TT, Kocheril GS, Chen WJ, Czekner J, Wang LS. Observation of Four-Fold Boron-Metal Bonds in RhB(BO -) and RhB. J Phys Chem Lett 2020; 11:659-663. [PMID: 31913630 DOI: 10.1021/acs.jpclett.9b03484] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The maximum bond order between two main-group atoms was known to be three. However, it has been suggested recently that there is quadruple bonding in C2 and analogous eight-valence electron species. While the quadruple bond in C2 has aroused some debates, an interesting question is: are main-group elements capable of forming quadruple bonds? Here we use photoelectron spectroscopy and computational chemistry to probe the electronic structure and chemical bonding in RhB2O- and RhB- and show that the boron atom engages in quadruple bonding with rhodium in RhB(BO)- and neutral RhB. The quadruple bonds consist of two π-bonds formed between the Rh 4dxz/4dyz and B 2px/2py orbitals and two σ-bonds between the Rh 4dz2 and B 2s/2pz orbitals. To confirm the quadruple bond in RhB, we also investigate the linear Rh≡B-H+ species and find a triple bond between Rh and B, which has a longer bond length, lower stretching frequency, and smaller bond dissociation energy in comparison with that of the Rh≣B quadruple bond in RhB.
Collapse
Affiliation(s)
- Ling Fung Cheung
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| | - Teng-Teng Chen
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| | - G Stephen Kocheril
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| | - Wei-Jia Chen
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| | - Joseph Czekner
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| | - Lai-Sheng Wang
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| |
Collapse
|
9
|
Chi C, Wang JQ, Hu HS, Zhang YY, Li WL, Meng L, Luo M, Zhou M, Li J. Quadruple bonding between iron and boron in the BFe(CO) 3- complex. Nat Commun 2019; 10:4713. [PMID: 31624260 PMCID: PMC6797760 DOI: 10.1038/s41467-019-12767-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/25/2019] [Indexed: 11/11/2022] Open
Abstract
While main group elements have four valence orbitals accessible for bonding, quadruple bonding to main group elements is extremely rare. Here we report that main group element boron is able to form quadruple bonding interactions with iron in the BFe(CO)3- anion complex, which has been revealed by quantum chemical investigation and identified by mass-selected infrared photodissociation spectroscopy in the gas phase. The complex is characterized to have a B-Fe(CO)3- structure of C3v symmetry and features a B-Fe bond distance that is much shorter than that expected for a triple bond. Various chemical bonding analyses indicate that the complex involves unprecedented B≣Fe quadruple bonding interactions. Besides the common one electron-sharing σ bond and two Fe→B dative π bonds, there is an additional weak B→Fe dative σ bonding interaction. This finding of the new quadruple bonding indicates that there might exist a wide range of boron-metal complexes that contain such high multiplicity of chemical bonds.
Collapse
Affiliation(s)
- Chaoxian Chi
- School of Chemistry, Biological and Materials Sciences, East China University of Technology, 330013, Nanchang, Jiangxi Province, China
| | - Jia-Qi Wang
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, 100084, Beijing, China
| | - Han-Shi Hu
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, 100084, Beijing, China.
| | - Yang-Yang Zhang
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, 100084, Beijing, China
| | - Wan-Lu Li
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, 100084, Beijing, China
| | - Luyan Meng
- School of Chemistry, Biological and Materials Sciences, East China University of Technology, 330013, Nanchang, Jiangxi Province, China
| | - Mingbiao Luo
- School of Chemistry, Biological and Materials Sciences, East China University of Technology, 330013, Nanchang, Jiangxi Province, China
| | - Mingfei Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433, Shanghai, China.
| | - Jun Li
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, 100084, Beijing, China.
- Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China.
| |
Collapse
|
10
|
Wang JQ, Chi C, Hu HS, Meng L, Luo M, Li J, Zhou M. Triple Bonds Between Iron and Heavier Group 15 Elements in AFe(CO) 3- (A=As, Sb, Bi) Complexes. Angew Chem Int Ed Engl 2017; 57:542-546. [PMID: 29193525 DOI: 10.1002/anie.201709875] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/21/2017] [Indexed: 11/08/2022]
Abstract
Heteronuclear transition-metal-main-group-element carbonyl complexes of AsFe(CO)3- , SbFe(CO)3- , and BiFe(CO)3- were produced by a laser vaporization supersonic ion source in the gas phase, and were studied by mass-selected IR photodissociation spectroscopy and advanced quantum chemistry methods. These complexes have C3v structures with all of the carbonyl ligands bonded on the iron center, and feature covalent triple bonds between bare Group 15 elements and Fe(CO)3- . Chemical bonding analyses on the whole series of AFe(CO)3- (A=N, P, As, Sb, Bi, Mc) complexes indicate that the valence orbitals involved in the triple bonds are hybridized 3d and 4p atomic orbitals of iron, leading to an unusual (dp-p) type of transition-metal-main-group-element multiple bonding. The σ-type three-orbital interaction between Fe 3d/4p and Group 15 np valence orbitals plays an important role in the bonding and stability of the heavier AFe(CO)3- (A=As, Sb, Bi) complexes.
Collapse
Affiliation(s)
- Jia-Qi Wang
- Department of chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Chaoxian Chi
- School of Chemistry, Biological and Materials Sciences, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, Jiangxi Province, 330013, China
| | - Han-Shi Hu
- Department of chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Luyan Meng
- School of Chemistry, Biological and Materials Sciences, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, Jiangxi Province, 330013, China
| | - Mingbiao Luo
- School of Chemistry, Biological and Materials Sciences, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, Jiangxi Province, 330013, China
| | - Jun Li
- Department of chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Mingfei Zhou
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| |
Collapse
|
11
|
Wang JQ, Chi C, Hu HS, Meng L, Luo M, Li J, Zhou M. Triple Bonds Between Iron and Heavier Group 15 Elements in AFe(CO)3
−
(A=As, Sb, Bi) Complexes. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jia-Qi Wang
- Department of chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education; Tsinghua University; Beijing 100084 China
| | - Chaoxian Chi
- School of Chemistry, Biological and Materials Sciences; Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation; East China University of Technology; Nanchang Jiangxi Province 330013 China
| | - Han-Shi Hu
- Department of chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education; Tsinghua University; Beijing 100084 China
| | - Luyan Meng
- School of Chemistry, Biological and Materials Sciences; Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation; East China University of Technology; Nanchang Jiangxi Province 330013 China
| | - Mingbiao Luo
- School of Chemistry, Biological and Materials Sciences; Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation; East China University of Technology; Nanchang Jiangxi Province 330013 China
| | - Jun Li
- Department of chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education; Tsinghua University; Beijing 100084 China
| | - Mingfei Zhou
- Department of Chemistry; Collaborative Innovation Center of Chemistry for Energy Materials; Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; Fudan University; Shanghai 200433 China
| |
Collapse
|
12
|
|
13
|
Hu HS, Wei F, Wang X, Andrews L, Li J. Actinide–Silicon Multiradical Bonding: Infrared Spectra and Electronic Structures of the Si(μ-X)AnF3 (An = Th, U; X = H, F) Molecules. J Am Chem Soc 2014; 136:1427-37. [DOI: 10.1021/ja409527u] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Han-Shi Hu
- Department
of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular
Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Fan Wei
- Department
of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular
Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Xuefeng Wang
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, United States
| | - Lester Andrews
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, United States
| | - Jun Li
- Department
of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular
Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|