1
|
Lin SL, Chen YH, Liu HH, Xiang SH, Tan B. Enantioselective Synthesis of Chiral Cyclobutenes Enabled by Brønsted Acid-Catalyzed Isomerization of BCBs. J Am Chem Soc 2023; 145:21152-21158. [PMID: 37732875 DOI: 10.1021/jacs.3c06525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Chiral cyclobutene units are commonly found in natural products and biologically active molecules. Transition-metal-catalysis has been extensively used in asymmetric synthesis of such structures, while organocatalytic approaches remain elusive. In this study, bicyclo[1.1.0]butanes are involved in enantioselective transformation for the first time to offer a highly efficient route toward cyclobutenes with good regio- and enantiocontrol. The utilization of N-triflyl phosphoramide as a chiral Brønsted acid promoter enables this isomerization process to proceed under mild conditions with low catalyst loading as well as good functional group compatibility. The resulting chiral cyclobutenes could serve as platform molecules for downstream manipulations with excellent reservation of stereochemical integrity, demonstrating the synthetic practicality of the developed method. Control experiments have also been performed to verify the formation of a key carbocation intermediate at the benzylic position.
Collapse
Affiliation(s)
- Si-Li Lin
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ye-Hui Chen
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huan-Huan Liu
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shao-Hua Xiang
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bin Tan
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Bergman HM, Beattie DD, Handford RC, Rossomme E, Suslick BA, Head-Gordon M, Cundari TR, Liu Y, Tilley TD. Copper(III) Metallacyclopentadienes via Zirconocene Transfer and Reductive Elimination to an Isolable Phenanthrocyclobutadiene. J Am Chem Soc 2022; 144:9853-9858. [PMID: 35604847 DOI: 10.1021/jacs.2c02581] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite the widespread use of copper catalysis for the formation of C-C bonds, debate about the mechanism persists. Reductive elimination from Cu(III) is often invoked as a key step, yet examples of its direct observation from isolable complexes remain limited to only a few examples. Here, we demonstrate that incorporation of bulky mesityl (Mes) groups into the α-positions of a phenanthrene-appended zirconacyclopentadiene, Cp2Zr(2,5-Mes2-phenanthro[9,10]C4), enables efficient oxidative transmetalation to the corresponding, formal Cu(III) metallacyclopentadiene dimer. The dimer was quantitatively converted to a structurally analogous anionic monomer [nBu4N]{Cl2Cu(2,5-Mes2-phenanthro[9,10]C4)} upon treatment with [nBu4N][Cl]. Both metallacycles undergo quantitative reductive elimination upon heating to generate phenanthrocyclobutadiene and a Cu(I) species. Due to the steric protection provided by the mesityl groups, this cyclobutadiene was isolated and thoroughly characterized to reveal antiaromaticity comparable to that of free cyclobutadiene, which imbues it with a small highest occupied molecular orbital-lowest unoccupied molecular orbital energy gap of 1.85 eV and accessible reduced and oxidized electronic states.
Collapse
Affiliation(s)
- Harrison M Bergman
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - D Dawson Beattie
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Rex C Handford
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Elliot Rossomme
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.,Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Benjamin A Suslick
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.,Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Thomas R Cundari
- Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, Denton, Texas 76203, United States
| | - Yi Liu
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - T Don Tilley
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Zhang J, Xie Z. [2 + 2] Cycloaddition of o-Carboryne with Vinyl Ethers: Synthesis of Carborane-Fused Cyclobutanes. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jie Zhang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|