1
|
Patsula V, Mareková D, Jendelová P, Nahorniak M, Shapoval O, Matouš P, Oleksa V, Konefał R, Vosmanská M, Machová-Urdziková L, Horák D. Polymer-coated hexagonal upconverting nanoparticles: chemical stability and cytotoxicity. Front Chem 2023; 11:1207984. [PMID: 37426333 PMCID: PMC10327433 DOI: 10.3389/fchem.2023.1207984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023] Open
Abstract
Large (120 nm) hexagonal NaYF4:Yb, Er nanoparticles (UCNPs) were synthesized by high-temperature coprecipitation method and coated with poly(ethylene glycol)-alendronate (PEG-Ale), poly (N,N-dimethylacrylamide-co-2-aminoethylacrylamide)-alendronate (PDMA-Ale) or poly(methyl vinyl ether-co-maleic acid) (PMVEMA). The colloidal stability of polymer-coated UCNPs in water, PBS and DMEM medium was investigated by dynamic light scattering; UCNP@PMVEMA particles showed the best stability in PBS. Dissolution of the particles in water, PBS, DMEM and artificial lysosomal fluid (ALF) determined by potentiometric measurements showed that all particles were relatively chemically stable in DMEM. The UCNP@Ale-PEG and UCNP@Ale-PDMA particles were the least soluble in water and ALF, while the UCNP@PMVEMA particles were the most chemically stable in PBS. Green fluorescence of FITC-Ale-modified UCNPs was observed inside the cells, demonstrating successful internalization of particles into cells. The highest uptake was observed for neat UCNPs, followed by UCNP@Ale-PDMA and UCNP@PMVEMA. Viability of C6 cells and rat mesenchymal stem cells (rMSCs) growing in the presence of UCNPs was monitored by Alamar Blue assay. Culturing with UCNPs for 24 h did not affect cell viability. Prolonged incubation with particles for 72 h reduced cell viability to 40%-85% depending on the type of coating and nanoparticle concentration. The greatest decrease in cell viability was observed in cells cultured with neat UCNPs and UCNP@PMVEMA particles. Thanks to high upconversion luminescence, high cellular uptake and low toxicity, PDMA-coated hexagonal UCNPs may find future applications in cancer therapy.
Collapse
Affiliation(s)
- Vitalii Patsula
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Dana Mareková
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Department of Neurosciences, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Pavla Jendelová
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Department of Neurosciences, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Mykhailo Nahorniak
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Oleksandr Shapoval
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Petr Matouš
- Center for Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Viktoriia Oleksa
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Rafał Konefał
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Magda Vosmanská
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Prague, Czechia
| | | | - Daniel Horák
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
2
|
Wu K, He X, Wang J, Pan T, He R, Kong F, Cao Z, Ju F, Huang Z, Nie L. Recent progress of microfluidic chips in immunoassay. Front Bioeng Biotechnol 2022; 10:1112327. [PMID: 36619380 PMCID: PMC9816574 DOI: 10.3389/fbioe.2022.1112327] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Microfluidic chip technology is a technology platform that integrates basic operation units such as processing, separation, reaction and detection into microchannel chip to realize low consumption, fast and efficient analysis of samples. It has the characteristics of small volume need of samples and reagents, fast analysis, low cost, automation, portability, high throughout, and good compatibility with other techniques. In this review, the concept, preparation materials and fabrication technology of microfluidic chip are described. The applications of microfluidic chip in immunoassay, including fluorescent, chemiluminescent, surface-enhanced Raman spectroscopy (SERS), and electrochemical immunoassay are reviewed. Look into the future, the development of microfluidic chips lies in point-of-care testing and high throughput equipment, and there are still some challenges in the design and the integration of microfluidic chips, as well as the analysis of actual sample by microfluidic chips.
Collapse
Affiliation(s)
- Kaimin Wu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Xuliang He
- Zhuzhou People's Hospital, Zhuzhou, China
| | - Jinglei Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Ting Pan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Ran He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Feizhi Kong
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Zhenmin Cao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Feiye Ju
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Zhao Huang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Libo Nie
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| |
Collapse
|
3
|
Ling S, Chen C, Meng K, Yan Y, Ming J, Liao S, Huang Y. A crystal defect led zero thermal quenching β-NaYF 4 : Eu 3+,Dy 3+ red emitting phosphor. RSC Adv 2022; 12:30803-30816. [PMID: 36349163 PMCID: PMC9610441 DOI: 10.1039/d2ra05674g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Red-light phosphors with extraordinary and stable thermal luminous properties must urgently be explored under the circumstances that commercial phosphors are suffering from serious thermal quenching effects and a lack of red-light components. Synthesized by a one-step hydrothermal method, a new type of NaYF4 : 0.065Eu3+,0.003Dy3+ phosphor with notable thermal luminous stability is reported in this study. As well as energy transfer between Dy3+ and Eu3+, this novel red-light phosphor manifests zero thermal quenching (ZTQ) performance under an increasing temperature of measurement. The ZTQ property stems from the interior defects of the crystal produced by the non-equivalence replacement between distinct ions. Density Functional Theory (DFT) calculations were utilized to verify the formation energy of two kinds of defects that make a vital contribution to the ZTQ performance of the NaYF4 : 0.065Eu3+,0.003Dy3+ phosphor. This finding could make some contributions towards research into improving thermal luminous properties and stability.
Collapse
Affiliation(s)
- Shaokun Ling
- School of Resources, Environment and Materials, Guangxi University Nanning Guangxi 530004 China
| | - Chang Chen
- School of Resources, Environment and Materials, Guangxi University Nanning Guangxi 530004 China
| | - Kai Meng
- School of Resources, Environment and Materials, Guangxi University Nanning Guangxi 530004 China
| | - Yifeng Yan
- School of Resources, Environment and Materials, Guangxi University Nanning Guangxi 530004 China
| | - Junyun Ming
- School of Resources, Environment and Materials, Guangxi University Nanning Guangxi 530004 China
| | - Sen Liao
- School of Chemistry and Chemical Engineering, Guangxi University Nanning Guangxi 530004 China +86 771 3233718 +86 771 3233718
- School of Resources, Environment and Materials, Guangxi University Nanning Guangxi 530004 China
| | - Yingheng Huang
- School of Resources, Environment and Materials, Guangxi University Nanning Guangxi 530004 China
| |
Collapse
|
4
|
A new type of zero thermal quenching red emitting phosphor β-NaYF4:Eu3+ for NUV LEDs. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Ding Z, He Y, Rao H, Zhang L, Nguyen W, Wang J, Wu Y, Han C, Xing C, Yan C, Chen W, Liu Y. Novel Fluorescent Probe Based on Rare-Earth Doped Upconversion Nanomaterials and Its Applications in Early Cancer Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1787. [PMID: 35683645 PMCID: PMC9181853 DOI: 10.3390/nano12111787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 01/20/2023]
Abstract
In this paper, a novel rare-earth-doped upconverted nanomaterial NaYF4:Yb,Tm fluorescent probe is reported, which can detect cancer-related specific miRNAs in low abundance. The detection is based on an upconversion of nanomaterials NaYF4:Yb,Tm, with emissions at 345, 362, 450, 477, 646, and 802 nm, upon excitation at 980 nm. The optimal Yb3+:Tm3+ doping ratio is 40:1, in which the NaYF4:Yb,Tm nanomaterials have the strongest fluorescence. The NaYF4:Yb, Tm nanoparticles were coated with carboxylation or carboxylated protein, in order to improve their water solubility and biocompatibility. The two commonly expressed proteins, miRNA-155 and miRNA-150, were detected by the designed fluorescent probe. The results showed that the probes can distinguish miRNA-155 well from partial and complete base mismatch miRNA-155, and can effectively distinguish miRNA-155 and miRNA-150. The preliminary results indicate that these upconverted nanomaterials have good potential for protein detection in disease diagnosis, including early cancer detection.
Collapse
Affiliation(s)
- Zhou Ding
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China; (Z.D.); (Y.H.); (H.R.); (L.Z.); (J.W.); (Y.W.); (C.H.); (C.Y.)
| | - Yue He
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China; (Z.D.); (Y.H.); (H.R.); (L.Z.); (J.W.); (Y.W.); (C.H.); (C.Y.)
| | - Hongtao Rao
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China; (Z.D.); (Y.H.); (H.R.); (L.Z.); (J.W.); (Y.W.); (C.H.); (C.Y.)
| | - Le Zhang
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China; (Z.D.); (Y.H.); (H.R.); (L.Z.); (J.W.); (Y.W.); (C.H.); (C.Y.)
| | - William Nguyen
- Department of Physics, The University of Texas at Arlington, Arlington, TX 76019-0059, USA; (W.N.); (C.X.)
| | - Jingjing Wang
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China; (Z.D.); (Y.H.); (H.R.); (L.Z.); (J.W.); (Y.W.); (C.H.); (C.Y.)
| | - Ying Wu
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China; (Z.D.); (Y.H.); (H.R.); (L.Z.); (J.W.); (Y.W.); (C.H.); (C.Y.)
| | - Caiqin Han
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China; (Z.D.); (Y.H.); (H.R.); (L.Z.); (J.W.); (Y.W.); (C.H.); (C.Y.)
| | - Christina Xing
- Department of Physics, The University of Texas at Arlington, Arlington, TX 76019-0059, USA; (W.N.); (C.X.)
| | - Changchun Yan
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China; (Z.D.); (Y.H.); (H.R.); (L.Z.); (J.W.); (Y.W.); (C.H.); (C.Y.)
| | - Wei Chen
- Department of Physics, The University of Texas at Arlington, Arlington, TX 76019-0059, USA; (W.N.); (C.X.)
- Medical Technology Research Centre, Chelmsford Campus, Anglia Ruskin University, Chelmsford CM1 1SQ, UK
| | - Ying Liu
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China; (Z.D.); (Y.H.); (H.R.); (L.Z.); (J.W.); (Y.W.); (C.H.); (C.Y.)
| |
Collapse
|
6
|
Lu X, Yao C, Sun L, Li Z. Plasmon-enhanced biosensors for microRNA analysis and cancer diagnosis. Biosens Bioelectron 2022; 203:114041. [DOI: 10.1016/j.bios.2022.114041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/19/2022]
|
7
|
Wang C, Liu M, Wang Z, Li S, Deng Y, He N. Point-of-care diagnostics for infectious diseases: From methods to devices. NANO TODAY 2021; 37:101092. [PMID: 33584847 PMCID: PMC7864790 DOI: 10.1016/j.nantod.2021.101092] [Citation(s) in RCA: 245] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 05/04/2023]
Abstract
The current widespread of COVID-19 all over the world, which is caused by SARS-CoV-2 virus, has again emphasized the importance of development of point-of-care (POC) diagnostics for timely prevention and control of the pandemic. Compared with labor- and time-consuming traditional diagnostic methods, POC diagnostics exhibit several advantages such as faster diagnostic speed, better sensitivity and specificity, lower cost, higher efficiency and ability of on-site detection. To achieve POC diagnostics, developing POC detection methods and correlated POC devices is the key and should be given top priority. The fast development of microfluidics, micro electro-mechanical systems (MEMS) technology, nanotechnology and materials science, have benefited the production of a series of portable, miniaturized, low cost and highly integrated POC devices for POC diagnostics of various infectious diseases. In this review, various POC detection methods for the diagnosis of infectious diseases, including electrochemical biosensors, fluorescence biosensors, surface-enhanced Raman scattering (SERS)-based biosensors, colorimetric biosensors, chemiluminiscence biosensors, surface plasmon resonance (SPR)-based biosensors, and magnetic biosensors, were first summarized. Then, recent progresses in the development of POC devices including lab-on-a-chip (LOC) devices, lab-on-a-disc (LOAD) devices, microfluidic paper-based analytical devices (μPADs), lateral flow devices, miniaturized PCR devices, and isothermal nucleic acid amplification (INAA) devices, were systematically discussed. Finally, the challenges and future perspectives for the design and development of POC detection methods and correlated devices were presented. The ultimate goal of this review is to provide new insights and directions for the future development of POC diagnostics for the management of infectious diseases and contribute to the prevention and control of infectious pandemics like COVID-19.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Mei Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, PR China
| |
Collapse
|
8
|
Liang G, Wang H, Shi H, Wang H, Zhu M, Jing A, Li J, Li G. Recent progress in the development of upconversion nanomaterials in bioimaging and disease treatment. J Nanobiotechnology 2020; 18:154. [PMID: 33121496 PMCID: PMC7596946 DOI: 10.1186/s12951-020-00713-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 10/20/2020] [Indexed: 01/02/2023] Open
Abstract
Multifunctional lanthanide-based upconversion nanoparticles (UCNPs), which feature efficiently convert low-energy photons into high-energy photons, have attracted considerable attention in the domain of materials science and biomedical applications. Due to their unique photophysical properties, including light-emitting stability, excellent upconversion luminescence efficiency, low autofluorescence, and high detection sensitivity, and high penetration depth in samples, UCNPs have been widely applied in biomedical applications, such as biosensing, imaging and theranostics. In this review, we briefly introduced the major components of UCNPs and the luminescence mechanism. Then, we compared several common design synthesis strategies and presented their advantages and disadvantages. Several examples of the functionalization of UCNPs were given. Next, we detailed their biological applications in bioimaging and disease treatment, particularly drug delivery and photodynamic therapy, including antibacterial photodynamic therapy. Finally, the future practical applications in materials science and biomedical fields, as well as the remaining challenges to UCNPs application, were described. This review provides useful practical information and insights for the research on and application of UCNPs in the field of cancer.
Collapse
Affiliation(s)
- Gaofeng Liang
- Medical College, Henan University of Science and Technology, Luoyang, 471023, Henan, China.
| | - Haojie Wang
- Medical College, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Hao Shi
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Haitao Wang
- School of Environmental Science and Engineering, Nankai University, Tianjin,, 300350, China
| | - Mengxi Zhu
- Medical College, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Aihua Jing
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Jinghua Li
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Guangda Li
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
9
|
Min Q, Zhao L, Qi Y, Lei J, Chen W, Xu X, Zhou D, Qiu J, Yu X. Modified surface states of NaGdF 4:Yb 3+/Tm 3+ up-conversion nanoparticles via a post-chemical annealing process. NANOSCALE 2018; 10:19031-19038. [PMID: 30280164 DOI: 10.1039/c8nr05021j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An amorphous layer acting as a quenching center at the surface of oleic acid-capped NaGdF4:Yb3+/Tm3+ nanoparticles is observed directly, which can be reconstructed via a novel post-chemical annealing process. The amorphous phase of the surface layer of NaGdF4:Yb3+/Tm3+ nanoparticles gradually crystallizes as the post-chemical annealing temperature increases; meanwhile, the good dispersibility of the as-obtained nanoparticles is maintained. The reduction of surface defects and higher local symmetry of the crystal field environment around the doped rare-earth ions contribute to drastically increased up-conversion (UC) emission intensity of the NaGdF4:Yb3+/Tm3+ nanoparticles. In particular, the blue emission of Tm3+ at 450 nm enhances 10-fold after the post-chemical annealing process at 250 °C compared with the counterpart without further surface-state treatments. The color gamut of well-crystallized NaGdF4:Yb3+/Tm3+ with a modified surface covers the blue to yellow region in CIE chromaticity coordinates via a non-steady-state UC process. The results indicate that the surface states of these UC nanoparticles can be feasibly improved via the post-chemical annealing process without encouraging agglomeration, which further optimizes their UC properties for practical applications.
Collapse
Affiliation(s)
- Qiuhong Min
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhao F, Yin D, Wu C, Liu B, Chen T, Guo M, Huang K, Chen Z, Zhang Y. Huge enhancement of upconversion luminescence by dye/Nd3+ sensitization of quenching-shield sandwich structured upconversion nanocrystals under 808 nm excitation. Dalton Trans 2017; 46:16180-16189. [DOI: 10.1039/c7dt03383d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A highly efficient UCL under excitation at 808 nm was achieved by dye/Nd3+ sensitization of quenching-shield sandwich structured upconversion nanocrystals.
Collapse
Affiliation(s)
- Feifei Zhao
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- China
| | - Dongguang Yin
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- China
| | - Chenglong Wu
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- China
| | - Bingqi Liu
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- China
| | - Tao Chen
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- China
| | - Mengting Guo
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- China
| | - Kexian Huang
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- China
| | - Zhiwen Chen
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- China
| | - Yong Zhang
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- China
| |
Collapse
|