1
|
Dil KV, Palchykov VA. O,S,Se-containing Biginelli products based on cyclic β-ketosulfone and their postfunctionalization. Beilstein J Org Chem 2024; 20:2143-2151. [PMID: 39224228 PMCID: PMC11368051 DOI: 10.3762/bjoc.20.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
A one-pot three-component Biginelli synthesis of dihydropyrimidinones/thiones/selenones via acetic acid or solvent-free Yb(OTf)3-catalyzed tandem reaction of β-ketosulfone (dihydro-2H-thiopyran-3(4H)-one-1,1-dioxide), an appropriate urea, and arylaldehyde has been developed. The reaction proceeds with high chemo- and regioselectivity to give diverse DHPMs in reasonable yields up to 95%. Moreover, an SO2-containing analogue of anticancer drug-candidate enastron (SO2 vs C=O) was obtained by using the here reported method in gram scale. We also demonstrate the reactivity of the Biginelli product in various directions - synthesis of condensed thiazoles and tetrazoles. In silico assessment of ADMET parameters shows that most compounds meet the lead-likeness requirements. The biological profiles of new compounds demonstrate high probability levels of activity against the following pathogens/diseases: Candida albicans, Alphis gossypii, Tripomastigote Chagas, Tcruzi amastigota, Tcruzi epimastigota, Leishmania amazonensis, and Dengue larvicida.
Collapse
Affiliation(s)
- Kateryna V Dil
- Research Institute of Chemistry and Geology, Oles Honchar Dnipro National University, Nauky Av. 72, Dnipro, 49045, Ukraine
- Enamine Ltd. (www.enamine.net), Winston Churchill Str. 78, Kyiv, 02094, Ukraine
| | - Vitalii A Palchykov
- Research Institute of Chemistry and Geology, Oles Honchar Dnipro National University, Nauky Av. 72, Dnipro, 49045, Ukraine
| |
Collapse
|
2
|
Ma Z, Zhao S, Zhai H, Yuan R, Wei Y, Feng L, Tao L. Superhydrophobic Coatings Composed of Multifunctional Polymers Synthesized Using Successive Modification of Dihydropyrimidin-2(1 H)-thione. ACS Macro Lett 2023; 12:1491-1497. [PMID: 37874180 DOI: 10.1021/acsmacrolett.3c00572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Polymer synthesis via multicomponent reactions (MCRs) has opened avenues in polymer chemistry and led to the development of various types of functional polymers. Herein, we developed a strategy to prepare multifunctional polymers via the successive modification of dihydropyrimidin-2(1H)-thione (DHPMT), which can be generated by the tricomponent Biginelli reaction. Four hydrophobic polymers were efficiently prepared by using DHPMT derivatives. These polymers can be dip-coated onto the oxidized copper mesh to obtain superhydrophobic meshes because of the strong attractive forces between the DHPMT derivatives and Cu(II). The optimized mesh has self-cleaning properties and outstanding stability in various liquid environments; it has also been successfully applied for oil/water separation with high separation efficiency and good durability. These results demonstrate that successive modification of DHPMT is a promising method for fabricating multifunctional polymers, which may have applications in polymer chemistry and materials science.
Collapse
Affiliation(s)
- Zeyu Ma
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shuaiheng Zhao
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Huajun Zhai
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Rui Yuan
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lin Feng
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
3
|
Stepping Further from Coupling Tools: Development of Functional Polymers via the Biginelli Reaction. Molecules 2022; 27:molecules27227886. [PMID: 36431987 PMCID: PMC9698737 DOI: 10.3390/molecules27227886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
Multicomponent reactions (MCRs) have been used to prepare polymers with appealing functions. The Biginelli reaction, one of the oldest and most famous MCRs, has sparked new scientific discoveries in polymer chemistry since 2013. Recent years have seen the Biginelli reaction stepping further from simple coupling tools; for example, the functions of the Biginelli product 3,4-dihydropyrimidin-2(1H)-(thi)ones (DHPM(T)) have been gradually exploited to develop new functional polymers. In this mini-review, we mainly summarize the recent progress of using the Biginelli reaction to identify polymers for biomedical applications. These polymers have been documented as antioxidants, anticancer agents, and bio-imaging probes. Moreover, we also provide a brief introduction to some emerging applications of the Biginelli reaction in materials and polymer science. Finally, we present our perspectives for the further development of the Biginelli reaction in polymer chemistry.
Collapse
|
4
|
Wang C, Yu B, Li W, Zou W, Cong H, Shen Y. Effective strategy for polymer synthesis: multicomponent reactions and click polymerization. MATERIALS TODAY CHEMISTRY 2022; 25:100948. [DOI: 10.1016/j.mtchem.2022.100948] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
5
|
Catalyst-free multicomponent polymerization of sulfonyl azide, aldehyde and cyclic amino acids toward zwitterionic and amphiphilic poly(N-sulfonyl amidine) as nanocatalyst precursor. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
6
|
Zheng J, Fu C, Chen Z, Zhang P, Zhao R, Ding L, Liu H, Deng K. Simultaneous
MALI
and Ugi polymerization in one‐pot for poly(
4
‐thiazolidinone‐amide) as
AIEgen
and Fe
3+
ion detection. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jinxin Zheng
- College of Chemistry & Environmental Science Hebei University Baoding China
| | - Congcong Fu
- College of Chemistry & Environmental Science Hebei University Baoding China
| | - Zhuo Chen
- College of Chemistry & Environmental Science Hebei University Baoding China
| | - Pengfei Zhang
- College of Chemistry & Environmental Science Hebei University Baoding China
| | - Ronghui Zhao
- College of Chemistry & Environmental Science Hebei University Baoding China
- Affiliated Hospital Hebei University Baoding China
| | - Lan Ding
- College of Chemistry & Environmental Science Hebei University Baoding China
| | - Hongmei Liu
- College of Chemistry & Environmental Science Hebei University Baoding China
| | - Kuilin Deng
- College of Chemistry & Environmental Science Hebei University Baoding China
| |
Collapse
|
7
|
Stiernet P, Debuigne A. Imine-Based Multicomponent Polymerization: Concepts, Structural Diversity and Applications. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Ma Z, Zeng Y, He X, Pan S, Wei Y, Wang B, Tao L. Introducing the aza-Michael addition reaction between acrylate and dihydropyrimidin-2(1 H)-thione into polymer chemistry. Polym Chem 2022. [DOI: 10.1039/d2py01130a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aza-Michael addition reaction between dihydropyrimidin-2(1H)-thione and acrylate has been used to fabricate new polymers through different synthesis routes.
Collapse
Affiliation(s)
- Zeyu Ma
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yuan Zeng
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xianzhe He
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Siyu Pan
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Bo Wang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
9
|
Lee IH, Bang KT, Yang HS, Choi TL. Recent Advances in Diversity-Oriented Polymerization Using Cu-Catalyzed Multicomponent Reactions. Macromol Rapid Commun 2021; 43:e2100642. [PMID: 34715722 DOI: 10.1002/marc.202100642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/27/2021] [Indexed: 11/07/2022]
Abstract
Diversification of polymer structures is important for imparting various properties and functions to polymers, so as to realize novel applications of these polymers. In this regard, diversity-oriented polymerization (DOP) is a powerful synthetic strategy for producing diverse and complex polymer structures. Multicomponent polymerization (MCP) is a key method for realizing DOP owing to its combinatorial features and high efficiency. Among the MCP methods, Cu-catalyzed MCP (Cu-MCP) has recently paved the way for DOP by overcoming the synthetic challenges of the previous MCP methods. Here the emergence and progress of Cu-MCP, its current challenges, and future perspectives are discussed.
Collapse
Affiliation(s)
- In-Hwan Lee
- Department of Chemistry, Ajou University, Suwon, 16499, Korea
| | - Ki-Taek Bang
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Hee-Seong Yang
- Department of Energy System Research, Ajou University, Suwon, 16499, Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
10
|
Zhang D, Zheng J, Zhang P, Zhao R, Chen Z, Wang M, Deng K. Polyurea Modified with 4‐Dihydropyrimidone‐2‐ketone Rings by Biginelli Reaction and its Boostered AIE Characteristic. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Da Zhang
- College of Chemistry & Environmental Science Hebei University Baoding 071002 China
| | - Jinxin Zheng
- College of Chemistry & Environmental Science Hebei University Baoding 071002 China
| | - Pengfei Zhang
- College of Chemistry & Environmental Science Hebei University Baoding 071002 China
| | - Ronghui Zhao
- Affiliated Hospital Hebei University Baoding 071002 China
| | - Zhuo Chen
- College of Chemistry & Environmental Science Hebei University Baoding 071002 China
| | - Meng Wang
- College of Chemistry & Environmental Science Hebei University Baoding 071002 China
| | - Kuilin Deng
- College of Chemistry & Environmental Science Hebei University Baoding 071002 China
| |
Collapse
|
11
|
Deng YP, Gan QH, Gao X, Jiang XQ, Wang SF. A green and efficient method for one-step synthesis of novel oxazolo[3,2-c]pyrimidine derivatives in lactic acid. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Meier MAR, Hu R, Tang BZ. Multicomponent Reactions in Polymer Science. Macromol Rapid Commun 2021; 42:e2100104. [PMID: 33739546 DOI: 10.1002/marc.202100104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 12/23/2022]
Affiliation(s)
- Michael A R Meier
- Laboratory of Applied Chemistry, Institute of Biological and Chemical Systems - Functional, Material Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Rongrong Hu
- State Key Laboratory of Luminescent Materials and Devices, South China Universty of Technology, Guangzhou, 510641, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research, Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
13
|
Mao T, He X, Liu G, Wei Y, Gou Y, Zhou X, Tao L. Fluorescent polymers via post-polymerization modification of Biginelli-type polymers for cellular protection against UV damage. Polym Chem 2021. [DOI: 10.1039/d0py00503g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Biocompatible fluorescent polymers with UV-protective capability have been developed by the combination of the Biginelli reaction and the postpolymerization modification method.
Collapse
Affiliation(s)
- Tengfei Mao
- State Key Laboratory of NBC Protection for Civilian
- Beijing
- P. R. China
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory
- National University of Defense Technology
| | - Xianzhe He
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Guoqiang Liu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Yanzi Gou
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory
- National University of Defense Technology
- Changsha
- P. R. China
| | - Xingui Zhou
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory
- National University of Defense Technology
- Changsha
- P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| |
Collapse
|
14
|
Milović E, Janković N, Bogdanović GA, Petronijević J, Joksimović N. On water synthesis of the novel 2-oxo-1,2,3,4-tetrahydropyrimidines. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Wang J, Qin A, Tang BZ. Multicomponent Polymerizations Involving Green Monomers. Macromol Rapid Commun 2020; 42:e2000547. [PMID: 33314433 DOI: 10.1002/marc.202000547] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/15/2020] [Indexed: 12/17/2022]
Abstract
Green monomers, such as oxygen (O2 ), water (H2 O), and carbon dioxide (CO2 ), refer to a kind of natural reagents with abundant, nontoxic, cheap, environmentally friendly, renewable, and sustainable features. These monomers have been used in multicomponent polymerizations (MCPs) toward functional polymers. In this review, the recent development of MCPs involving green monomers of O2 -, H2 O-, and CO2 is summarized. The catalytic systems, polymerization conditions, the molecular weights, and potential applications of resultant polymers are briefly discussed. Furthermore, the existing challenges and the promising opportunities are concisely provided.
Collapse
Affiliation(s)
- Jia Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
16
|
Liu G, Zeng Y, Lv T, Mao T, Wei Y, Jia S, Gou Y, Tao L. High-throughput preparation of radioprotective polymers via Hantzsch's reaction for in vivo X-ray damage determination. Nat Commun 2020; 11:6214. [PMID: 33277480 PMCID: PMC7718248 DOI: 10.1038/s41467-020-20027-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Radioprotectors for acute injuries caused by large doses of ionizing radiation are vital to national security, public health and future development of humankind. Here, we develop a strategy to explore safe and efficient radioprotectors by combining Hantzsch's reaction, high-throughput methods and polymer chemistry. A water-soluble polymer with low-cytotoxicity and an excellent anti-radiation capability has been achieved. In in vivo experiments, this polymer is even better than amifostine, which is the only approved radioprotector for clinical applications, in effectively protecting zebrafish embryos from fatally large doses of ionizing radiation (80 Gy X-ray). A mechanistic study also reveals that the radioprotective ability of this polymer originates from its ability to efficiently prevent DNA damage due to high doses of radiation. This is an initial attempt to explore polymer radioprotectors via a multi-component reaction. It allows exploiting functional polymers and provides the underlying insights to guide the design of radioprotective polymers.
Collapse
Affiliation(s)
- Guoqiang Liu
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuan Zeng
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tong Lv
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Tengfei Mao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha, 410073, China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shunji Jia
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yanzi Gou
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha, 410073, China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
17
|
Li Y, Tan T, Zhao Y, Wei Y, Wang D, Chen R, Tao L. Anticancer Polymers via the Biginelli Reaction. ACS Macro Lett 2020; 9:1249-1254. [PMID: 35638617 DOI: 10.1021/acsmacrolett.0c00496] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We developed a polymer-drug strategy to explore anticancer polymers. A series of monomers containing groups with potential anticancer activity have been facilely prepared through the Biginelli reaction. These monomers were used to produce water-soluble polymers through convenient radical copolymerization. The resulting polymers are biocompatible and can be directly used to suppress proliferation of different cancer cells without the release of small molecules. Theoretical calculations revealed that Biginelli groups in polymers had strong interaction with the Eg5 protein, which is highly expressed in cancer cells and is closely related to cell mitosis. Subsequent cell experiments confirmed that a screened polymer is efficient in inhibiting mitosis in different cancer cells. Our study of exploring functional polymers via the combination of multicomponent reactions and theoretical calculation resulted in promising anticancer polymers, which might pave a path for de novo designing of functional polymers and have important implications in the fields of organic, computational, and polymer chemistry.
Collapse
Affiliation(s)
- Yongsan Li
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Tianhao Tan
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yuan Zhao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Dong Wang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Rongjun Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
18
|
Windbiel JT, Meier MAR. Synthesis of new Biginelli polycondensates: renewable materials with tunable high glass transition temperatures. POLYM INT 2020. [DOI: 10.1002/pi.6106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Julian T Windbiel
- Laboratory of Applied Chemistry, Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS) Karlsruhe Institute of Technology (KIT) Eggenstein‐Leopoldshafen Germany
| | - Michael AR Meier
- Laboratory of Applied Chemistry, Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS) Karlsruhe Institute of Technology (KIT) Eggenstein‐Leopoldshafen Germany
- Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC) Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| |
Collapse
|
19
|
Tian Y, Zeng Y, Li Y, He X, Wu H, Wei Y, Wu Y, Wang X, Tao L. Polyanionic self-healing hydrogels for the controlled release of cisplatin. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109773] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
20
|
Yuan L, He L, Wang Y, Lang X, Yang F, Zhao Y, Zhao H. Two- and Three-Component Post-Polymerization Modifications Based on Meldrum’s Acid. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ling Yuan
- Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), School of Materials Science and Engineering, Superconductivity and New Energy R&D Center, Southwest Jiaotong University, Chengdu 610031, China
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Lirong He
- Institut für Technische und Makromolekulare Chemie, Universität Hamburg, Bundesstraße 45, Hamburg 20146, Germany
| | - Yixi Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xianhua Lang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Feng Yang
- Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), School of Materials Science and Engineering, Superconductivity and New Energy R&D Center, Southwest Jiaotong University, Chengdu 610031, China
| | - Yong Zhao
- Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), School of Materials Science and Engineering, Superconductivity and New Energy R&D Center, Southwest Jiaotong University, Chengdu 610031, China
| | - Hui Zhao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
21
|
Yang L, Zeng Y, Wu H, Zhou C, Tao L. An antioxidant self-healing hydrogel for 3D cell cultures. J Mater Chem B 2020; 8:1383-1388. [PMID: 31976515 DOI: 10.1039/c9tb02792k] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this paper, an antioxidant self-healing hydrogel has been prepared. The Biginelli reaction was used to prepare a monomer containing phenylboronic acid (PBA) and 3,4-dihydropyrimidin-2(1H)-one (DHPM) groups. This PBA-DHPM monomer was copolymerized with poly(ethylene glycol methyl ether) methacrylate (PEGMA) to produce a water-soluble copolymer via radical polymerization. The resulting copolymer quickly crosslinked poly(vinyl alcohol) (PVA) through borate ester bonds to generate a self-healing hydrogel under mild conditions (pH ∼ 7.4, 25 °C). The prepared hydrogel showed an inherent antioxidant ability because of the DHPM moieties in the hydrogel structure. It also showed no cytotoxicity, and in an in vivo mouse model the hydrogel injected under the skin of a mouse hardly caused any adverse reactions, suggesting that this hydrogel could be used as an implantable biomaterial. This first report of an antioxidant self-healing hydrogel demonstrates a new application of the Biginelli reaction in materials science, which might prompt a broad study of multicomponent reactions in interdisciplinary fields.
Collapse
Affiliation(s)
- Lei Yang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Yuan Zeng
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China.
| | - Haibo Wu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China.
| | - Chunwu Zhou
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
22
|
Liu G, Zhang Q, Li Y, Wang X, Wu H, Wei Y, Zeng Y, Tao L. High-Throughput Preparation of Antibacterial Polymers from Natural Product Derivatives via the Hantzsch Reaction. iScience 2020; 23:100754. [PMID: 31884171 PMCID: PMC6941863 DOI: 10.1016/j.isci.2019.100754] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/27/2022] Open
Abstract
The Hantzsch and free-radical polymerization reactions were combined in a one-pot high-throughput (HTP) system to simultaneously prepare 30 unique polymers in parallel. Six aldehydes derived from natural products were used as the starting materials to rapidly prepare the library of 30 poly(1,4-dihydropyridines). From this library, HTP evaluation methods led to the identification of an antibacterial polymer. Mechanistic studies revealed that the dihydropyridine group in the polymer side-chain structure plays an important role in resisting bacterial attachment to the polymer surface, thus leading to the antibacterial function of this polymer. This research demonstrates the value of multicomponent reactions (MCRs) in interdisciplinary fields by discovering functional polymers for possible practical applications. It also provides insights to further developing new functional polymers using MCRs and HTP methods with important implications in organic chemistry, polymer chemistry, and materials science.
Collapse
Affiliation(s)
- Guoqiang Liu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Qiang Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Yongsan Li
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xing Wang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Haibo Wu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yuan Zeng
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
23
|
Stiernet P, Aqil A, Zhu X, Debuigne A. Multicomponent Radziszewski Emulsion Polymerization toward Macroporous Poly(ionic liquid) Catalysts. ACS Macro Lett 2020; 9:134-139. [PMID: 35638665 DOI: 10.1021/acsmacrolett.9b00942] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interconnected macroporous imidazolium-based monoliths are produced via the modified Radziszewski multicomponent reaction (MCR) applied to triamines under high internal phase emulsion (HIPE) conditions. This straightforward one-pot synthesis combines the efficiency and versatility of MCRs with the ease of implementation of the emulsion templating polymerization process. The characterization of the chemical structure and morphology of the resulting materials confirms the formation of the expected macroporous poly(ionic liquid)s (PILs) networks. The promising catalytic activity and recyclability of these porous PIL monoliths are illustrated for the transesterification reaction and the decarboxylation of caffeic acid. In these cases, almost complete conversion is reached while benefiting from the advantages associated with a heterogeneous catalyst.
Collapse
Affiliation(s)
- Pierre Stiernet
- Center for Education and Research on Macromolecules (CERM), Research Unit “Complex and Entangled Systems: from Atoms to Materials” (CESAM), University of Liege (ULiege), Quartier Agora, 13 Allée du Six Août, Sart-Tilman, B-4000 Liège, Belgium
| | - Abdelhafid Aqil
- Center for Education and Research on Macromolecules (CERM), Research Unit “Complex and Entangled Systems: from Atoms to Materials” (CESAM), University of Liege (ULiege), Quartier Agora, 13 Allée du Six Août, Sart-Tilman, B-4000 Liège, Belgium
| | - Xiaomin Zhu
- RWTH Aachen University, Forckenbeckstraße 50, 52056 Aachen, Germany
| | - Antoine Debuigne
- Center for Education and Research on Macromolecules (CERM), Research Unit “Complex and Entangled Systems: from Atoms to Materials” (CESAM), University of Liege (ULiege), Quartier Agora, 13 Allée du Six Août, Sart-Tilman, B-4000 Liège, Belgium
| |
Collapse
|
24
|
Guo YC, Song XD, Deng W, Rao W, Xu H, Shen ZL. An efficient synthesis of 4,5-diaryl-3,4-dihydropyrimidin-2(1H)-one via a cesium carbonate-promoted direct condensation of 1-aryl-2-propanone with 1,1′-(arylmethylene)diurea. RSC Adv 2020; 10:30062-30068. [PMID: 35518255 PMCID: PMC9056278 DOI: 10.1039/d0ra05480a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/02/2020] [Indexed: 12/27/2022] Open
Abstract
An efficient method for the synthesis of 4,5-diaryl-3,4-dihydropyrimidin-2(1H)-one by using 1,1′-(arylmethylene)diurea and 1-aryl-2-propanone as substrates was developed. The reactions proceeded efficiently in the presence of Cs2CO3 to give the desired products in moderate to good yields with wide substrate scope and good functional group tolerance, serving as an attractive alternative or complement to the previously reported methods for the facile assembly of biologically and pharmaceutically active 3,4-dihydropyrimidin-2(1H)-ones. A Cs2CO3-promoted efficient method for the synthesis of 4,5-diaryl-3,4-dihydropyrimidin-2(1H)-one by using 1,1′-(arylmethylene)diurea and 1-aryl-2-propanone as substrates was developed.![]()
Collapse
Affiliation(s)
- Yi-Cong Guo
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- China
| | - Xuan-Di Song
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- China
| | - Wei Deng
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- China
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Haiyan Xu
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang
- China
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- China
| |
Collapse
|
25
|
Mao T, Yang L, Liu G, Wei Y, Gou Y, Wang J, Tao L. Ferrocene-Containing Polymer via the Biginelli Reaction for In Vivo Treatment of Oxidative Stress Damage. ACS Macro Lett 2019; 8:639-645. [PMID: 35619538 DOI: 10.1021/acsmacrolett.9b00210] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Small molecule antioxidants have little impact on oxidative stress in vivo because of their poor bioavailability. To explore an antioxidant for in vivo applications, a polymeric antioxidant containing a ferrocene moiety was developed. The ferrocene-containing monomer was synthesized through the robust tricomponent Biginelli reaction with a high yield. The corresponding water-soluble copolymer was conveniently prepared via radical polymerization. Both the ferrocene moiety and the Biginelli structure (dihydropyrimidin-2(H)-one) contributed to the remarkable radical scavenging ability of this highly biocompatible copolymer. It was more efficient than traditional small molecule antioxidants at protecting cells against fatal oxidative stress. This copolymer also showed clear therapeutic activity in counteracting oxidation-induced acute liver damage in a live mouse model. Our study into functional organometallic polymers resulted in a promising polymeric biomaterial that may find therapeutic applications and have important implications in the fields of organic chemistry and polymer chemistry.
Collapse
Affiliation(s)
- Tengfei Mao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha, 410073, People’s Republic of China
| | - Lei Yang
- Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, 100021, People’s Republic of China
| | - Guoqiang Liu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Yanzi Gou
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha, 410073, People’s Republic of China
| | - Jun Wang
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha, 410073, People’s Republic of China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
26
|
Thermally Healable Polyurethanes Based on Furfural-Derived Monomers via Baylis-Hillman Reaction. Macromol Res 2019. [DOI: 10.1007/s13233-019-7123-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
|
28
|
Stiernet P, Lecomte P, De Winter J, Debuigne A. Ugi Three-Component Polymerization Toward Poly(α-amino amide)s. ACS Macro Lett 2019; 8:427-434. [PMID: 35651127 DOI: 10.1021/acsmacrolett.9b00182] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Due to their great modularity, ease of implementation, and atom economy, multicomponent reactions (MCRs) are becoming increasingly popular macromolecular engineering tools. In this context, MCRs suitable in polymer synthesis are eagerly searched for. This work demonstrates the potential of the Ugi-three component reaction (Ugi-3CR) for the design of polymers and, in particular, of poly(α-amino amide)s. A series of polymers containing amino and amido groups within their backbone were obtained through a one-pot process by reacting aliphatic or aromatic diamines, diisocyanides, and aldehydes. The impact of temperature, concentration, catalyst loading, and substrates on polymerization efficiency is discussed. A preliminary study on the thermal properties and the solution behavior of these poly(α-amino amide)s was carried out. An aliphatic-rich derivative notably showed some pH-responsiveness in water via protonation-deprotonation of its amino groups.
Collapse
Affiliation(s)
- Pierre Stiernet
- Center for Education and Research on Macromolecules (CERM), Research Unit “Complex and Entangled Systems: from Atoms to Materials (CESAM)”, University of Liege, Quartier Agora, 13 Allée du Six Août, Sart-Tilman, B-4000 Liège, Belgium
| | - Philippe Lecomte
- Center for Education and Research on Macromolecules (CERM), Research Unit “Complex and Entangled Systems: from Atoms to Materials (CESAM)”, University of Liege, Quartier Agora, 13 Allée du Six Août, Sart-Tilman, B-4000 Liège, Belgium
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Laboratory, University of Mons, 7000 Mons, Belgium
| | - Antoine Debuigne
- Center for Education and Research on Macromolecules (CERM), Research Unit “Complex and Entangled Systems: from Atoms to Materials (CESAM)”, University of Liege, Quartier Agora, 13 Allée du Six Août, Sart-Tilman, B-4000 Liège, Belgium
| |
Collapse
|
29
|
Rong L, Zeng M, Liu H, Wang B, Mao Z, Xu H, Zhang L, Zhong Y, Yuan J, Sui X. Biginelli reaction on cellulose acetoacetate: a new approach for versatile cellulose derivatives. Carbohydr Polym 2019; 209:223-229. [DOI: 10.1016/j.carbpol.2019.01.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 11/29/2022]
|
30
|
Wu H, Gou Y, Wang J, Tao L. Multicomponent Reactions for Surface Modification. Macromol Rapid Commun 2018; 39:e1800064. [DOI: 10.1002/marc.201800064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/08/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Haibo Wu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education); Department of Chemistry; Tsinghua University; Beijing 100084 P. R. China
| | - Yanzi Gou
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory; National University of Defense Technology; Changsha 410073 P. R. China
| | - Jun Wang
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory; National University of Defense Technology; Changsha 410073 P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education); Department of Chemistry; Tsinghua University; Beijing 100084 P. R. China
| |
Collapse
|
31
|
Mao T, Liu G, Wu H, Wei Y, Gou Y, Wang J, Tao L. High Throughput Preparation of UV-Protective Polymers from Essential Oil Extracts via the Biginelli Reaction. J Am Chem Soc 2018; 140:6865-6872. [PMID: 29627974 DOI: 10.1021/jacs.8b01576] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A high throughput (HTP) system has been developed to exploit new functional polymers. We synthesized 25 monomers in a mini-HTP manner through the tricomponent Biginelli reaction with high yields. The starting materials were five aldehydes extracted from essential oils. The 25 corresponding polymers were conveniently prepared via mini-HTP radical polymerization initially realizing the benefit of HTP methods to quickly fabricate sample libraries. The distinct radical scavenging ability of these Biginelli polymers was evaluated through a HTP measurement to choose the three best radical scavengers. This confirms the superiority of the HTP strategy to rapidly collect and analyze data. The selected polymers have been upgraded and screened according to different requirements for biomaterials and offer water-soluble and biocompatible copolymers that effectively protect cells from the fatal UV damage. This research is a straightforward way to establish new libraries of monomers with abundant diversity. It offers polymers with interesting functionalities. This suggests that a broader study of multicomponent reactions and HTP methods might be useful in many interdisciplinary fields. To the best of our knowledge, this is the first report of a HTP study of the Biginelli reaction to develop a promising polymeric biomaterial, which might have important implications for the organic chemistry and polymer communities.
Collapse
Affiliation(s)
- Tengfei Mao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China.,Science and Technology on Advanced Ceramic Fibers and Composites Laboratory , National University of Defense Technology , Changsha , 410073 , P. R. China
| | - Guoqiang Liu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| | - Haibo Wu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| | - Yanzi Gou
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory , National University of Defense Technology , Changsha , 410073 , P. R. China
| | - Jun Wang
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory , National University of Defense Technology , Changsha , 410073 , P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| |
Collapse
|
32
|
Xu L, Zhou F, Liao M, Hu R, Tang BZ. Room temperature multicomponent polymerizations of alkynes, sulfonyl azides, and N-protected isatins toward oxindole-containing poly(N-acylsulfonamide)s. Polym Chem 2018. [DOI: 10.1039/c7py01983a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of a new polymerization methodology affords polymer materials with new structures and functionalities.
Collapse
Affiliation(s)
- Liguo Xu
- State Key Laboratory of Luminescent Materials and Devices
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou 510640
- China
| | - Fan Zhou
- State Key Laboratory of Luminescent Materials and Devices
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou 510640
- China
| | - Min Liao
- State Key Laboratory of Luminescent Materials and Devices
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou 510640
- China
| | - Rongrong Hu
- State Key Laboratory of Luminescent Materials and Devices
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou 510640
- China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|
33
|
Blasco E, Sims MB, Goldmann AS, Sumerlin BS, Barner-Kowollik C. 50th Anniversary Perspective: Polymer Functionalization. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00465] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Eva Blasco
- Macromolecular Architectures, Institut für Technische Chemie
und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr.
18, 76128 Karlsruhe, Germany
- Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Michael B. Sims
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Anja S. Goldmann
- School of Chemistry,
Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George St., Brisbane, QLD 4000, Australia
- Macromolecular Architectures, Institut für Technische Chemie
und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr.
18, 76128 Karlsruhe, Germany
- Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Christopher Barner-Kowollik
- School of Chemistry,
Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George St., Brisbane, QLD 4000, Australia
- Macromolecular Architectures, Institut für Technische Chemie
und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr.
18, 76128 Karlsruhe, Germany
- Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
34
|
Sun Q, Liu G, Wu H, Xue H, Zhao Y, Wang Z, Wei Y, Wang Z, Tao L. Fluorescent Cell-Conjugation by a Multifunctional Polymer: A New Application of the Hantzsch Reaction. ACS Macro Lett 2017; 6:550-555. [PMID: 35610883 DOI: 10.1021/acsmacrolett.7b00220] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multicomponent reactions (MCRs) can form unique structures with interesting functions, therefore, multifunctional polymers might be simply prepared using MCRs as coupling tools to simultaneously link and generate different functional groups. To verify this concept, a new fluorescent polymer containing phenylboronic acid has been facilely prepared via a one pot method by combining the Hantzsch reaction with reversible addition-fragmentation chain transfer (RAFT) polymerization. The Hantzsch-RAFT system has been found robust to smoothly achieve predesigned multifunctional polymer, which can be used for cell conjugation through the interaction between phenylboronic acid and glycoprotein on cell membrane. The conjugated cells could be directly observed due to the fluorescent Hantzsch moiety in the polymer chain, demonstrating a new application of the old Hantzsch reaction (>130 years) outside organic chemistry. Meanwhile, the conjugated cells remained excellent dispersity in the presence of coagulation protein (lectin), implying that multifunctional polymer a possible anticoagulant for cell separation. We believe that the current research paves a new way to exploit new applications of MCRs in interdisciplinary fields and might prompt the development of other multifunctional polymers based on different MCRs.
Collapse
Affiliation(s)
- Qiang Sun
- The
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Guoqiang Liu
- The
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Haibo Wu
- The
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
- College
of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, People’s Republic of China
| | - Haodong Xue
- The
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
- College
of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, People’s Republic of China
| | - Yuan Zhao
- The
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Zilin Wang
- The
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Yen Wei
- The
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Zhiming Wang
- College
of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, People’s Republic of China
| | - Lei Tao
- The
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
35
|
Wu H, Wang Z, Tao L. The Hantzsch reaction in polymer chemistry: synthesis and tentative application. Polym Chem 2017. [DOI: 10.1039/c7py01718a] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recent utilization of the tetra-component Hantzsch reaction in polymer chemistry has been summarized.
Collapse
Affiliation(s)
- Haibo Wu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Zhiming Wang
- College of Pharmaceutical Science
- Zhejiang Chinese Medical University
- Hangzhou
- People's Republic of China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| |
Collapse
|