1
|
Fu S, Younis MR, Cai Z, Liu L, Gu H, Ni G, Lui S, Ai H, Song B, Wu M. One-Pot Fabrication of Kinetically Inert Ultrasmall Manganese(II) Chelate-Backboned Polymer Contrast Agents for High-Performance Magnetic Resonance Imaging. NANO LETTERS 2024; 24:14252-14262. [PMID: 39400054 DOI: 10.1021/acs.nanolett.4c03804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Traditional macromolecules or nanoscale Mn2+ chelate-based magnetic resonance imaging (MRI) contrast agents (CAs) suffer from complicated and laborious synthesis processes, relatively low kinetic stability and T1 relaxivity, limiting their clinical applications. Herein, we fabricated a series of kinetically inert Mn2+ chelate-backboned polymers, P(MnL-PEG), through a facile and one-pot polymerization process. Particularly, P(MnL-PEG)-3 demonstrates a significantly higher T1 relaxivity of 23.9 Mn mM-1 s-1 at 1.5 T than that of previously reported small molecules and macromolecules or nanoscale Mn2+ chelate-based CAs. Due to its high T1 relaxivity, extended blood circulation, hepatocyte-specific uptake, and kidneys metabolism, P(MnL-PEG)-3 presents significantly enhanced contrast in blood vessel, liver, and kidneys imaging compared to clinical Gd3+-based CAs (Gd-EOB-DTPA and Gd-DOTA) at a dosage of 0.05 mmol Mn/Gd kg-1 BW, and can accurately diagnose orthotopic H22 liver tumors in vivo in animal models. We anticipate that this work will promote the development of clinically relevant MRI CAs.
Collapse
Affiliation(s)
- Shengxiang Fu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Muhammad Rizwan Younis
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Zhongyuan Cai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Liu
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haojie Gu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, China
| | - Guohua Ni
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Su Lui
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bin Song
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Radiology, Sanya People's Hospital, Sanya, Hainan 572022, China
| | - Min Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
| |
Collapse
|
2
|
Zou JH, Chen LL, Hu YG, Zhou D, Li Y, Zhang B, Xu XY, Liu B, Fan JX, Zhao YD. Ag 2S quantum dot-based magnetic resonance/fluorescence dual-mode imaging nanoprobes for tumor diagnosis. Biomater Sci 2024; 12:5274-5282. [PMID: 39240013 DOI: 10.1039/d4bm01014k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Accurate tumor detection is crucial for the early discovery and subsequent treatment of small neoplastic foci. Molecular imaging, which combines non-invasiveness, high specificity, and strong sensitivity, excels in diagnosing early tumors and stands out among tumor diagnosis methods. Here, we introduced a dual-modal imaging probe capable of actively targeting tumor cells, suitable for both near-infrared (NIR) fluorescence and magnetic resonance imaging (MRI). Dendritic mesoporous silica was used as a carrier for the probe, encapsulating Ag2S quantum dots (QDs) for NIR fluorescence imaging. Additionally, the probe conjugated the MRI contrast agent Gd-DOTA and cetuximab, which targeted EGFR on the tumor cell membrane surface, to achieve dual-modal imaging in the tumor area. This strategy provided a methodology for the accurate diagnosis of early-stage tumor lesions and guides precise lesion resection during surgery, offering significant potential for clinical application.
Collapse
Affiliation(s)
- Jia-Hua Zou
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.
- Department of Oncology, Huanggang Central Hospital of Yangtze University, No.126 Qi'an Road, Huangzhou District, Huanggang City 438000, Hubei, China
| | - Li-Li Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.
| | - Yong-Guo Hu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.
| | - Dong Zhou
- Department of Oncology, Huanggang Central Hospital of Yangtze University, No.126 Qi'an Road, Huangzhou District, Huanggang City 438000, Hubei, China
| | - Yong Li
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.
| | - Bin Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.
| | - Xin-Yue Xu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.
| | - Bo Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.
| | - Jin-Xuan Fan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.
- NMPA Research Base of Regulatory Science for Medical Devices & Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| |
Collapse
|
3
|
Wang Z, Wang D, Ren X, Liu Z, Liu A, Li X, Guan L, Shen Y, Jin S, Zvyagin AV, Yang B, Wang T, Lin Q. One Stone, Three Birds: Multifunctional Nanodots as "Pilot Light" for Guiding Surgery, Enhanced Radiotherapy, and Brachytherapy of Tumors. ACS CENTRAL SCIENCE 2023; 9:1976-1988. [PMID: 37901175 PMCID: PMC10604975 DOI: 10.1021/acscentsci.3c00994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Indexed: 10/31/2023]
Abstract
Surgery, radiotherapy (RT), and brachytherapy are crucial treatments for localized deep tumors. However, imprecise tumor location often leads to issues such as positive surgical margins, extended radiotherapy target volumes, and radiation damage to healthy tissues. Reducing side effects in healthy tissue and enhancing RT efficacy are critical challenges. To address these issues, we developed a multifunctional theranostic platform using Au/Ag nanodots (Au/AgNDs) that act as a "pilot light" for real-time guided surgery, high-efficiency RT, and brachytherapy, achieving a strategy of killing three birds with one stone. First, dual-mode imaging of Au/AgNDs enabled precision RT, minimizing damage to adjacent normal tissue during X-ray irradiation. Au/AgNDs enhanced ionizing radiation energy deposition, increased intracellular reactive oxygen species (ROS) generation, regulated the cell cycle, promoted DNA damage formation, and inhibited DNA repair in tumor cells, significantly improving RT efficacy. Second, in brachytherapy, precise guidance provided by dual-mode imaging addressed challenges related to non-visualization of existing interstitial brachytherapy and multiple adjustments of insertion needle positions. Meanwhile, the effect of brachytherapy was improved. Third, the excellent fluorescence imaging of Au/AgNDs accurately distinguished tumors from normal tissue, facilitating their use as a powerful tool for assisting surgeons during tumor resection. Taken together, our multifunctional theranostic platform offers real-time guidance for surgery and high-efficiency RT, and improves brachytherapy precision, providing a novel strategy and vision for the clinical diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Ze Wang
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Dongzhou Wang
- Department
of Radiation Oncology, The Second Affiliated
Hospital of Jilin University, Changchun 130041, P. R. China
- NHC
Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, P. R. China
| | - Xiaojun Ren
- Department
of Radiation Oncology, The Second Affiliated
Hospital of Jilin University, Changchun 130041, P. R. China
- NHC
Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, P. R. China
| | - Zhongshan Liu
- Department
of Radiation Oncology, The Second Affiliated
Hospital of Jilin University, Changchun 130041, P. R. China
- NHC
Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, P. R. China
| | - Annan Liu
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xingchen Li
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Lin Guan
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yannan Shen
- NHC
Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, P. R. China
| | - Shunzi Jin
- NHC
Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, P. R. China
| | - Andrei V. Zvyagin
- Australian
Research Council Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW 2109, Australia
- Institute
of Biology and Biomedicine, Lobachevsky
Nizhny Novgorod State University, 603105 Nizhny Novgorod, Russia
| | - Bai Yang
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Tiejun Wang
- Department
of Radiation Oncology, The Second Affiliated
Hospital of Jilin University, Changchun 130041, P. R. China
- NHC
Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, P. R. China
| | - Quan Lin
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
4
|
Wang Z, Liu A, Li X, Guan L, Xing H, He L, Fang L, Zvyagin AV, Yang X, Yang B, Lin Q. Multifunctional nanoprobe for multi-mode imaging and diagnosis of metastatic prostate cancer. Talanta 2023; 256:124255. [PMID: 36652761 DOI: 10.1016/j.talanta.2023.124255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
The high incidence and complex subtypes of prostate cancer put forward higher requirements for accurate diagnosis. Furthermore, advanced prostate cancer is prone to metastasis. Single biological imaging mode faces a challenge of sensitive and fast bioimaging of metastasic prostate cancer. Thus, exploring a nanoprobe with multi-mode imaging function has an important impact on preoperative imaging and intraoperative visualization guide of metastatic prostate cancer. Herein, based on the optical properties and X-ray attenuation capability of Au nanodots as well as the slow electronic relaxation of Gd3+, we designed and fabricated the multifunctional nanoprobe Au/Gd nanodots for multi-mode imaging and accurate diagnosis of bone metastatic prostate cancer. The results showed that multiple imaging modes complement each other to achieve high-precision of metastasic prostate cancer detection and accurately guide treatment. In addition, in vitro/vivo experiments showed that Au/Gd nanodots had good biocompatibility and biosafety. Therefore, the prepared multifunctional nanoprobe may provide new strategies and insights for precise diagnosis of metastatic prostate cancer in clinical practice.
Collapse
Affiliation(s)
- Ze Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Annan Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Xingchen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Lin Guan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Huiyuan Xing
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Liang He
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, Jilin, PR China.
| | - Linan Fang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130000, PR China.
| | - Andrei V Zvyagin
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW, 2109, Australia; Australia and Institute of Biology and Biomedicine, Lobachevsky Nizhny Novgorod State University, 603105, Nizhny Novgorod, Russia
| | - Xiaoyu Yang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
5
|
Fu S, Cai Z, Liu L, Fu X, Wu C, Du L, Xia C, Lui S, Gong Q, Song B, Ai H. Gadolinium(III) Complex-Backboned Branched Polymers as Imaging Probes for Contrast-Enhanced Magnetic Resonance Angiography. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18311-18322. [PMID: 37000117 DOI: 10.1021/acsami.3c00610] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Compared to traditional branched polymers with Gd(III) chelates conjugated on their surface, branched polymers with Gd(III) chelates as the internal skeleton are considered to be a reasonable strategy for preparing efficient magnetic resonance imaging contrast agents. Herein, the Gd(III) ligand DOTA was chosen as the internal skeleton; four different molecular weights (3.5, 5.3, 8.6, and 13.1 kDa) and degrees of branching poly-DOTA branched polymers (P1, P2, P3, and P4) were synthesized by a simple "A2 + B4"-type one-pot polymerization. The Gd(III) chelates of these poly-DOTA branched polymers (P1-Gd, P2-Gd, P3-Gd, and P4-Gd) display excellent kinetic stability, which is significantly higher than those of linear Gd-DTPA and cyclic Gd-DOTA-butrol and slightly lower than that of cyclic Gd-DOTA. The T1 relaxivities of P1-Gd, P2-Gd, P3-Gd, and P4-Gd are 29.4, 38.7, 44.0, and 47.9 Gd mM-1 s-1, respectively, at 0.5 T, which are about 6-11 times higher than that of Gd-DOTA (4.4 Gd mM-1 s-1). P4-Gd was selected for in vivo magnetic resonance angiography (MRA) because of its high kinetic stability, T1 relaxivity, and good biosafety. The results showed excellent MRA effect, sensitive detection of vascular stenosis, and prolonged observation window as compared to Gd-DOTA. Overall, Gd(III) chelates of poly-DOTA branched polymers are good candidates of MRI probes, providing a unique design strategy in which Gd chelation can occur at both the interior and surface of the poly-DOTA branched polymers, resulting in excellent relaxivity enhancement. In vivo animal MRA studies of the probe provide possibilities in discovering small vascular pathologies.
Collapse
Affiliation(s)
- Shengxiang Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zhongyuan Cai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Li Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Xiaomin Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Changqiang Wu
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, Nanchong, 637000, China
| | - Liang Du
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, Nanchong, 637000, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Su Lui
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Sichuan University, Chengdu 610041, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Zhang X, Wang X, Li Z, Du J, Xiao X, Pan D, Zhang H, Tian X, Gong Q, Gu Z, Luo K. Lactose-modified enzyme-sensitive branched polymers as a nanoscale liver cancer-targeting MRI contrast agent. NANOSCALE 2023; 15:809-819. [PMID: 36533522 DOI: 10.1039/d2nr04020d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Signal enhancement of magnetic resonance imaging (MRI) in the diseased region is dependent on the molecular structure of the MRI contrast agent. In this study, a macromolecular contrast agent, Branched-LAMA-DOTA-Cy5.5-Gd (BLDCGd), was prepared to target liver cancer. Due to the affinity of lactose to the Asialoglycoprotein receptor (ASGPR) over-expressed on the surface of liver cancer cells, lactose was selected as the targeting moiety in the contrast agent. A cathepsin B-sensitive tetrapeptide, GFLG, was used as a linkage moiety to construct a cross-linked macromolecular structure of the contrast agent, and the contrast agent could be degraded into fragments for clearance. A small-molecular-weight molecule, DOTA-Gd, and a fluorescent dye, Cy5.5, were conjugated to the macromolecular structure via a thiol-ene click reaction. The contrast agent, BLDCGd, had a high molecular weight (81 kDa) and a small particle size (59 ± 12 nm). Its longitudinal relaxivity (12.62 mM-1 s-1) was 4-fold that of the clinical agent DTPA-Gd (3.42 mM-1 s-1). Signal enhancement of up to 184% was observed at the tumor site in an H22 cell-based mouse model. A high accumulation level of BLDCGd in the liver tumor observed from MRI was confirmed from the fluorescence images obtained from the same contrast agent. BLDCGd showed no toxicity to HUVECs and H22 cells in vitro, and low blood chemistry indexes and no distinct histopathological abnormalities were also observed in vivo after injection of BLDCGd since it could be metabolized through the kidneys according to the in vivo MRI results of major organs. Therefore, the branched macromolecule BLDCGd could have great potential as an efficacious and bio-safe nanoscale MRI contrast agent for clinical diagnosis of liver cancer.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- School of Basic Medical Science, Southwest Medical University, Luzhou,646000, China
| | - Xiaoming Wang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Department of Biotherapy, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
- Department of Radiology, Chongqing General Hospital, No. 118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, China
| | - Zhiqian Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Department of Biotherapy, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Jun Du
- School of Basic Medical Science, Southwest Medical University, Luzhou,646000, China
| | - Xueyang Xiao
- Department of Radiology, Huaxi MR Research Center (HMRRC), Department of Biotherapy, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Dayi Pan
- Department of Radiology, Huaxi MR Research Center (HMRRC), Department of Biotherapy, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute Claremont, CA 91711, USA
| | - Xiaohe Tian
- Department of Radiology, Huaxi MR Research Center (HMRRC), Department of Biotherapy, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Department of Biotherapy, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Zhongwei Gu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Department of Biotherapy, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Department of Biotherapy, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
7
|
Wang L, Wan Q, Zhang R, Situ B, Ni K, Gao J, Feng X, Zhang P, Wang Z, Qin A, Tang BZ. Synergistic Enhancement of Fluorescence and Magnetic Resonance Signals Assisted by Albumin Aggregate for Dual-Modal Imaging. ACS NANO 2021; 15:9924-9934. [PMID: 34096697 DOI: 10.1021/acsnano.1c01251] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dual-modal fluorescence and magnetic resonance imaging (FLI/MRI) is important for the early diagnosis of malignant tumors. However, facile and opportune strategies to synergistically enhance fluorescence intensity and magnetic resonance (MR) contrast have rarely been reported. Herein, we present a facile strategy using albumin aggregates (AAs) to synergistically enhance the fluorescence intensity by aggregation-induced emission (AIE) and MR contrast with prolonged rotational correlation time (τR) of Gd(III) chelates and the diffusion correlation time (τD) of surrounding water molecules. The amphiphilic dual-modal FLI/MRI probe of NGd was facilely loaded into albumin pockets and then formed AAs to generate a supramolecular structure of NGd-albumin aggregates (NGd-AAs), which show excellent biocompatibility and biosafety, and exhibit superior fluorescence quantum yield and r1 over NGd with 6- and 8-fold enhancement, respectively. Moreover, compared with the clinical MRI contrast agent Gd-DOTA, r1 of NGd-AAs showed a 17-fold enhancement. Therefore, NGd-AAs successfully elicited high-performance dual-modal FLI/MRI in vitro and in vivo and high contrast MR signals were observed in the liver and tumor after intravenous injection of NGd-AAs at a dosage of 6 μmol Gd(III)/kg body weight. This generic and feasible strategy successfully realized a synergistic effect for dual-modal FLI/MRI.
Collapse
Affiliation(s)
- Lirong Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Qing Wan
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Rongyuan Zhang
- Department of Urology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou 215006, China
| | - Bo Situ
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kaiyuan Ni
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Jinhao Gao
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Feng
- School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhiming Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong 518172, China
| |
Collapse
|
8
|
Fu S, Cai Z, Ai H. Stimulus-Responsive Nanoparticle Magnetic Resonance Imaging Contrast Agents: Design Considerations and Applications. Adv Healthc Mater 2021; 10:e2001091. [PMID: 32875751 DOI: 10.1002/adhm.202001091] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/04/2020] [Indexed: 02/05/2023]
Abstract
Magnetic resonance imaging (MRI) has been widely used for disease diagnosis because it can noninvasively obtain anatomical details of various diseases through accurate contrast between soft tissues. Over one-third of MRI examinations are performed with the assistance of contrast agents. Traditional contrast agents typically display an unchanging signal, thus exhibiting relatively low sensitivity and poor specificity. Currently, advances in stimulus-responsive contrast agents which can alter the relaxation signal in response to a specific change in their surrounding environment provide new opportunities to overcome such limitation. The signal changes based on stimulus also reflects the physiological and pathological conditions of the site of interests. In this review, how to design stimulus-responsive nanoparticle MRI contrast agents from the perspective of theory and surface design is comprehensively discussed. Key structural features including size, clusters, shell features, and surface properties are used for tuning the T1 and T2 relaxation properties. The reversible or non-reversible signal changes highlight the contrast agents have undergone structural changes based on certain stimulus, as an indication for disease diagnosis or therapeutic efficacy.
Collapse
Affiliation(s)
- Shengxiang Fu
- National Engineering Research Center for Biomaterials Sichuan University Chengdu 610065 China
| | - Zhongyuan Cai
- National Engineering Research Center for Biomaterials Sichuan University Chengdu 610065 China
| | - Hua Ai
- National Engineering Research Center for Biomaterials Sichuan University Chengdu 610065 China
- Department of Radiology West China Hospital Sichuan University Chengdu 610041 China
| |
Collapse
|
9
|
Tan J, Hu J, Liu S. Designing self-propagating polymers with ultrasensitivity through feedback signal amplification. Polym Chem 2021. [DOI: 10.1039/d1py01095f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Stimuli-responsive polymers with self-propagating degradation capacity being sensitive to acids, bases, fluoride ions, and hydrogen peroxide are reviewed, exhibiting self-accelerated degradation behavior.
Collapse
Affiliation(s)
- Jiajia Tan
- Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinming Hu
- Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shiyong Liu
- Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
10
|
Shi S, Yao C, Cen J, Li L, Liu G, Hu J, Liu S. High-Fidelity End-Functionalization of Poly(ethylene glycol) Using Stable and Potent Carbamate Linkages. Angew Chem Int Ed Engl 2020; 59:18172-18178. [PMID: 32643249 DOI: 10.1002/anie.202006687] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/05/2020] [Indexed: 01/16/2023]
Abstract
Commercial PEG-amine is of unreliable quality, and conventional PEG functionalization relies on esterification and etherification steps, suffering from incomplete conversion, harsh reaction conditions, and functional-group incompatibility. To solve these challenges, we propose an efficient strategy for PEG functionalization with carbamate linkages. By fine-tuning terminal amine basicity, stable and high-fidelity PEG-amine with carbamate linkage was obtained, as seen from the clean MALDI-TOF MS pattern. The carbamate strategy was further applied to the synthesis of high-fidelity multi-functionalized PEG with varying reactive groups. Compared to with an ester linkage, amphiphilic PEG-PS block copolymers bearing carbamate junction linkage exhibits preferential self-assembly tendency into vesicles. Moreover, nanoparticles of the latter demonstrate higher drug loading efficiency, encapsulation stability against enzymatic hydrolysis, and improved in vivo retention at the tumor region.
Collapse
Affiliation(s)
- Shengyu Shi
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, China
| | - Chenzhi Yao
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, China
| | - Jie Cen
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, China
| | - Lei Li
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, China
| | - Guhuan Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, China
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, China
| |
Collapse
|
11
|
Deng Z, Liu S. Controlled drug delivery with nanoassemblies of redox-responsive prodrug and polyprodrug amphiphiles. J Control Release 2020; 326:276-296. [DOI: 10.1016/j.jconrel.2020.07.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 01/20/2023]
|
12
|
Cao Y, He Y, Mao Z, Kuang Y, Liu M, Zhang Y, Pei R. Synergistic regulation of longitudinal and transverse relaxivity of extremely small iron oxide nanoparticles (ESIONPs) using pH-responsive nanoassemblies. NANOSCALE 2020; 12:17502-17516. [PMID: 32812615 DOI: 10.1039/d0nr04201c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Extremely small iron oxide nanoparticles (ESIONPs), as a kind of the special T1 magnetic resonance imaging (MRI) contrast agent that can provide T1 contrasting enhancement since their magnetically disordered shells are dominant compared to their magnetic cores and have powerful potential for constructing stimuli-responsive contrast agents (CAs) to realize precise the tumor diagnosis with high specificity and sensitivity. The stimuli-responsive function of ESIONPs-based CAs can be directly endowed through the synergistic regulation of the longitudinal and transverse relaxivity (r1 and r2) of ESIONPs. However, the systematical investigation for the synergistic regulation of r1 and r2 of ESIONPs is quite lacking. Herein, based on the relaxivity theories, three kinds of ESIONPs-based nanoassemblies with pH-responsiveness were designed and constructed to explore the possibility of various synergistic regulations on r1 and r2. When three kinds of ESIONPs-based nanoassemblies were converted to dissociated ones under a weak acid environment, ESIONPs micelle could realize a synergistic regulation of the single r2 decrease along with the stable r1, while gold nanoparticles-ESIONPs (AuNPs-ESIONPs) vesicle could provide a synergistic regulation comprising the single r1 increase along with the stable r2, and ESIONPs vesicle could offer a synergistic regulation involving the r2 decrease together with the r1 increase. Moreover, all the synergistic regulations on r1 and r2 were efficient strategies to fabricate ESIONPs-based CAs with the stimuli-responsive function. These systematic and feasible synergistic regulations of r1 and r2 may guide and promote the development of ESIONPs-based stimuli-responsive CAs for the highly sensitive and specific tumor diagnosis.
Collapse
Affiliation(s)
- Yi Cao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Yilin He
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Zheng Mao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Ye Kuang
- School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Min Liu
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Ye Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
13
|
Shi S, Yao C, Cen J, Li L, Liu G, Hu J, Liu S. High‐Fidelity End‐Functionalization of Poly(ethylene glycol) Using Stable and Potent Carbamate Linkages. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shengyu Shi
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China 96 Jinzhai Road Hefei Anhui Province 230026 China
| | - Chenzhi Yao
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China 96 Jinzhai Road Hefei Anhui Province 230026 China
| | - Jie Cen
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China 96 Jinzhai Road Hefei Anhui Province 230026 China
| | - Lei Li
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China 96 Jinzhai Road Hefei Anhui Province 230026 China
| | - Guhuan Liu
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China 96 Jinzhai Road Hefei Anhui Province 230026 China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China 96 Jinzhai Road Hefei Anhui Province 230026 China
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China 96 Jinzhai Road Hefei Anhui Province 230026 China
| |
Collapse
|
14
|
Abstract
Stimulus-responsive polymers have been used in improving the efficacy of medical diagnostics through different approaches including enhancing the contrast in imaging techniques and promoting the molecular recognition in diagnostic assays. This review overviews the mechanisms of stimulus-responsive polymers in response to external stimuli including temperature, pH, ion, light, etc. The applications of responsive polymers in magnetic resonance imaging, capture and purification of biomolecules through protein-ligand recognition and lab-on-a-chip technology are discussed.
Collapse
Affiliation(s)
- Divambal Appavoo
- NanoScience Technology Center, Department of Materials Science and Engineering, Department of Chemistry, University of Central Florida, FL 32826, USA.
| | | | | |
Collapse
|
15
|
Hu J, Liu S. Modulating intracellular oxidative stress via engineered nanotherapeutics. J Control Release 2020; 319:333-343. [DOI: 10.1016/j.jconrel.2019.12.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
|
16
|
Deng Z, Hu J, Liu S. Disulfide-Based Self-Immolative Linkers and Functional Bioconjugates for Biological Applications. Macromol Rapid Commun 2019; 41:e1900531. [PMID: 31755619 DOI: 10.1002/marc.201900531] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/05/2019] [Indexed: 12/12/2022]
Abstract
It is of vital importance to reversibly mask and selectively activate bioactive agents for advanced therapeutic and diagnostic purposes, aiming to efficiently suppress background interferences and attenuate systemic toxicity. This strategy has been involved in diverse applications spanning from chemical/biological sensors and diagnostics to drug delivery nanocarriers. Among these, redox-responsive disulfide linkages have been extensively utilized by taking advantage of extracellular and intracellular glutathione (GSH) gradients. However, direct conjugation of cleavable triggers to bioactive agents through disulfide bonds suffers from bulky steric hindrance and limited choice of trigger-drug combinations. Fortunately, the emergence of disulfide self-immolative linkers (DSILs) provides a general and robust strategy to not only mask various bioactive agents through the formation of dynamic disulfide linkages but also make it possible to be selectively activated upon disulfide cleavage in the reductive cytoplasmic milieu. In this review, recent developments in DSILs are focused with special attention on emerging chemical design strategies and functional applications in the biomedical field.
Collapse
Affiliation(s)
- Zhengyu Deng
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, China
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, China
| |
Collapse
|