1
|
Grover K, Koblova A, Pezacki AT, Chang CJ, New EJ. Small-Molecule Fluorescent Probes for Binding- and Activity-Based Sensing of Redox-Active Biological Metals. Chem Rev 2024; 124:5846-5929. [PMID: 38657175 PMCID: PMC11485196 DOI: 10.1021/acs.chemrev.3c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Although transition metals constitute less than 0.1% of the total mass within a human body, they have a substantial impact on fundamental biological processes across all kingdoms of life. Indeed, these nutrients play crucial roles in the physiological functions of enzymes, with the redox properties of many of these metals being essential to their activity. At the same time, imbalances in transition metal pools can be detrimental to health. Modern analytical techniques are helping to illuminate the workings of metal homeostasis at a molecular and atomic level, their spatial localization in real time, and the implications of metal dysregulation in disease pathogenesis. Fluorescence microscopy has proven to be one of the most promising non-invasive methods for studying metal pools in biological samples. The accuracy and sensitivity of bioimaging experiments are predominantly determined by the fluorescent metal-responsive sensor, highlighting the importance of rational probe design for such measurements. This review covers activity- and binding-based fluorescent metal sensors that have been applied to cellular studies. We focus on the essential redox-active metals: iron, copper, manganese, cobalt, chromium, and nickel. We aim to encourage further targeted efforts in developing innovative approaches to understanding the biological chemistry of redox-active metals.
Collapse
Affiliation(s)
- Karandeep Grover
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alla Koblova
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Aidan T. Pezacki
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Elizabeth J. New
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
2
|
Zhao Q, Ma L, Chen S, Huang L, She G, Sun Y, Shi W, Mu L. Tracking mitochondrial Cu(I) fluctuations through a ratiometric fluorescent probe in AD model cells: Towards understanding how AβOs induce mitochondrial Cu(I) dyshomeostasis. Talanta 2024; 271:125716. [PMID: 38301373 DOI: 10.1016/j.talanta.2024.125716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Mitochondrial copper signaling pathway plays a role in Alzheimer's disease (AD), especially in relevant Amyloid-β oligomers (AβOs) neurotoxicity and mitochondrial dysfunction. Clarifying the relationship between mitochondrial copper homeostasis and both of mitochondrial dysfunction and AβOs neurotoxicity is important for understanding AD pathogenesis. Herein, we designed and synthesized a ratiometric fluorescent probe CHC-NS4 for Cu(I). CHC-NS4 possesses excellent ratiometric response, high selectivity to Cu(I) and specific ability to target mitochondria. Under mitochondrial dysfunction induced by oligomycin, mitochondrial Cu(I) levels gradually increased, which may be related to inhibition of ATP7A-mediated Cu(I) exportation and/or high expression of COX. On this basis, CHC-NS4 was further utilized to visualize the fluctuations of mitochondrial Cu(I) levels during progression of AD model cells induced by AβOs. It was found that mitochondrial Cu(I) levels were gradually elevated during the AD progression, which depended on not only AβOs concentration but also incubation time. Moreover, endocytosis maybe served as a prime pathway mode for mitochondrial Cu(I) dyshomeostasis induced by AβOs during AD progression. These results have provided a novel inspiration into mitochondrial copper biology in AD pathogenesis.
Collapse
Affiliation(s)
- Qiaowen Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyi Ma
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siwei Chen
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Lushan Huang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangwei She
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongan Sun
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Wensheng Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lixuan Mu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
3
|
Jeong E, Ha CH, Kumar A, Hur W, Seong GH, Chae PS. Chromo-Fluorogenic Rhodamine-Based Amphiphilic Probe as a Selective and Sensitive Sensor for Intracellular Cu(I) in Living Cells. ACS Sens 2024; 9:1419-1427. [PMID: 38449354 DOI: 10.1021/acssensors.3c02496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Fluorescent probes are widely studied for metal ion detection because of their multiple favorable properties such as high sensitivity and selectivity, quick response, naked eye detection, and in situ monitoring. However, optical probes that can effectively detect the Cu(I) level in cell interiors are rare due to the difficulty associated with selectively and sensitively detecting this metal ion in a cell environment. Therefore, we designed and synthesized three water-soluble probes (1-3) with a 1,3,5-triazine core decorated by three substituents: a hydrophobic alkyl chain, a hydrophilic maltose, and a rhodamine B hydrazine fluorophore. Among the probes, probe 1, which has an octyl chain and a branched maltose group, was the most effective at sensing Cu+ in aqueous solution. Upon addition of Cu+, this probe showed a dramatic color change from colorless to pink in daylight and displayed an intense yellow fluorescence emission under 365 nm light. The limit of detection and dissociation constant (Kd) of this probe were 20 nM and 1.1 × 10-12 M, respectively, which are the lowest values reported to date. The two metal ion-binding sites and the aggregation-induced emission enhancement effect, endowed by the branched maltose group and the octyl chain, respectively, are responsible for the high sensitivity and selectivity of this probe for Cu+ detection, as demonstrated by 1H NMR, dynamic light scattering, and transmission electron microscopy studies. Furthermore, the probe successfully differentiated the Cu(I) level of cancer cells from that of the normal cells. Thus, the probe holds potential for real-time monitoring of Cu(I) level in biological samples and bioimaging of cancer cells.
Collapse
Affiliation(s)
- Eunhye Jeong
- Department of Bionano Engineering, Hanyang University, Ansan 155-88, Republic of Korea
| | - Chang Hyeon Ha
- Department of Bionano Engineering, Hanyang University, Ansan 155-88, Republic of Korea
| | - Ashwani Kumar
- Department of Bionano Engineering, Hanyang University, Ansan 155-88, Republic of Korea
| | - Won Hur
- Department of Bionano Engineering, Hanyang University, Ansan 155-88, Republic of Korea
| | - Gi Hun Seong
- Department of Bionano Engineering, Hanyang University, Ansan 155-88, Republic of Korea
| | - Pil Seok Chae
- Department of Bionano Engineering, Hanyang University, Ansan 155-88, Republic of Korea
| |
Collapse
|
4
|
Li X, Liu X, Li F. Configuration of super-fast Cu 2+-responsive chemosensor by attaching diaminomaleonitrile to BODIPY scaffold for high-contrast fluorescence imaging of living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123377. [PMID: 37776706 DOI: 10.1016/j.saa.2023.123377] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 10/02/2023]
Abstract
A highly fluorescent Cu2+-responsive sensor, 2-amino-3-(BODIPYmethyleneamino)maleonitrile (BD) was constructed by attaching diaminomaleonitrile to a BODIPY scaffold. Cu2+ can be selectively recognized on a 2-s time-scale by way of fluorescence emission. When Cu2+ and BD coexist in solution, typical BODIPY emission was observed and the emission intensity could be increased to 334 times that of the blank dye solution. The mechanism of fluorescence increase is based on the generation of highly fluorescent species by Cu2+-triggered oxidative cyclization of the attached diaminomaleonitrile. The absolute fluorescence quantum yield (AFQY) of the cyclization product is 98% determined by integrating sphere. The highly emissive character can be attributed to the imidazole ring and dicarbonitrile on the BODIPY scaffold. It surpasses the meso-phenyl substituted analogue in AFQY and detection limits (DL). The specific Cu2+ recognition behavior was also validated in Hela cells with high-contrast fluorescence images.
Collapse
Affiliation(s)
- Xiaochuan Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, PR China.
| | - Xuyang Liu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, PR China
| | - Fangfang Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, PR China
| |
Collapse
|
5
|
Fang H, Chen Y, Jiang Z, He W, Guo Z. Fluorescent Probes for Biological Species and Microenvironments: from Rational Design to Bioimaging Applications. Acc Chem Res 2023; 56:258-269. [PMID: 36652599 DOI: 10.1021/acs.accounts.2c00643] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Some important biological species and microenvironments maintain a complex and delicate dynamic balance in life systems, participating in the regulation of various physiological processes and playing indispensable roles in maintaining the healthy development of living bodies. Disruption of their homeostasis in living organisms can cause various diseases and even death. Therefore, real time monitoring of these biological species and microenvironments during different physiological and pathological processes is of great significance. Fluorescent-probe-based techniques have been recognized as one of the most powerful tools for real time imaging in biological samples. In this Account, we introduce the representative works from our group in the field of fluorescent probes for biological imaging capable of detecting metal ions, small bioactive molecules, and the microenvironment. The design strategies of small molecule fluorescent probes and their applications in biological imaging will be discussed. By regulating the design strategy and mechanism (e.g., ICT, PeT, and FRET) of the electronic and spectral characteristics of the fluorescent platforms, these chemical probes show high selectivity and diverse functions, which can be used for imaging of various physiological and pathological processes. Through the exploration of the rational response mechanism and design strategy, combined with a variety of imaging techniques, such as super-resolution imaging, photoacoustic (PA) imaging, etc., we have realized multimode imaging of the important biological analytes from the subcellular level to the in vivo level, which provides powerful means to study the physiological and pathological functions of these species and microenvironments. This Account aims to offer insights and inspiration for the development of novel fluorescent probes for biological imaging, which could provide powerful tools for the study of chemical biology. Overall, we represent a series of turn-on/turn-off/ratiometric fluorescent/PA probes to visually and dynamically trace biological species and microenvironments in cells and even in vivo that seek higher resolution and depth molecular imaging to improve diagnostic methods and clarify new discoveries related to chemical biology. Our future efforts will be devoted to developing multiorganelle targeted fluorescent probes to study the mechanism of subcellular organelle interaction and employing various dual-mode probes of NIR II and PA imaging to investigate the development of related diseases and treat the related diseases at subcellular and in vivo levels.
Collapse
Affiliation(s)
- Hongbao Fang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), 163 Xianlin Avenue, Nanjing University, Nanjing 210023, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), 163 Xianlin Avenue, Nanjing University, Nanjing 210023, China.,Nanchuang (Jiangsu) Institute of Chemistry and Health, 3-1 Xinjinhu Road, Nanjing 211899, China
| | - Zhiyong Jiang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), 163 Xianlin Avenue, Nanjing University, Nanjing 210023, China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), 163 Xianlin Avenue, Nanjing University, Nanjing 210023, China.,Nanchuang (Jiangsu) Institute of Chemistry and Health, 3-1 Xinjinhu Road, Nanjing 211899, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), 163 Xianlin Avenue, Nanjing University, Nanjing 210023, China.,Nanchuang (Jiangsu) Institute of Chemistry and Health, 3-1 Xinjinhu Road, Nanjing 211899, China
| |
Collapse
|
6
|
Li Z, Hou JT, Wang S, Zhu L, He X, Shen J. Recent advances of luminescent sensors for iron and copper: Platforms, mechanisms, and bio-applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
7
|
Shi Y, Luo Z, You J. Subcellular delivery of lipid nanoparticles to endoplasmic reticulum and mitochondria. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1803. [PMID: 35441489 DOI: 10.1002/wnan.1803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/23/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Primarily responsible for the biogenesis and metabolism of biomolecules, endoplasmic reticulum (ER) and mitochondria are gradually becoming the targets of therapeutic modulation, whose physiological activities and pathological manifestations determine the functional capacity and even the survival of cells. Drug delivery systems with specific physicochemical properties (passive targeting), or modified by small molecular compounds, polypeptides, and biomembranes demonstrating tropism for ER and mitochondria (active targeting) are able to reduce the nonselective accumulation of drugs, enhancing efficacy while reducing side effects. Lipid nanoparticles feature high biocompatibility, diverse cargo loading, and flexible structure modification, which are frequently used for subcellular organelle-targeted delivery of therapeutics. However, there is still a lack of systematic understanding of lipid nanoparticle-based ER and mitochondria targeting. Herein, we review the pathological significance of drug selectively delivered to the ER and mitochondria. We also summarize the molecular basis and application prospects of lipid nanoparticle-based ER and mitochondria targeting strategies, which may provide guidance for the prevention and treatment of associated diseases and disorders. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Biology-Inspired Nanomaterials > Lipid-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhenyu Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Guo X, Chen X, Chen R, Tu Y, Lu T, Guo Y, Guo L, Xiong Y, Huang X, Tang BZ. Ratiometric Monitoring of Biogenic Amines by a Simple Ammonia-Response Aiegen. Foods 2022; 11:932. [PMID: 35407018 PMCID: PMC8997827 DOI: 10.3390/foods11070932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
Herein, we developed a paper-based smart sensing chip for the real-time, visual, and non-destructive monitoring of food freshness using a ratiometric aggregation-induced emission (AIE) luminogen (i.e., H+MQ, protonated 4-(triphenylamine)styryl)quinoxalin-2(1H)-one) as pH sensitive indicators. Upon exposure to amine vapors, the deprotonation of H+MQ occurs and triggers its color change from blue to yellow, with the fluorescence redshift from blue to amaranth. Consequently, we successfully achieved the sensitive detection of ammonia vapors by recording the bimodal color and fluorescence changes. Given the high sensitivity of H+MQ to ammonia vapor, a paper-based smart sensor chip was prepared by depositing H+MQ on the commercial qualitative filter paper through a physical deposition strategy. After being placed inside the sealed containers, the developed H+MQ-loaded paper chip was applied to the real-time monitoring of biogenic amine contents according to its color difference and ratio fluorescence change. The detection results were further compared with those obtained by the high-performance liquid chromatography method, which verified the feasibility of the designed paper chip for the food spoilage degree evaluation. Briefly, this work indicates that the designed H+MQ-loaded paper chip could be a promising approach for improving food freshness monitoring.
Collapse
Affiliation(s)
- Xujing Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330031, China; (X.G.); (X.C.); (T.L.); (Y.G.); (Y.X.)
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, China;
| | - Xirui Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330031, China; (X.G.); (X.C.); (T.L.); (Y.G.); (Y.X.)
| | - Rui Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yujie Tu
- AIE Institute, Guangzhou Development District, Guangzhou 510530, China; (Y.T.); (B.Z.T.)
| | - Tianying Lu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330031, China; (X.G.); (X.C.); (T.L.); (Y.G.); (Y.X.)
| | - Yuqian Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330031, China; (X.G.); (X.C.); (T.L.); (Y.G.); (Y.X.)
| | - Liang Guo
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, China;
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330031, China; (X.G.); (X.C.); (T.L.); (Y.G.); (Y.X.)
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, China;
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330031, China; (X.G.); (X.C.); (T.L.); (Y.G.); (Y.X.)
| | - Ben Zhong Tang
- AIE Institute, Guangzhou Development District, Guangzhou 510530, China; (Y.T.); (B.Z.T.)
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
9
|
Tang F, Wu C, Zhai Z, Wang K, Liu X, Xiao H, Zhuo S, Li P, Tang B. Recent progress in small-molecule fluorescent probes for endoplasmic reticulum imaging in biological systems. Analyst 2022; 147:987-1005. [PMID: 35230358 DOI: 10.1039/d1an02290c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Endoplasmic reticulum (ER) is an indispensable organelle in eukaryotic cells involved in protein synthesis and processing, as well as calcium storage and release. Therefore, maintaining the quality of ER is of great importance for cellular homeostasis. Aberrant fluctuations of bioactive species in the ER will result in homeostasis disequilibrium and further cause ER stress, which has evolved to contribute to the pathogenesis of various diseases. Therefore, the real-time monitoring of various bioactive species in the ER is of high priority to ascertain the mysterious roles of ER, which will contribute to unveiling the corresponding mechanism of organism disturbances. Recently, fluorescence imaging has emerged as a robust technique for the direct visualization of molecular events due to its outstanding sensitivity, high temporal-spatial resolution and noninvasive nature. In this review, we comprehensively summarize the recent progress in design strategies, bioimaging applications, potential directions and challenges of ER-targetable small-molecular fluorescent probes.
Collapse
Affiliation(s)
- Fuyan Tang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China. .,College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China.
| | - Chuanchen Wu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China.
| | - Zhaodong Zhai
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China.
| | - Kai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China.
| | - Xueli Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China.
| | - Haibin Xiao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China. .,College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China.
| | - Shuping Zhuo
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China.
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
10
|
Xu H, Yao S, Chen Y, Zhang C, Zhang S, Yuan H, Chen Z, Bai Y, Yang T, Guo Z, He W. Tracking Labile Copper Fluctuation In Vivo/ Ex Vivo: Design and Application of a Ratiometric Near-Infrared Fluorophore Derived from 4-Aminostyrene-Conjugated Boron Dipyrromethene. Inorg Chem 2021; 60:18567-18574. [PMID: 34826221 DOI: 10.1021/acs.inorgchem.1c01779] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Specimen differences, tissue-dependent background fluorescence and scattering, and deviated specimen position and sensor concentration make optical imaging for labile copper fluctuation in animals questionable, and a signal comparison between specimens is infeasible. We proposed ratiometric optical imaging as an alternative to overcome these disadvantages, and a near-infrared (NIR) ratiometric sensor, BDPS1, was devised therefore by conjugating boron dipyrromethene (BODIPY) with 4-aminostyrene and modifying the 4-amino group as a Cu+ chelator. BDPS1 possessed an excitation ratiometric copper-sensing ability to show the ratio of NIR emission (710 nm) upon excitation at 600 nm to that at 660 nm, Fex600/Fex660, increasing from 2.8 to 10.7. This sensor displayed still the opposite copper response of its internal charge transfer (ICT; 670 nm) and local (581 nm) emission bands. Ratiometric imaging with this sensor disclosed a higher labile copper region near the nucleus apparatus, and HEK-293T cells were more sensitive to copper incubation than MCF-7 cells. Dual excitation ratiometric imaging with this sensor realized tracking of labile copper fluctuation in mice, and the whole-body imaging found that tail intravenous injection of CUTX-101, a therapeutical agent for Menkes disease, led to a distinct labile copper increase in the upper belly. The ex vivo imaging of the resected viscera of mice revealed that CUTX-101 injection enhanced the labile copper level in the liver, intestine, lung, and gall bladder in sequence, yet the kidney, heart, and spleen showed almost no response. This study indicated that modifying BODIPY as an extended ICT fluorophore, with its electron-donating group being derived as a metal chelator, is an effective design rationale of NIR ratiometric sensors for copper tracking in vivo/ex vivo.
Collapse
Affiliation(s)
| | | | | | - Changli Zhang
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Ratiometric two-photon fluorescence probes for sensing, imaging and biomedicine applications at living cell and small animal levels. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214114] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Shi Y, Wang S, Wu J, Jin X, You J. Pharmaceutical strategies for endoplasmic reticulum-targeting and their prospects of application. J Control Release 2021; 329:337-352. [DOI: 10.1016/j.jconrel.2020.11.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/28/2020] [Indexed: 02/07/2023]
|
13
|
Abstract
Abstract
Transition metals such as zinc, copper and iron play vital roles in maintaining physiological functions and homeostasis of living systems. Molecular imaging, including two-photon imaging (TPI), bioluminescence imaging (BLI) and photoacoustic imaging (PAI), could act as non-invasive toolkits for capturing dynamic events in living cells, tissues and whole animals. Herein, we review the recent progress in the development of molecular probes for essential transition metals and their biological applications. We emphasize the contributions of metallostasis to health and disease, and discuss the future research directions about how to harness the great potential of metal sensors.
Graphic Abstract
Collapse
|
14
|
Liu J, Zhai Z, Niu H, Zhang Y, Song X, Zhang P, Ye Y. Endoplasmic reticulum-targetable fluorescent probe for visualizing HClO in EC1 cells. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Gao J, He Y, Chen Y, Song D, Zhang Y, Qi F, Guo Z, He W. Reversible FRET Fluorescent Probe for Ratiometric Tracking of Endogenous Fe3+ in Ferroptosis. Inorg Chem 2020; 59:10920-10927. [DOI: 10.1021/acs.inorgchem.0c01412] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jing Gao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yueqin He
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Dongfan Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuming Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fen Qi
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
16
|
|