1
|
Porous organic polymers: a progress report in China. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
2
|
Synthesis and structure of a 3D supramolecular layered Bi-MOF and its application in photocatalytic degradation of dyes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Shen X, Zhang J, Jiang H, Du Y, Chen R. Hierarchical Pd@PC-COFs as Efficient Catalysts for Phenol Hydrogenation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c05009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xinhui Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jiuxuan Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Hong Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yan Du
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Rizhi Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
4
|
Li Q, Sun JD, Yang B, Wang H, Zhang DW, Ma D, Li ZT. Cucurbit[7]uril-threaded flexible organic frameworks: Quantitative polycatenation through dynamic covalent chemistry. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Yang B, Yu S, Zhang P, Wang Z, Qi Q, Wang X, Xu X, Yang H, Wu Z, Liu Y, Ma D, Li Z. Self‐Assembly of a Bilayer 2D Supramolecular Organic Framework in Water. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Bo Yang
- College of Chemistry Zhengzhou University 100 Kexue Street Zhengzhou 450001 China
| | - Shang‐Bo Yu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Pan‐Qing Zhang
- College of Chemistry Zhengzhou University 100 Kexue Street Zhengzhou 450001 China
| | - Ze‐Kun Wang
- Department of Chemistry Fudan University 2205 Songhu Road Shanghai 200438 China
| | - Qiao‐Yan Qi
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Xu‐Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
| | - Xun‐Hui Xu
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology 193 Tunxi Road Hefei 230009 China
| | - Hai‐Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
| | - Zong‐Quan Wu
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology 193 Tunxi Road Hefei 230009 China
| | - Yi Liu
- The Molecular Foundry Lawrence Berkeley National Laboratory Berkeley California 94720 United States
| | - Da Ma
- Department of Chemistry Fudan University 2205 Songhu Road Shanghai 200438 China
| | - Zhan‐Ting Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- Department of Chemistry Fudan University 2205 Songhu Road Shanghai 200438 China
| |
Collapse
|
6
|
Yang B, Yu SB, Zhang PQ, Wang ZK, Qi QY, Wang XQ, Xu XH, Yang HB, Wu ZQ, Liu Y, Ma D, Li ZT. Self-Assembly of a Bilayer 2D Supramolecular Organic Framework in Water. Angew Chem Int Ed Engl 2021; 60:26268-26275. [PMID: 34562051 DOI: 10.1002/anie.202112514] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 12/22/2022]
Abstract
Accurate control of the layer number of orderly stacked 2D polymers has been an unsettled challenge in self-assembly. Herein we describe the fabrication of a bilayer 2D supramolecular organic framework from a monolayer 2D supramolecular organic framework in water by utilizing the cooperative coordination of a rod-like bipyridine ligands to zinc porphyrin subunits of the monolayer network. The monolayer supramolecular framework is prepared from the co-assembly of an octacationic zinc porphyrin monomer and cucurbit[8]uril (CB[8]) in water through CB[8]-encapsulation-promoted dimerization of 4-phenylpyridiunium subunits that the zinc porphyrin monomer bear. The bilayer 2D supramolecular organic framework exhibits structural regularity in both solution and the solid state, which is characterized by synchrotron small-angle X-ray scattering and high-resolution transmission electron microscopic techniques. Atomic force microscopic imaging confirms that the bilayer character of the 2D supramolecular organic framework can be realized selectively on the micrometer scale.
Collapse
Affiliation(s)
- Bo Yang
- College of Chemistry, Zhengzhou University, 100 Kexue Street, Zhengzhou, 450001, China
| | - Shang-Bo Yu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Pan-Qing Zhang
- College of Chemistry, Zhengzhou University, 100 Kexue Street, Zhengzhou, 450001, China
| | - Ze-Kun Wang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Qiao-Yan Qi
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Xun-Hui Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Yi Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States
| | - Da Ma
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Zhan-Ting Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China.,Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| |
Collapse
|
7
|
Yang B, Zhang JW, Yu SB, Wang ZK, Zhang PQ, Yang XD, Qi QY, Yang GY, Ma D, Li ZT. A self-assembled framework that interpenetrates in crystal but does not interpenetrate in solution. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1012-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
8
|
Dey D, Mondal A, Nag S, Mondal U, Hirani H, Banerjee P. The designed synthesis of a hydrophobic covalent polymer composite to expel toxic dyes and oil from wastewater: theoretical corroboration. NEW J CHEM 2021. [DOI: 10.1039/d0nj04949b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In pursuit of addressing a global issue linked to the purification of contaminated water bodies, hydrophobic covalent organic framework (CPCMERI-2020) and its post-synthetically modified composites CPWCS and MS@CPWCS are reported herein.
Collapse
Affiliation(s)
- Debanjan Dey
- CSIR-Central Mechanical Engineering Research Institute
- Durgapur 713209
- India
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad 201002
| | - Amita Mondal
- CSIR-Central Mechanical Engineering Research Institute
- Durgapur 713209
- India
- Department of Chemistry
- National Institute of Technology
| | - Somrita Nag
- CSIR-Central Mechanical Engineering Research Institute
- Durgapur 713209
- India
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad 201002
| | - Udayan Mondal
- CSIR-Central Mechanical Engineering Research Institute
- Durgapur 713209
- India
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad 201002
| | - Harish Hirani
- Mechanical Engineering Department
- Indian Institute of Technology
- Delhi-110016
- India
| | - Priyabrata Banerjee
- CSIR-Central Mechanical Engineering Research Institute
- Durgapur 713209
- India
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad 201002
| |
Collapse
|
9
|
Efficient removal for multiple pollutants via Ag2O/BiOBr heterojunction: A promoted photocatalytic process by valid electron transfer pathway. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
10
|
Zhang YC, Xu ZY, Wang ZK, Wang H, Zhang DW, Liu Y, Li ZT. A Woven Supramolecular Metal-Organic Framework Comprising a Ruthenium Bis(terpyridine) Complex and Cucurbit[8]uril: Enhanced Catalytic Activity toward Alcohol Oxidation. Chempluschem 2020; 85:1498-1503. [PMID: 32644267 DOI: 10.1002/cplu.202000391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/22/2020] [Indexed: 12/11/2022]
Abstract
The self-assembly of a diamondoid woven supramolecular metal-organic framework wSMOF-1 has been achieved from intertwined [Ru(tpy)2 ]2+ (tpy=2,2',6',2''-terpyridine) complex M1 and cucurbit[8]uril (CB[8]) in water, where the intermolecular dimers formed by the appended aromatic arms of M1 are encapsulated in CB[8]. wSMOF-1 exhibits ordered pore periodicity in both water and the solid state, as confirmed by a combination of 1 H NMR spectroscopy, UV-vis absorption, isothermal titration calorimetry, dynamic light scattering, small angle X-ray scattering and selected area electron diffraction experiments. The woven framework has a pore aperture of 2.1 nm, which allows for the free access of both secondary and primary alcohols and tert-butyl hydroperoxide (TBHP). Compared with the control molecule [Ru(tpy)2 ]Cl2 , the [Ru(tpy)2 ]2+ unit of wSMOF-1 exhibits a remarkably higher heterogeneous catalysis activity for the oxidation of alcohols by TBHP in n-hexane. For the oxidation of 1-phenylethan-1-ol, the yield of acetophenone was increased from 10 % to 95 %.
Collapse
Affiliation(s)
- Yun-Chang Zhang
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai, 200438, P. R. China
| | - Zi-Yue Xu
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai, 200438, P. R. China
| | - Ze-Kun Wang
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai, 200438, P. R. China
| | - Hui Wang
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai, 200438, P. R. China
| | - Dan-Wei Zhang
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai, 200438, P. R. China
| | - Yi Liu
- Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California, 94720, USA
| | - Zhan-Ting Li
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai, 200438, P. R. China
| |
Collapse
|
11
|
Yang B, Wang H, Zhang D, Li Z. Water‐Soluble Three‐Dimensional
Polymers:
Non‐Covalent
and Covalent Synthesis and Functions
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000085] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Bo Yang
- College of Chemistry, Zhengzhou University 100 Kexue Street Zhengzhou Henan 450001 China
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2205 Songhu Road Shanghai 200438 China
| | - Hui Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2205 Songhu Road Shanghai 200438 China
| | - Dan‐Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2205 Songhu Road Shanghai 200438 China
| | - Zhan‐Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2205 Songhu Road Shanghai 200438 China
| |
Collapse
|