1
|
Vergara-Arenas B, Nicholls RL, Negrón-Silva GE, Lomas-Romero L, Morales-Sern JA, Nguyen BN. Effects of Mixed Metal Oxide Catalysts on the Synthesis of Cyclic Carbonates from Epoxides under Atmospheric CO 2 Pressure. ACS OMEGA 2025; 10:673-682. [PMID: 39829508 PMCID: PMC11740258 DOI: 10.1021/acsomega.4c07538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/06/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025]
Abstract
One use of CO2 as a starting material in organic transformations is in the synthesis of cyclic carbonates and polycarbonates. Due to the low reactivity of CO2, this transformation must be carried out in the presence of an efficient catalyst. Although several catalytic systems have been developed in the past decade, reducing the CO2 pressure at which the reaction is carried out remains one of the main challenges of the process. In this context, in the present work, we describe the catalytic activity of mixed metal oxides in the synthesis of cyclic carbonates from CO2 (1 atm) and epoxides at 70 °C. Using these materials as catalysts represents significant benefits since they are very stable, cost-effective, and can be reused in several reaction cycles.
Collapse
Affiliation(s)
- Blanca
Ivonne Vergara-Arenas
- Departamento
de Química, Universidad Autónoma
Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Ciudad de
México C. P. 09340, México
| | - Rachel L. Nicholls
- Institute
of Process Research and Development, School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Guillermo E. Negrón-Silva
- Departamento
de Ciencias Básicas, Universidad
Autónoma Metropolitana-Azcapotzalco, Av. San Pablo No. 180, Ciudad
de México C. P. 02200, México
| | - Leticia Lomas-Romero
- Departamento
de Química, Universidad Autónoma
Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Ciudad de
México C. P. 09340, México
| | - José Antonio Morales-Sern
- Centro
de Investigaciones Científicas, Instituto de Química
Aplicada, Universidad del Papaloapan, Tuxtepec, Oaxaca 68301, México
| | - Bao N. Nguyen
- Institute
of Process Research and Development, School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| |
Collapse
|
2
|
Ye B, Su L, Zheng K, Gao S, Liu J. Synergistic Photoredox/Palladium Catalyzed Enantioconvergent Carboxylation of Racemic Heterobiaryl (Pseudo)Halides with CO 2. Angew Chem Int Ed Engl 2025; 64:e202413949. [PMID: 39148491 DOI: 10.1002/anie.202413949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
Herein, we report a synergistic photoredox/palladium catalytic system for the efficient enantioconvergent synthesis of axially chiral esters from racemic heterobiaryl (pseudo)halides (bromides/triflates) with CO2 and alkyl bromides under mild conditions. A wide range of axially chiral esters were obtained in good to high yields with excellent enantioselectivities. Detailed mechanistic studies unveiled that the ratio of photocatalyst and palladium catalyst exhibited significant impact on the chemo- and enantioselectivities of the reaction. Kinetic studies and control experiments supported the proposed mechanism involving cascade asymmetric carboxylation followed by SN2 substitution. The achievement of high enantioselectivity relies not only on the choice of synergistic metallaphotoredox catalysts but also on the utilization of alkyl bromides, which trap the generated chiral carboxylic anions in situ, thus preventing their immediate racemization.
Collapse
Affiliation(s)
- Bihai Ye
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 201203, China
| | - Lei Su
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 201203, China
| | - Kaiting Zheng
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 201203, China
| | - Shen Gao
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 201203, China
| | - Jiawang Liu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 201203, China
| |
Collapse
|
3
|
Li C, Chen XW, Liao LL, Gui YY, Yang JW, Zhang S, Yue JP, Zhou X, Ye JH, Lan Y, Yu DG. Nickel-Catalyzed Atroposelective Carbo-Carboxylation of Alkynes with CO 2: En Route to Axially Chiral Carboxylic Acids. Angew Chem Int Ed Engl 2025; 64:e202413305. [PMID: 39506458 DOI: 10.1002/anie.202413305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/20/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024]
Abstract
Precise synthesis of carboxylic acids via catalytic carboxylation with CO2 is highly appealing. Although considerable advancements have been achieved in difunctionalizing carboxylation of unsaturated hydrocarbons, the asymmetric variants are conspicuously underdeveloped, particularly in addressing axially chiral alkenes. Herein, we report the first catalytic atroposelective carboxylation of alkynes with CO2. A variety of valuable axially chiral carboxylic acids are obtained with good yields and high chemo-, regio-, Z/E and enantio-selectivities. Notably, an unexpected anti-selective carbo-carboxylation is observed in the sp2-hybrid carbo-electrophile-initiated reductive carboxylation of alkynes. Mechanistic studies including DFT calculation elucidate the origin of chiral induction and anti-selectivity in vinyl-carboxylation of alkynes.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Xiao-Wang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Li-Li Liao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 400030, P. R. China
| | - Yong-Yuan Gui
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, P. R. China
| | - Jing-Wei Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Shuo Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jun-Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Xiangge Zhou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 400030, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
4
|
Yao Y, Bai J, Cheng P, Yang H, Sun J, Sun S. Base-promoted cascade 5- exo-dig annulation/carboxylation of o-(1-alkynyl)benzenesulfonamides with CO 2: divergent synthesis of mono- or gem-dicarboxylic esters. Chem Commun (Camb) 2024; 60:14850-14853. [PMID: 39585237 DOI: 10.1039/d4cc05239k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
A base-promoted cascade 5-exo-dig cyclization/carboxylation of o-alkynylsulfamides with CO2 has been accomplished, furnishing a variety of benzosultam-containing acrylates in good yields by using CO2 as the carboxylic source. Notably, in the case of substrates bearing a TMS-alkyne motif, the gem-dicarboxylation products were generated unprecedentedly.
Collapse
Affiliation(s)
- Yang Yao
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Junxue Bai
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Peidong Cheng
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Han Yang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Jianwei Sun
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
- Department of Chemistry, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Song Sun
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
5
|
Gahlawat S, Artelsmair M, Castro AC, Norrby PO, Hopmann KH. Computational Study of the Ir-Catalyzed Formation of Allyl Carbamates from CO 2. Organometallics 2024; 43:1818-1826. [PMID: 39268181 PMCID: PMC11388460 DOI: 10.1021/acs.organomet.4c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 09/15/2024]
Abstract
We have employed computational methods to investigate the iridium-catalyzed allylic substitution leading to the formation of enantioenriched allyl carbamates from carbon dioxide (CO2). The reaction occurs in several steps, with initial formation of an iridium-allyl, followed by nucleophilic attack by the carbamate formed in situ from CO2 and an amine. A detailed isomeric analysis shows that the rate-determining step differs for the (R)- and (S)-pathways. These insights are essential for understanding reactions involving enantioselective formation of allyl carbamates from CO2.
Collapse
Affiliation(s)
- Sahil Gahlawat
- Department of Chemistry, UiT The Arctic University of Norway, N-9017 Tromsø, Norway
- Hylleraas Centre for Quantum Molecular Sciences, UiT The Arctic University of Norway, N-9017 Tromsø, Norway
| | - Markus Artelsmair
- Isotope Chemistry, Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg, SE-431 83 Mölndal, Sweden
| | - Abril C Castro
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, P.O. Box 1033 Blindern, 0315 Oslo, Norway
| | - Per-Ola Norrby
- Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg, SE-431 83 Mölndal, Sweden
| | - Kathrin H Hopmann
- Department of Chemistry, UiT The Arctic University of Norway, N-9017 Tromsø, Norway
| |
Collapse
|
6
|
Pavlovic L, Carvalho B, Hopmann KH. Revisiting the Mechanism of Asymmetric Ni-Catalyzed Reductive Carbo-Carboxylation with CO 2: The Additives Affect the Product Selectivity. Chemistry 2024; 30:e202401631. [PMID: 38924598 DOI: 10.1002/chem.202401631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
The mechanistic details of the asymmetric Ni-catalyzed reductive cyclization/carboxylation of alkenes with CO2 have been revisited using DFT methods. Emphasis was put on the enantioselectivity and the mechanistic role of Lewis acid additives and in situ formed salts. Our results show that oxidative addition of the substrate is rate-limiting, with the formed Ni(II)-aryl intermediate preferring a triplet spin state. After reduction to Ni(I), enantioselective cyclization of the substrate occurs, followed by inner sphere carboxylation. Our proposed mechanism reproduces the experimentally observed enantiomeric excess and identifies critical C-H/O and C-H/N interactions that affect the selectivity. Further, our results highlight the beneficial effect of Lewis acids on CO2 insertion and suggest that in situ formed salts influence if the 5-exo or 6-endo product will be formed.
Collapse
Affiliation(s)
- Ljiljana Pavlovic
- Department of Chemistry, UiT The Arctic University of Norway, N-9017, Tromsø, Norway
| | - Bjørn Carvalho
- Department of Chemistry, UiT The Arctic University of Norway, N-9017, Tromsø, Norway
- Hylleraas Center for Quantum Molecular Sciences, UiT The Arctic University of Norway, N-9017, Tromsø, Norway
| | - Kathrin H Hopmann
- Department of Chemistry, UiT The Arctic University of Norway, N-9017, Tromsø, Norway
| |
Collapse
|
7
|
Yang H, Yang Q, Yao Y, Gu P, Sun J, Sun S. Visible-Light-Promoted Cascade Carboxylation/Arylation of Unactivated Alkenes with CO 2 for the Synthesis of Carboxylated Indole-Fused Heterocycles. Org Lett 2024; 26:6341-6346. [PMID: 39024314 DOI: 10.1021/acs.orglett.4c01967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Described here is a visible-light-promoted cascade carboxylation/arylation of indole-tethered unactivated alkenes with CO2 to access various carboxylated indole-fused heterocycles. This reaction is initiated by the addition of a CO2 radical anion to the alkene motif toward an alkyl carbon radical, followed by its addition to the aromatic ring, and then rearomatization to afford the final products. This reaction provides a facile and sustainable protocol for the construction of carboxylated indole-fused heterocycles using CO2 as the carboxylic source.
Collapse
Affiliation(s)
- Han Yang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Qi Yang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yang Yao
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Peiyang Gu
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jianwei Sun
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
| | - Song Sun
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
8
|
Zhou L, Li L, Zhang S, Kuang XK, Zhou YY, Tang Y. Catalytic Regio- and Enantioselective Remote Hydrocarboxylation of Unactivated Alkenes with CO 2. J Am Chem Soc 2024; 146:18823-18830. [PMID: 38950377 DOI: 10.1021/jacs.4c05217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The catalytic regio- and enantioselective hydrocarboxylation of alkenes with carbon dioxide is a straightforward strategy to construct enantioenriched α-chiral carboxylic acids but remains a big challenge. Herein we report the first example of catalytic highly enantio- and site-selective remote hydrocarboxylation of a wide range of readily available unactivated alkenes with abundant and renewable CO2 under mild conditions enabled by the SaBOX/Ni catalyst. The key to this success is utilizing the chiral SaBOX ligand, which combines with nickel to simultaneously control both chain-walking and the enantioselectivity of carboxylation. This process directly furnishes a range of different alkyl-chain-substituted or benzo-fused α-chiral carboxylic acids bearing various functional groups in high yields and regio- and enantioselectivities. Furthermore, the synthetic utility of this methodology was demonstrated by the concise synthesis of the antiplatelet aggregation drug (R)-indobufen from commercial starting materials.
Collapse
Affiliation(s)
- Li Zhou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Liping Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Sudong Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Xiao-Kang Kuang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - You-Yun Zhou
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Yong Tang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| |
Collapse
|
9
|
Hu Q, Wei B, Wang M, Liu M, Chen XW, Ran CK, Wang G, Chen Z, Li H, Song J, Yu DG, Guo C. Enantioselective Nickel-Electrocatalyzed Reductive Propargylic Carboxylation with CO 2. J Am Chem Soc 2024; 146:14864-14874. [PMID: 38754389 DOI: 10.1021/jacs.4c04211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The exploitation of carbon dioxide (CO2) as a sustainable, plentiful, and harmless C1 source for the catalytic synthesis of enantioenriched carboxylic acids has long been acknowledged as a pivotal task in synthetic chemistry. Herein, we present a current-driven nickel-catalyzed reductive carboxylation reaction with CO2 fixation, facilitating the formation of C(sp3)-C(sp2) bonds by circumventing the handling of moisture-sensitive organometallic reagents. This electroreductive protocol serves as a practical platform, paving the way for the synthesis of enantioenriched propargylic carboxylic acids (up to 98% enantiomeric excess) from racemic propargylic carbonates and CO2. The efficacy of this transformation is exemplified by its successful utilization in the asymmetric total synthesis of (S)-arundic acid, (R)-PIA, (S)-chizhine D, (S)-cochlearin G, and (S,S)-alexidine, thereby underscoring the potential of asymmetric electrosynthesis to achieve complex molecular architectures sustainably.
Collapse
Affiliation(s)
- Qingdong Hu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Boyuan Wei
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Mingxu Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Minghao Liu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-Wang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Chuan-Kun Ran
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Gefei Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ziting Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Haoze Li
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jin Song
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Chang Guo
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
10
|
Chen XW, Li C, Gui YY, Yue JP, Zhou Q, Liao LL, Yang JW, Ye JH, Yu DG. Atropisomeric Carboxylic Acids Synthesis via Nickel-Catalyzed Enantioconvergent Carboxylation of Aza-Biaryl Triflates with CO 2. Angew Chem Int Ed Engl 2024; 63:e202403401. [PMID: 38527960 DOI: 10.1002/anie.202403401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Upgrading CO2 to value-added chiral molecules via catalytic asymmetric C-C bond formation is a highly important yet challenging task. Although great progress on the formation of centrally chiral carboxylic acids has been achieved, catalytic construction of axially chiral carboxylic acids with CO2 has never been reported to date. Herein, we report the first catalytic asymmetric synthesis of axially chiral carboxylic acids with CO2, which is enabled by nickel-catalyzed dynamic kinetic asymmetric reductive carboxylation of racemic aza-biaryl triflates. A variety of important axially chiral carboxylic acids, which are valuable but difficult to obtain via catalysis, are generated in an enantioconvergent version. This new methodology features good functional group tolerance, easy to scale-up, facile transformation and avoids cumbersome steps, handling organometallic reagents and using stoichiometric chiral materials. Mechanistic investigations indicate a dynamic kinetic asymmetric transformation process induced by chiral nickel catalysis.
Collapse
Affiliation(s)
- Xiao-Wang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Chao Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yong-Yuan Gui
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, P. R. China
| | - Jun-Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Qi Zhou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Li-Li Liao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jing-Wei Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
11
|
Zhang S, Li L, Li D, Zhou YY, Tang Y. Catalytic Regio- and Enantioselective Boracarboxylation of Arylalkenes with CO 2 and Diboron. J Am Chem Soc 2024; 146:2888-2894. [PMID: 38277681 DOI: 10.1021/jacs.3c12720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Catalytic asymmetric carboxylation of readily available alkenes with CO2, an abundant and sustainable one-carbon building block, that gives access to value-added α-stereogenic carboxylic acids in an atom- and step-economic manner is highly attractive. However, it has remained a formidable challenge for the synthetic community. Here, the first example of Cu-catalyzed highly regio- and enantioselective boracarboxylation reaction on various arylalkenes with diboron under an atmospheric pressure of CO2 is described, which afforded a variety of chiral β-boron-functionalized α-aryl carboxylic acids with up to 87% yield and 97% ee under mild conditions. Importantly, α-substituted arylalkenes could also be subject to this protocol with excellent enantiopurities, thereby rendering an efficient approach for the generation of enantioenriched carboxylic acids with an α-chiral all-carbon quaternary center. Moreover, high functional group tolerance, scalable synthesis, and facile access to bioactive compounds, like (-)-scopolamine, (-)-anisodamine, and (-)-tropicamide, further demonstrated the synthetic utility of this strategy.
Collapse
Affiliation(s)
- Sudong Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Liping Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Dingxi Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - You-Yun Zhou
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Yong Tang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| |
Collapse
|
12
|
Gui YY, Chen XW, Mo XY, Yue JP, Yuan R, Liu Y, Liao LL, Ye JH, Yu DG. Cu-Catalyzed Asymmetric Dicarboxylation of 1,3-Dienes with CO 2. J Am Chem Soc 2024; 146:2919-2927. [PMID: 38277794 DOI: 10.1021/jacs.3c14146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Dicarboxylic acids and derivatives are important building blocks in organic synthesis, biochemistry, and the polymer industry. Although catalytic dicarboxylation with CO2 represents a straightforward and sustainable route to dicarboxylic acids, it is still highly challenging and limited to generation of achiral or racemic dicarboxylic acids. To date, catalytic asymmetric dicarboxylation with CO2 to give chiral dicarboxylic acids has not been reported. Herein, we report the first asymmetric dicarboxylation of 1,3-dienes with CO2 via Cu catalysis. This strategy provides an efficient and environmentally benign route to chiral dicarboxylic acids with high regio-, chemo-, and enantioselectivities. The copper self-relay catalysis, that is, Cu-catalyzed boracarboxylation of 1,3-dienes to give carboxylated allyl boronic ester intermediates and subsequent carboxylation of C-B bonds to give dicarboxylates, is key to the success of this dicarboxylation. Moreover, this protocol exhibits broad substrate scope, good functional group tolerance, easy product derivatizations, and facile synthesis of chiral liquid crystalline polyester and drug-like scaffolds.
Collapse
Affiliation(s)
- Yong-Yuan Gui
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Xiao-Wang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiao-Yan Mo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Jun-Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Rong Yuan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Yi Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Li-Li Liao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
13
|
Shirakawa S. Bifunctional Onium and Potassium Iodides as Nucleophilic Catalysts for the Solvent-Free Syntheses of Carbonates, Thiocarbonates, and Oxazolidinones from Epoxides. CHEM REC 2023; 23:e202300144. [PMID: 37236152 DOI: 10.1002/tcr.202300144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/16/2023] [Indexed: 05/28/2023]
Abstract
The catalytic potential of organo-onium iodides as nucleophilic catalysts is aptly demonstrated in the synthesis of cyclic carbonates from epoxides and carbon dioxide (CO2 ), as a representative CO2 utilization reaction. Although organo-onium iodide nucleophilic catalysts are metal-free environmentally benign catalysts, harsh reaction conditions are generally required to efficiently promote the coupling reactions of epoxides and CO2 . To solve this problem and accomplish efficient CO2 utilization reactions under mild conditions, bifunctional onium iodide nucleophilic catalysts bearing a hydrogen bond donor moiety were developed by our research group. Based on the successful bifunctional design of the onium iodide catalysts, nucleophilic catalysis using a potassium iodide (KI)-tetraethylene glycol complex was also investigated in coupling reactions of epoxides and CO2 under mild reaction conditions. These effective bifunctional onium and potassium iodide nucleophilic catalysts were applied to the solvent-free syntheses of 2-oxazolidinones and cyclic thiocarbonates from epoxides.
Collapse
Affiliation(s)
- Seiji Shirakawa
- Department of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| |
Collapse
|
14
|
Gao R, Xu X, Wu Z, Xu L, Kuang H, Xu C. The potential of converting carbon dioxide to food compounds via asymmetric catalysis. NANOSCALE ADVANCES 2023; 5:2865-2872. [PMID: 37260504 PMCID: PMC10228361 DOI: 10.1039/d3na00178d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023]
Abstract
The food crisis caused by diminished arable land, extreme weather and climate change linked to increased carbon dioxide (CO2) emission, is threatening global population growth. Interestingly, CO2, the most widespread carbon source, can be converted into food ingredients. Here, we briefly discuss the progress and challenges in catalytic conversion of CO2 to food ingredients via chiral catalysis.
Collapse
Affiliation(s)
- Rui Gao
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University Wuxi Jiangsu 214122 PRC
- State Key Laboratory of Food Science and Technology, Jiangnan University Jiangsu PRC
| | - Xinxin Xu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University Wuxi Jiangsu 214122 PRC
- State Key Laboratory of Food Science and Technology, Jiangnan University Jiangsu PRC
| | - Zhimeng Wu
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 PRC
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University Wuxi Jiangsu 214122 PRC
- State Key Laboratory of Food Science and Technology, Jiangnan University Jiangsu PRC
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi Jiangsu 214122 PRC
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University Wuxi Jiangsu 214122 PRC
- State Key Laboratory of Food Science and Technology, Jiangnan University Jiangsu PRC
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University Wuxi Jiangsu 214122 PRC
- State Key Laboratory of Food Science and Technology, Jiangnan University Jiangsu PRC
| |
Collapse
|
15
|
Nishiyori R, Mori T, Shirakawa S. Catalytic asymmetric CO 2 utilization reaction for the enantioselective synthesis of chiral 2-oxazolidinones. Org Biomol Chem 2023; 21:4002-4006. [PMID: 37128691 DOI: 10.1039/d3ob00555k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Catalytic asymmetric bromocyclizations of in situ generated carbamic acids from CO2 and allylamines were achieved via the use of a BINOL-derived chiral bifunctional selenide catalyst bearing a hydroxy group. Chiral 2-oxazolidinone products as important pharmaceutical building blocks were obtained with good enantioselectivities by the present catalytic asymmetric CO2 utilization reactions.
Collapse
Affiliation(s)
- Ryuichi Nishiyori
- Department of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Taiki Mori
- Department of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Seiji Shirakawa
- Department of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| |
Collapse
|
16
|
Liao X, He JH, Zhang YT. CO 2 Fixation and PCHC Depolymerization by a Dinuclear β-Diketiminato Zinc Complex. Chem Asian J 2023; 18:e202201076. [PMID: 36468413 DOI: 10.1002/asia.202201076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
The production of cyclic carbonates and (or) polycarbonates from the coupling of carbon dioxide (CO2 ) with epoxides is a practical strategy for CO2 fixation. Chemically recycling of the polycarbonates is also urgently needed for sustainable development of plastics. Here a dinuclear β-diketiminato (BDI) methyl zinc complex((BDI-ZnMe)2 , 1) is reported to achieve not only selective cyclic carbonates from cycloaddition of CO2 to meso-CHO in the presence of cocatalyst, but also effective depolymerization of PCHC into trans-CHC. The trans-CHC can be further transformed into cis-CHC, thus demonstrating great application potentials of this strategy in CO2 fixation and chemical recycling of plastics.
Collapse
Affiliation(s)
- Xi Liao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, Jilin, P.R. China
| | - Jiang-Hua He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, Jilin, P.R. China
| | - Yue-Tao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, Jilin, P.R. China
| |
Collapse
|
17
|
Li D, Wei L, Xiong W, Jiang H, Qi C. Palladium-Catalyzed Reductive Formylation of Aryl Iodides with CO 2 under Mild Conditions. J Org Chem 2023; 88:5231-5237. [PMID: 36644860 DOI: 10.1021/acs.joc.2c02576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A palladium-catalyzed reductive formylation of aryl iodides with carbon dioxide as the carbonyl source under mild reaction conditions was realized by using a combination of Pd(PCy3)2Cl2 and di-2-pyridyl ketone as the catalyst and phenylsilane as the reductive reagent, leading to a variety of aromatic aldehydes in moderate to excellent yields. The protocol features wide substrate scope, good functional group tolerance, and simple operation.
Collapse
Affiliation(s)
- Dan Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Li Wei
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Wenfang Xiong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chaorong Qi
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
18
|
Liu G, Fu Z, Chen F, Xu C, Li M, Liu N. N-Heterocyclic Carbene-Pyridine Manganese Complex/ Tetrabutylammonium Iodide Catalyzed Synthesis of Cyclic Carbonate from CO 2 and Epoxide. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202206047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
19
|
Wang L, Li T, Perveen S, Zhang S, Wang X, Ouyang Y, Li P. Nickel-Catalyzed Enantioconvergent Carboxylation Enabled by a Chiral 2,2'-Bipyridine Ligand. Angew Chem Int Ed Engl 2022; 61:e202213943. [PMID: 36300599 DOI: 10.1002/anie.202213943] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Indexed: 11/24/2022]
Abstract
In contrast to previous approaches to chiral α-aryl carboxylic acids that based on reactions using hazardous gases, pressurized setup and mostly noble metal catalysts, in this work, a nickel-catalyzed general, efficient and highly enantioselective carboxylation reaction of racemic benzylic (pseudo)halides under mild conditions using atmospheric CO2 has been developed. A unique chiral 2,2'-bipyridine ligand named Me-SBpy featuring compact polycyclic skeleton enabled both high reactivity and stereoselectivity. The utility of this method has been demonstrated by synthesis of various chiral α-aryl carboxylic acids (30 examples, up to 95 % yield and 99 : 1 er), including profen family anti-inflammatory drugs and transformations using the acids as key intermediates. Based on mechanistic experimental results, a plausible catalytic cycle involving Ni-complex/radical equilibrium and Lewis acid-assisted CO2 activation has been proposed.
Collapse
Affiliation(s)
- Linghua Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Tao Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Saima Perveen
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shuai Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Xicheng Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Yizhao Ouyang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China.,School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
20
|
Nie X, Ye C, Ivlev SI, Meggers E. Nitrene-Mediated C-H Oxygenation: Catalytic Enantioselective Formation of Five-Membered Cyclic Organic Carbonates. Angew Chem Int Ed Engl 2022; 61:e202211971. [PMID: 36184573 PMCID: PMC9827974 DOI: 10.1002/anie.202211971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Indexed: 11/06/2022]
Abstract
The synthesis of non-racemic 5-membered cyclic carbonates from abundant alcohols is reported. Conversion of the alcohol into an azanyl carbonate is followed by a chiral-at-ruthenium catalyzed cyclization to provide chiral cyclic carbonates in yields of up to 95 % and with up to 99 % ee. This new synthetic method is proposed to proceed through a nitrene-mediated intramolecular C(sp3 )-H oxygenation which includes an unusual 1,7-hydrogen atom transfer within a ruthenium nitrene intermediate. The method is applicable to the synthesis of non-racemic chiral mono-, di- and trisubstituted cyclic alkylene carbonates.
Collapse
Affiliation(s)
- Xin Nie
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - Chen‐Xi Ye
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - Sergei I. Ivlev
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - Eric Meggers
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| |
Collapse
|
21
|
Hang W, Li D, Zou S, Xi C. Visible-Light-Driven Reductive Carboxylation of Benzyl Bromides with Carbon Dioxide Using Formate as Terminal Reductant. J Org Chem 2022; 88:5007-5014. [PMID: 36126282 DOI: 10.1021/acs.joc.2c01840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cheap and available formate can be seen formally as a carbon dioxide radical anion (CO2•-) combined with a hydrogen atom, where the CO2•- is not only a highly active radical but also a very powerful reductant. In this paper, we successfully realized a visible-light-driven carboxylation of benzyl bromides with carbon dioxide to prepare high-value arylacetic acids using potassium formate as a terminal reductant. This reaction is characterized by mild reaction conditions and a wide range of substrates. Moreover, under nitrogen atmosphere, the reaction can also achieve the carboxylation of benzyl bromides utilizing an excess of potassium formate. Mechanistic experiments indicate this carboxylation proceeded through CO2•-, which was generated from the oxidation of 1,4-diazabicyclo[2.2.2]octane with excited photosensitizer Ir(ppy)2(dtbbpy)PF6 in the presence of the potassium formate.
Collapse
Affiliation(s)
- Wei Hang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Danyun Li
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Song Zou
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chanjuan Xi
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
22
|
Chiral Aziridine Phosphines as Highly Effective Promoters of Asymmetric Rauhut–Currier Reaction. Symmetry (Basel) 2022. [DOI: 10.3390/sym14081631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A series of chiral enantiomerically pure aziridines containing a phosphine moiety were synthesized and successfully applied as organocatalysts in asymmetric intramolecular Rauhut–Currier reactions of p-quinone derivatives. The desired chiral phenols were achieved in high chemical yields and with satisfactory values of enantiomeric excess (up to 98% ee, in some cases). The stereochemical course of the title reaction may be controlled by the use of an appropriate enantiomer of the catalyst. The individual enantiomers of the organocatalyst led to the formation of specific enantiomers of the chiral product.
Collapse
|
23
|
Müller M, Germer P, Andexer JN. Biocatalytic One-Carbon Transfer – A Review. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0040-1719884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
AbstractThis review provides an overview of different C1 building blocks as substrates of enzymes, or part of their cofactors, and the resulting functionalized products. There is an emphasis on the broad range of possibilities of biocatalytic one-carbon extensions with C1 sources of different oxidation states. The identification of uncommon biosynthetic strategies, many of which might serve as templates for synthetic or biotechnological applications, towards one-carbon extensions is supported by recent genomic and metabolomic progress and hence we refer principally to literature spanning from 2014 to 2020.1 Introduction2 Methane, Methanol, and Methylamine3 Glycine4 Nitromethane5 SAM and SAM Ylide6 Other C1 Building Blocks7 Formaldehyde and Glyoxylate as Formaldehyde Equivalents8 Cyanide9 Formic Acid10 Formyl-CoA and Oxalyl-CoA11 Carbon Monoxide12 Carbon Dioxide13 Conclusions
Collapse
|
24
|
Nandi S, Jana R. Toward Sustainable Photo‐/Electrocatalytic Carboxylation of Organic Substrates with CO2. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shantanu Nandi
- Indian Institute of Chemical Biology CSIR Organic and Medicinal Chemistry Division 4 Raja S C Mullick RoadJadavpur 700032 Kolkata INDIA
| | - Ranjan Jana
- Indian Institute of Chemical Biology CSIR Chemistry Division 4, Raja S. C. Mullick RoadJadavpur 700032 Kolkata INDIA
| |
Collapse
|
25
|
Luo H, Ren J, Sun Y, Liu Y, Zhou F, Shi G, Zhou J. Recent advances in chemical fixation of CO2 based on flow chemistry. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Wang L, Qi C, Xiong W, Jiang H. Recent advances in fixation of CO2 into organic carbamates through multicomponent reaction strategies. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64029-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Jing K, Wei MK, Yan SS, Liao LL, Niu YN, Luo SP, Yu B, Yu DG. Visible-light photoredox-catalyzed carboxylation of benzyl halides with CO2: Mild and transition-metal-free. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63859-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Kaur C, Sharma S, Thakur A, Sharma R. ASYMMETRIC SYNTHESIS: A GLANCE AT VARIOUS METHODOLOGIES FOR DIFFERENT FRAMEWORKS. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220610162605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Asymmetric reactions have made a significant advancement over the past few decades and involved the production of enantiomerically pure molecules using enantioselective organocatalysis, chiral auxiliaries/substrates, and reagents via controlling the absolute stereochemistry. The laboratory synthesis from an enantiomerically impure starting material gives a combination of enantiomers which are difficult to separate for chemists in the fields of medicine, chromatography, pharmacology, asymmetric synthesis, studies of structure-function relationships of proteins, life sciences and mechanistic studies. This challenging step of separation can be avoided by the use of asymmetric synthesis. Using pharmacologically relevant scaffolds/pharmacophores, the drug designing can also be achieved using asymmetric synthesis to synthesize receptor specific pharmacologically active chiral molecules. This approach can be used to synthesize asymmetric molecules from wide variety of reactants using specific asymmetric conditions which is also beneficial for environment due to less usage and discharge of chemicals into the environment. So, in this review, we have focused on the inclusive collation of diverse mechanisms in this area, to encourage auxiliary studies of asymmetric reactions to develop selective, efficient, environment-friendly and high yielding advanced processes in asymmetric reactions.
Collapse
Affiliation(s)
- Charanjit Kaur
- Department of Pharmaceutical Chemistry, Khalsa College of Pharmacy, Amritsar, Punjab, 143002
| | - Sachin Sharma
- School of Pharmacy, Taipei Medical University, Taiwan
| | | | - Ram Sharma
- School of Pharmacy, Taipei Medical University, Taiwan
| |
Collapse
|
29
|
Fan Z, Yi Y, Xi C. Recent Advances in Light‐Induced Carboxylation of Organic (Pseudo)Halides with CO2. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Yaping Yi
- Tsinghua University Chemistry 100084 Beijing CHINA
| | - Chanjuan Xi
- Tsinghua University Department of Chemistry zhongguancui 100084 Beijing CHINA
| |
Collapse
|
30
|
Rawat A, Dhakla S, Lama P, Pal TK. Fixation of carbon dioxide to aryl/aromatic carboxylic acids. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101939] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
31
|
Emelyanov MA, Lisov AA, Medvedev MG, Maleev VI, Larionov VA. Cobalt(III) Complexes as Bifunctional Hydrogen Bond Donor Catalysts Featuring Halide Anions for Cyclic Carbonate Synthesis at Ambient Temperature and Pressure: Mechanistic Insight. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mikhail A. Emelyanov
- A N Nesmeyanov Institute of Organoelement Compounds RAS: Institut elementoorganiceskih soedinenij imeni A N Nesmeanova RAN LAC Vavilov Str. 28 119991 Moscow RUSSIAN FEDERATION
| | - Alexey A. Lisov
- Lomonosov Moscow State University: Moskovskij gosudarstvennyj universitet imeni M V Lomonosova Chemistry Leninskie Gory 1/3 119991 Moscow RUSSIAN FEDERATION
| | - Michael G. Medvedev
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Chemistry Leninsky prospect 47 119991 Moscow RUSSIAN FEDERATION
| | - Victor I. Maleev
- A N Nesmeyanov Institute of Organoelement Compounds RAS: Institut elementoorganiceskih soedinenij imeni A N Nesmeanova RAN LAC Vavilov Str. 28 119991 Moscow RUSSIAN FEDERATION
| | - Vladimir A. Larionov
- Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Laboratory of Asymmetric Catalysis Vavilov Street 28 119991 Moscow RUSSIAN FEDERATION
| |
Collapse
|
32
|
Jin Y, Toriumi N, Iwasawa N. Visible-Light-Enabled Carboxylation of Benzyl Alcohol Derivatives with CO 2 Using a Palladium/Iridium Dual Catalyst. CHEMSUSCHEM 2022; 15:e202102095. [PMID: 34821059 DOI: 10.1002/cssc.202102095] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/24/2021] [Indexed: 06/13/2023]
Abstract
A highly efficient carboxylation of benzyl alcohol derivatives with CO2 using a palladium/iridium dual catalyst under visible-light irradiation was developed. A wide range of benzyl alcohol derivatives could be employed to provide benzylic carboxylic acids in moderate to high yields. Mechanistic studies indicated that the oxidative addition of benzyl alcohol derivatives was possibly the rate-determining-step. It was also found that a switchable site-selective carboxylation between benzylic C-O and aryl C-Cl moieties could be achieved simply by changing the palladium catalyst.
Collapse
Affiliation(s)
- Yushu Jin
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Naoyuki Toriumi
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Nobuharu Iwasawa
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
33
|
Chen P, Xiong T, Liang Y, Pan Y. Recent progress on N‐heterocyclic carbene catalysts in chemical fixation of CO2. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Peibo Chen
- Guilin University of Electronic Technology School of Life and Environmental Sciences CHINA
| | - Tingkai Xiong
- Guilin University of Electronic Technology School of Life and Environmental Sciences CHINA
| | - Ying Liang
- Guilin University of Electronic Technology School of Life and Environmental Sciences Guilin, 541004, People’s Republic of China. 541004 Guilin CHINA
| | - Yingming Pan
- Guangxi Normal University School of Chemistry and Molecular Engineering of Medicinal Resources CHINA
| |
Collapse
|
34
|
Zhou W, Ran C, Yu D. Boryl Radical-Promoted Carboxylation of Benzylic C—OH Bonds. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Shao Y, Nie W, Yao C, Ye L, Yu H. DFT insights into the Ni-catalyzed regioselective hydrocarboxylation of unsaturated alkenes with CO 2. Dalton Trans 2021; 50:15084-15093. [PMID: 34610067 DOI: 10.1039/d1dt02486h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The nickel-catalyzed hydrocarboxylation of alkenes using carbon dioxide has recently become an appealing method to prepare functionalized carboxylic acids with high efficiency and regioselectivity. Herein, density functional theory (DFT) calculations were conducted on the Ni-catalyzed hydrocarboxylation of aryl-/alkyl-substituted alkenes with CO2. The α- and β-carboxylation of aromatic and aliphatic olefins originate from distinct catalytic cycles: H-transfer-carboxylation and carboxylation-H-transfer pathways. The typical hydrometallation-carboxylation mechanism is unlikely because water/carbonic acid (H-resource) are inferior hydride donors.
Collapse
Affiliation(s)
- Yifan Shao
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China.
| | - Wan Nie
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Chengyu Yao
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China.
| | - Lina Ye
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China.
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China. .,Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
36
|
Liu K, Liu C. One‐Pot Synthesis of Organic Carbonate from Alcohol and Alkyl Bromide under Low CO
2
Pressure. ChemistrySelect 2021. [DOI: 10.1002/slct.202102424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kai Liu
- State Key Laboratory of Fine Chemicals Dalian University of Technology Linggong Road 2 Dalian 116024 China
| | - Chun Liu
- State Key Laboratory of Fine Chemicals Dalian University of Technology Linggong Road 2 Dalian 116024 China
| |
Collapse
|
37
|
Cao Y, A. Dhahad H, Hussen HM, E. Anqi A, Farouk N, Issakhov A, Heravi MRP. Alkylative/arylative carboxylation of unsaturated hydrocarbons utilizing CO2 as C1 synthon: An update. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Emelyanov MA, Stoletova NV, Smol'yakov AF, Il'in MM, Maleev VI, Larionov VA. Synthesis and a Catalytic Study of Diastereomeric Cationic Chiral-at-Cobalt Complexes Based on ( R, R)-1,2-Diphenylethylenediamine. Inorg Chem 2021; 60:13960-13967. [PMID: 34449202 DOI: 10.1021/acs.inorgchem.1c00855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here we report the first synthesis of two diastereomeric cationic octahedral Co(III) complexes based on commercially available (R,R)-1,2-diphenylethylenediamine and salicylaldehyde. Both diastereoisomers with opposite chiralities at the metal center (Λ and Δ configurations) were prepared. The new Co(III) complexes possessed both acidic hydrogen-bond donating (HBD) NH moieties and nucleophilic counteranions and operate as bifunctional chiral catalysts for the challenging kinetic resolution of terminal and disubstituted epoxides by the reaction with CO2 under mild conditions. The highest selectivity factor (s) of 2.8 for the trans-chalcone epoxide was achieved at low catalyst loading (2 mol %) in chlorobenzene, which is the best achieved result currently for this type of substrate.
Collapse
Affiliation(s)
- Mikhail A Emelyanov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation
| | - Nadezhda V Stoletova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation
| | - Alexander F Smol'yakov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation
| | - Mikhail M Il'in
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation
| | - Victor I Maleev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation
| | - Vladimir A Larionov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation.,Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russian Federation
| |
Collapse
|
39
|
Chang T, Li X, Hao Y, Kang L, Tian T, Fu X, Zhu Z, Panchal B, Qin S. Pyrene-based ammonium bromides combined with g-C 3N 4 for the synergistically enhanced fixation reaction of CO 2 and epoxides. RSC Adv 2021; 11:30222-30228. [PMID: 35480243 PMCID: PMC9041114 DOI: 10.1039/d1ra05328k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
A new type of pyrene-based ammonium bromides (PABs) was synthesized via the reaction of bromomethyl pyrene and tertiary amines with different alkyl chains combined with graphitic carbon nitride (g-C3N4) through π-π stacking interactions. The new pyrene-based ammonium bromides were investigated both in homogenous phase and heterogeneous phase combining with g-C3N4 for the CO2 fixation reaction of epoxides under mild conditions. Obviously, the combination was proved to be an efficient system for the conversion of epoxides. The interaction between g-C3N4 and PABs was confirmed by quantum chemical calculations. g-C3N4/Py-C12 exhibited an excellent yield of cyclic carbonates (above 93%) at 80 °C, atmospheric pressure and solvent-free conditions. A preliminary kinetic study was performed using g-C3N4/Py-C12 and the activation energy was calculated to be 61.5 kJ mol-1.
Collapse
Affiliation(s)
- Tao Chang
- Key Laboratory of CO2 Utilization of Handan City, College of Material Science and Engineering, Hebei University of Engineering Handan 056038 Hebei China
- Key Laboratory of Heterocyclic Compounds of Hebei Province, Handan College Handan 056005 Hebei China
| | - Xiaopeng Li
- Key Laboratory of CO2 Utilization of Handan City, College of Material Science and Engineering, Hebei University of Engineering Handan 056038 Hebei China
| | - Yongjing Hao
- Key Laboratory of CO2 Utilization of Handan City, College of Material Science and Engineering, Hebei University of Engineering Handan 056038 Hebei China
| | - Lianwei Kang
- Key Laboratory of CO2 Utilization of Handan City, College of Material Science and Engineering, Hebei University of Engineering Handan 056038 Hebei China
| | - Tian Tian
- Key Laboratory of CO2 Utilization of Handan City, College of Material Science and Engineering, Hebei University of Engineering Handan 056038 Hebei China
| | - Xiying Fu
- Key Laboratory of CO2 Utilization of Handan City, College of Material Science and Engineering, Hebei University of Engineering Handan 056038 Hebei China
| | - Zheng Zhu
- Key Laboratory of CO2 Utilization of Handan City, College of Material Science and Engineering, Hebei University of Engineering Handan 056038 Hebei China
| | - Balaji Panchal
- Key Laboratory of CO2 Utilization of Handan City, College of Material Science and Engineering, Hebei University of Engineering Handan 056038 Hebei China
| | - Shenjun Qin
- Key Laboratory of CO2 Utilization of Handan City, College of Material Science and Engineering, Hebei University of Engineering Handan 056038 Hebei China
| |
Collapse
|
40
|
Zhong JS, Yang ZX, Ding CL, Huang YF, Zhao Y, Yan H, Ye KY. Desulfonylative Electrocarboxylation with Carbon Dioxide. J Org Chem 2021; 86:16162-16170. [PMID: 34355896 DOI: 10.1021/acs.joc.1c01261] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Electrocarboxylation of organic halides is one of the most investigated electrochemical approaches for converting thermodynamically inert carbon dioxide (CO2) into value-added carboxylic acids. By converting organic halides into their sulfone derivatives, we have developed a highly efficient electrochemical desulfonylative carboxylation protocol. Such a strategy takes advantage of CO2 as the abundant C1 building block for the facile preparation of multifunctionalized carboxylic acids, including the nonsteroidal anti-inflammatory drug ibuprofen, under mild reaction conditions.
Collapse
Affiliation(s)
- Jun-Song Zhong
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zi-Xin Yang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Cheng-Lin Ding
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ya-Feng Huang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yi Zhao
- BayRay Innovation Center, Shenzhen Bay Laboratory (SZBL), Guangdong 518000, China
| | - Hong Yan
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ke-Yin Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China.,State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
41
|
|
42
|
Yan X, Wang B, Liang H, Yang J, Zhao J, Ndayisenga F, Zhang H, Yu Z, Qian Z. Enhanced straw fermentation process based on microbial electrolysis cell coupled anaerobic digestion. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
43
|
Ye JH, Ju T, Huang H, Liao LL, Yu DG. Radical Carboxylative Cyclizations and Carboxylations with CO 2. Acc Chem Res 2021; 54:2518-2531. [PMID: 33956436 DOI: 10.1021/acs.accounts.1c00135] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Carbon dioxide (CO2) is not only a greenhouse gas and a common waste product but also an inexpensive, readily available, and renewable carbon resource. It is an important one-carbon (C1) building block in organic synthesis for the construction of valuable compounds. However, its utilization is challenging owing to its thermodynamic stability and kinetic inertness. Although significant progress has been achieved, many limitations remain in this field with regard to the substrate scope, reaction system, and activation strategies.Since 2015, our group has focused on CO2 utilization in organic synthesis. We are also interested in the vast possibilities of radical chemistry, although the high reactivity of radicals presents challenges in controlling selectivity. We hope to develop highly useful CO2 transformations involving radicals by achieving a balance of reactivity and selectivity under mild reaction conditions. Over the past 6 years, we along with other experts have disclosed radical-type carboxylative cyclizations and carboxylations using CO2.We initiated our research by realizing the Cu-catalyzed radical-type oxytrifluoromethylation of allylamines and heteroaryl methylamines to generate valuable 2-oxazolidones with various radical precursors. Apart from Cu catalysis, visible-light photoredox catalysis is also a powerful method to achieve efficient carboxylative cyclization. In these cases, single-electron-oxidation-promoted C-O bond formation between benzylic radicals and carbamates is the key step.Since carboxylic acids exist widely in natural products and bioactive drugs and serve as important bulk chemicals in industry, we realized further visible-light-promoted carboxylations with CO2 to construct such chemicals. We have achieved the selective umpolung carboxylations of imines, enamides, tetraalkylammonium salts, and oxime esters by successive single-electron-transfer (SSET) reduction. Using this strategy, we have also realized the dearomative arylcarboxylation of indoles with CO2. In addition to the incorporation of 1 equiv of CO2 per substrate, we have recently developed a visible-light photoredox-catalyzed dicarboxylation of alkenes, allenes, and (hetero)arenes via SSET reduction, which allows the incorporation of two CO2 molecules into organic compounds to generate valuable diacids as polymer precursors.In addition to the two-electron activation of CO2, we sought to develop new strategies to realize efficient and selective transformations via single-electron activation of CO2. Inspired by the hypothetical electron-transfer mechanism of iron-sulfur proteins, we have realized the visible-light-driven thiocarboxylation of alkenes with CO2 using catalytic iron salts as promoters. The in-situ-generated Fe/S complexes are likely able to reduce CO2 to its radical anion, which could react with alkenes to give a stabilized carbon radical. Moreover, we have also disclosed charge-transfer complex (CTC) formation between thiolate and acrylate/styrene to realize the visible-light-driven hydrocarboxylation of alkenes with CO2 via generation of a CO2 or alkene radical anion. On the basis of this novel CTC, the visible-light-driven organocatalytic hydrocarboxylation of alkenes with CO2 has also been realized using a Hantzsch ester as an effective reductant.
Collapse
Affiliation(s)
- Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Tao Ju
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - He Huang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Li-Li Liao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
44
|
Chen X, Yue J, Wang K, Gui Y, Niu Y, Liu J, Ran C, Kong W, Zhou W, Yu D. Nickel‐Catalyzed Asymmetric Reductive Carbo‐Carboxylation of Alkenes with CO
2. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiao‐Wang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Jun‐Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Kuai Wang
- The Center for Precision Synthesis Institute for Advanced Studies Wuhan University Wuhan 430072 P. R. China
| | - Yong‐Yuan Gui
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
- College of Chemistry and Materials Science Sichuan Normal University Chengdu 610068 P. R. China
| | - Ya‐Nan Niu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Jie Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Chuan‐Kun Ran
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Wangqing Kong
- The Center for Precision Synthesis Institute for Advanced Studies Wuhan University Wuhan 430072 P. R. China
| | - Wen‐Jun Zhou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
- College of Chemistry and Chemical Engineering Neijiang Normal University Neijiang 641100 P. R. China
| | - Da‐Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| |
Collapse
|
45
|
Chen X, Yue J, Wang K, Gui Y, Niu Y, Liu J, Ran C, Kong W, Zhou W, Yu D. Nickel‐Catalyzed Asymmetric Reductive Carbo‐Carboxylation of Alkenes with CO
2. Angew Chem Int Ed Engl 2021; 60:14068-14075. [DOI: 10.1002/anie.202102769] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Indexed: 01/07/2023]
Affiliation(s)
- Xiao‐Wang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Jun‐Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Kuai Wang
- The Center for Precision Synthesis Institute for Advanced Studies Wuhan University Wuhan 430072 P. R. China
| | - Yong‐Yuan Gui
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
- College of Chemistry and Materials Science Sichuan Normal University Chengdu 610068 P. R. China
| | - Ya‐Nan Niu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Jie Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Chuan‐Kun Ran
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Wangqing Kong
- The Center for Precision Synthesis Institute for Advanced Studies Wuhan University Wuhan 430072 P. R. China
| | - Wen‐Jun Zhou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
- College of Chemistry and Chemical Engineering Neijiang Normal University Neijiang 641100 P. R. China
| | - Da‐Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| |
Collapse
|
46
|
Santana CG, Krische MJ. From Hydrogenation to Transfer Hydrogenation to Hydrogen Auto-Transfer in Enantioselective Metal-Catalyzed Carbonyl Reductive Coupling: Past, Present, and Future. ACS Catal 2021; 11:5572-5585. [PMID: 34306816 PMCID: PMC8302072 DOI: 10.1021/acscatal.1c01109] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Atom-efficient processes that occur via addition, redistribution or removal of hydrogen underlie many large volume industrial processes and pervade all segments of chemical industry. Although carbonyl addition is one of the oldest and most broadly utilized methods for C-C bond formation, the delivery of non-stabilized carbanions to carbonyl compounds has relied on premetalated reagents or metallic/organometallic reductants, which pose issues of safety and challenges vis-à-vis large volume implementation. Catalytic carbonyl reductive couplings promoted via hydrogenation, transfer hydrogenation and hydrogen auto-transfer allow abundant unsaturated hydrocarbons to serve as substitutes to organometallic reagents, enabling C-C bond formation in the absence of stoichiometric metals. This perspective (a) highlights past milestones in catalytic hydrogenation, hydrogen transfer and hydrogen auto-transfer, (b) summarizes current methods for catalytic enantioselective carbonyl reductive couplings, and (c) describes future opportunities based on the patterns of reactivity that animate transformations of this type.
Collapse
Affiliation(s)
| | - Michael J Krische
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA
| |
Collapse
|
47
|
Zhang Z, Zhang ZH, Zhou F, Zhou J. Catalytic Enantioselective Transfer Hydrogenation-Carboxylative Cyclization to 4-Fluoroalkyl 2-Oxazolidinone with CO 2 as the C1 Synthon. Org Lett 2021; 23:2726-2730. [PMID: 33760616 DOI: 10.1021/acs.orglett.1c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a sequential catalytic asymmetric transfer hydrogenation-carboxylative cyclization for the facile construction of chiral 4-fluoroalkyl 2-oxazolidinones with high enantioselectivity. The resulting 2-oxazolidinones can be easily elaborated to synthetic useful chiral β-fluoroalkyl β-amino alcohols. This research also represents a rare example of catalytic asymmetric sequential reactions using CO2 as a C1 synthon as well as carboxylative cyclization of α-fluoroalkyl propargylamines.
Collapse
Affiliation(s)
| | | | | | - Jian Zhou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, China
| |
Collapse
|
48
|
Xu W, Guo D, Ebadi AG, Toughani M, Vessally E. Transition-metal catalyzed carboxylation of organoboron compounds with CO2. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2020.101403] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
49
|
Yang Z, Yu Y, Lai L, Zhou L, Ye K, Chen FE. Carbon dioxide cycle via electrocatalysis: Electrochemical carboxylation of CO2 and decarboxylative functionalization of carboxylic acids. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
50
|
Computational and Experimental Insights into Asymmetric Rh‐Catalyzed Hydrocarboxylation with CO
2. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|