1
|
He J, Dong M, Gu J, Sun C, Cui D, Yao X, Meng F, Tao C, Wang X, Su Z. Application of porous crystalline framework materials towards direct flue gas conversion. Chem Commun (Camb) 2024; 60:14896-14911. [PMID: 39585328 DOI: 10.1039/d4cc04464a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
The photocatalytic direct conversion of carbon dioxide (CO2) from flue gas into high-value products is regarded as one of the most promising approaches to achieving carbon neutrality. Nevertheless, this direct conversion process encounters significant challenges, primarily due to practical limitations such as low CO2 concentrations and the presence of interfering substances. Porous crystalline framework materials exhibit considerable potential in flue gas conversion, attributed to their robust CO2 capture capabilities, well-defined and tunable structures, high specific surface areas, and plentiful catalytic sites. This review highlights strategies to improve the capture and activation of low-concentration CO2 by porous crystalline materials including functionalization of organic ligands, creation of open metal sites (OMSs) and Lewis basic sites (LBSs), as well as strategies to improve the catalytic activity of flue gas reforming, which encompasses anchoring of catalytic sites to the skeleton, fabricating composites, and preparing derived materials. The review aims to provide insights and guidance for the design and development of efficient catalysts specifically tailored for flue gas reforming.
Collapse
Affiliation(s)
- Jingting He
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022 Jilin, China.
| | - Man Dong
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun, 130024 Jilin, China.
| | - Jianxia Gu
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun, 130024 Jilin, China.
| | - Chunyi Sun
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun, 130024 Jilin, China.
| | - Dongxu Cui
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun, 130024 Jilin, China.
| | - Xiaohui Yao
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun, 130024 Jilin, China.
| | - Fanfei Meng
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022 Jilin, China.
| | - Chunjing Tao
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun, 130024 Jilin, China.
| | - Xinlong Wang
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun, 130024 Jilin, China.
| | - Zhongmin Su
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022 Jilin, China.
| |
Collapse
|
2
|
Yang S, He Z, Li X, Mei B, Huang Y, Xu Q, Jiang Z. In/Outside Catalytic Sites of the Pore Walls in One-Dimensional Covalent Organic Frameworks for Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2024:e202418347. [PMID: 39623963 DOI: 10.1002/anie.202418347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Indexed: 12/17/2024]
Abstract
Pore channels play a decisive role in mass transport in catalytic systems. However, the influences of the location of catalytic sites inside or outside of the pore walls on the performance were still under-explored due, because it is difficult to construct sites anchored in or outside of pore walls. Herein, one-dimensional covalent organic frameworks with precisely anchored active sites were used to explore the effects of channels on a typical oxygen reduction reaction (ORR) catalysis. Electrocatalytic evaluations showed that single Pt sites located inside of the channels exhibited higher kinetic activity compared to those anchored outside. The in situ spectroscopic analysis revealed that local reconstruction of Pt-Cl breaking and potential-induced anion transport occurred more effectively inside the channels. The superior anion transportability and kinetic activity of the inside-channel active sites also facilitated *OH desorption during the ORR process outperforming their outside-channel counterparts. The results of this study provide strategies for designing active sites in porous catalysts for heterogeneous catalysis.
Collapse
Affiliation(s)
- Shuai Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Zejin He
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P.R. China
| | - Xuewen Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, P. R., China
| | - Bingbao Mei
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Yifan Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Qing Xu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, P. R., China
| | - Zheng Jiang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P.R. China
| |
Collapse
|
3
|
Wang M, Liu Q, Li L, Wang D, Zou Y, Hu J, Xiao Y, Lan Y, Yang Y, Guo X, Wang M, Gao D. Construction of carbazole-conjugated dual-emission fluorescent covalent organic framework for distinguishing p-nitroaniline/p-nitrophenol and adsorbing nitroanilines/nitrophenols. JOURNAL OF HAZARDOUS MATERIALS 2024; 483:136631. [PMID: 39591937 DOI: 10.1016/j.jhazmat.2024.136631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/16/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
Nitroanilines (NAs) and nitrophenols (NPs), crucial industrial raw materials, are extensively utilized across various sectors. However, the environmental pollution and health hazards stemming from their usage are significant, necessitating urgent monitoring and removal to address environmental and safety concerns. The challenge is further compounded by the presence of NAs/NPs isomers, making the selective analysis of specific isomers crucial. In response, a new post-modified fluorescent covalent organic framework (COF) termed COF@CB, exhibiting dual-emission fluorescence, was synthesized. This synthesis involved coupling a high-crystallinity fluorescent COF (COF-TTDB) with carbazole-9-ethanol (CB) via a "Williamson" reaction. COF@CB featured exceptional dual-emission fluorescence, a high specific surface area (919.4 m2·g-1), superior thermal stability, and abundant active sites. These attributes enabled COF@CB to function as a ratiometric fluorescence sensor capable of simultaneous detection and adsorption. The distinct number and arrangement of hydrogen bond sites in NAs/NPs isomers influenced the intramolecular charge transfer (ICT) effects on COF@CB, thereby enabling the COF@CB-ratiometric fluorescence sensor to distinguish and selectively detect p-NA/p-NP from isomers. Analysis of actual water samples further underscored the sensor's effectiveness in detecting p-NA/p-NP. Furthermore, the presence of multiple active sites on the COF@CB-ratiometric fluorescence sensor facilitated the adsorption of NAs/NPs, promoting the removal of them from actual samples.
Collapse
Affiliation(s)
- Mingyue Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Qiuyi Liu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Lingling Li
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Dandan Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuemeng Zou
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jiaqi Hu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuqiang Xiao
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yue Lan
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yulian Yang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiurong Guo
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Min Wang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Die Gao
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
4
|
Wang L, Zhang Y. Impact of Interfaces on the Performance of Covalent Organic Frameworks for Photocatalytic Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408395. [PMID: 39558696 DOI: 10.1002/smll.202408395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/07/2024] [Indexed: 11/20/2024]
Abstract
The rise in global temperatures and environmental contamination resulting from traditional fossil fuel usage has prompted a search for alternative energy sources. Utilizing solar energy to drive the direct splitting of water for hydrogen production has emerged as a promising solution to these challenges. Covalent organic frameworks (COFs) are ordered, crystalline materials made up of organic molecules linked by covalent bonds, featuring permanent porosity and a wide range of structural topologies. COFs serve as suitable platforms for solar-driven water splitting to produce hydrogen, as their building blocks can be tailored to possess adjustable band gaps, charge separation capabilities, porosity, wettability, and chemical stability. Here, the impact of the interface in the context of the photocatalytic reaction is focused and propose strategies to enhance the hydrogen production performance of COFs photocatalysis. In particular, how hybrid photocatalytic interfaces affect photocatalytic performance is focused.
Collapse
Affiliation(s)
- Lin Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yong Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
5
|
Yang X, Jiang D, Fu Y, Li X, Liu G, Ding X, Han BH, Xu Q, Zeng G. Synergistic Linker and Linkage of Covalent Organic Frameworks for Enhancing Gold Capture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404192. [PMID: 39004849 DOI: 10.1002/smll.202404192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/27/2024] [Indexed: 07/16/2024]
Abstract
The tunable pore walls and skeletons render covalent organic frameworks (COFs) as promising absorbents for gold (Au) ion. However, most of these COFs suffered from low surface areas hindering binding sites exposed and weak binding interaction resulting in sluggish kinetic performance. In this study, COFs have been constructed with synergistic linker and linkage for high-efficiency Au capture. The designed COFs (PYTA-PZDH-COF and PYTA-BPDH-COF) with pyrazine or bipyridine as linkers showed high surface areas of 1692 and 2076 m2 g‒1, providing high exposed surface areas for Au capture. In addition, the Lewis basic nitrogen atoms from the linkers and linkages are easily hydronium, which enabled to fast trap Au via coulomb force. The PYTA-PZDH-COF and PYTA-BPDH-COF showed maximum Au capture capacities of 2314 and 1810 mg g-1, higher than other reported COFs. More importantly, PYTA-PZDH-COF are capable of rapid adsorption kinetics with achieving 95% of maximum binding capacity in 10 min. The theoretical calculation revealed that the nitrogen atoms in linkers and linkages from both COFs are simultaneously hydronium, and then the protonated PYTA-PZDH-COF are more easily binding the AuCl4 ‒, further accelerating the binding process. This study gives the a new insight to design COFs for ion capture.
Collapse
Affiliation(s)
- Xiubei Yang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Di Jiang
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Xuewen Li
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guojuan Liu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xuesong Ding
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Bao-Hang Han
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Qing Xu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gaofeng Zeng
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
6
|
Pu ZF, Wen QL, Wu BC, Li CH, Li RS, Ling J, Cao Q. Synthesis of shape-controlled covalent organic frameworks for light scattering detection of iron and chromium ions. Talanta 2024; 279:126682. [PMID: 39116734 DOI: 10.1016/j.talanta.2024.126682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Fabricating covalent organic frameworks with different morphologies based on the same structural motifs is both interesting and challenging. Here, a TTA-TFP-COF was synthesized by both solvothermal and room temperature methods, with 2,4,6-Tris(4-aminophenyl)-1,3,5-triazine (TTA) and 1,3,5-tris(4-formylphenyl)-benzene (TFP) as raw material. Using different synthesis conditions and adding aniline and benzaldehyde as regulators in the synthesis process, we found that these processes could slow down the reaction speed, increase the exchange and metathesis reactions of dynamic reversible reactions, and improve the reversibility of the reaction system. Thus, controllable synthesis of TTA-TFP-COF with different morphologies, including micro-particles, hollow tubes with controllable diameters, and micro-flowers was achieved. Our further study found that metal ions, Fe3+ and Cr3+ ions, could coordinate with N and O in TTA-TFP-COF and partially destroy the structure of TTA-TFP-COF. The particle size of the TTA-TFP-COF became smaller, thus resulting in the decrease of the light scattering intensity of the COF. An excellent linear relationship exists between the light scattering changes (ΔI) and metal ions concentration (c) from 2.0 to 350.0 μM for Fe3+ and 40.0-800.0 μM for Cr3+, respectively. Thus, rapid and selective analytical methods for detecting metal ions were developed by TTA-TFP-COF here.
Collapse
Affiliation(s)
- Zheng-Fen Pu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Qiu-Lin Wen
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China; School of Chemistry and Chemical Engineering, Kunming University, Kunming, 650214, China
| | - Bi-Chao Wu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Chun-Hua Li
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Rong Sheng Li
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Jian Ling
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China.
| | - Qiue Cao
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China.
| |
Collapse
|
7
|
Zou Y, Ke F, Yang Y, Wang D, Wang M, Liu Q, Yu S, Li L, Lan Y, Yang X, Guo X, Li X, Yi D, Gao D. Construction of 2-azidacetic acid functionalized high-crystallinity fluorescent covalent organic framework: Applications in mitoxantrone and Fe 3+ sensing and adsorption. CHEMOSPHERE 2024; 366:143498. [PMID: 39393584 DOI: 10.1016/j.chemosphere.2024.143498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/20/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024]
Abstract
Due to the dual functions of fluorescence detection and adsorption, fluorescent covalent organic frameworks (COFs) have attracted significant attention. However, common fluorescent COFs often exhibit unsatisfactory fluorescence properties and selectivity, coupled with poor solution dispersibility, which limit their effectiveness in detection and adsorption applications. In response, a novel post-modified fluorescent COF (named AZC-COF) was synthesized by connecting a fluorescent COF (COF-TB) with 2-azidacetic acid through a copper-catalyzed aide-alkyne cycloaddition (CuAAC) reaction. AZC-COF demonstrated excellent solution dispersibility and robust green fluorescence, boasting an absolute fluorescence quantum yield (QY) of 7.58%, which was 13.5 times higher than that of COF-TB. Furthermore, leveraging the active carboxylic acid and triazole sites, AZC-COF exhibited remarkable binding abilities for mitoxantrone (MIX) and Fe3+, enabling sensitive detection and efficient adsorption of them. In contrast, due to the absence of these functional sites, COF-TB showed poor detection and enrichment capabilities for MIX and Fe3+. The impressive detection and adsorption efficiencies of MIX and Fe3+ in environmental water, aquatic organism (fish) and plasma samples underscore the potential of AZC-COF as a detection-adsorption platform. Additionally, AZC-COF demonstrated low toxicity and hemolytic activity, alongside promising potential for cell imaging and detection of MIX and Fe3+, highlighting its considerable application prospect in biological systems.
Collapse
Affiliation(s)
- Yuemeng Zou
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Famin Ke
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yulian Yang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Dandan Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Mingyue Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Qiuyi Liu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Sha Yu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Lingling Li
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yue Lan
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xilin Yang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiurong Guo
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiang Li
- Sichuan College of Traditional Chinese Medicine, Mianyang, Sichuan, China
| | - Dong Yi
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Die Gao
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
8
|
Wang W, Meng F, Bai Y, Lu Y, Yang Q, Feng J, Su Q, Ren H, Wu Q. Triazine-Carbazole-Based Covalent Organic Frameworks as Efficient Heterogeneous Photocatalysts for the Oxidation of N-aryltetrahydroisoquinolines. CHEMSUSCHEM 2024; 17:e202301916. [PMID: 38651217 DOI: 10.1002/cssc.202301916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/08/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Covalent organic frameworks (COFs) have attracted growing interests as new material platform for a range of applications. In this study, a triazine-carbazole-based covalent organic framework (COF-TCZ) was designed as highly porous material with conjugated donor-acceptor networks, and feasibly synthesized by the Schiff condensation of 4,4',4''-(1,3,5-triazine-2,4,6-triyl)tr ianiline (TAPB) and 9-(4-formylphenyl)-9H-carbazole-3,6-dicarbaldehyde (CZTA) under the solvothermal condition. Considering the effect of linkage, the imine-linked COF-TCZ was further oxidized to obtain an amide-linked covalent organic framework (COF-TCZ-O). The as-synthesized COFs show high crystallinity, good thermal and chemical stability, and excellent photoactive properties. Two π-conjugated triazine-carbazole-based COFs with tunable linkages are beneficial for light-harvesting capacity and charge separation efficiency, which are empolyed as photocatalysts for the oxidation reaction of N-aryltetrahydroisoquinoline. The COFs catalyst systems exhibit the outstanding photocatalytic performance with high conversion, photostability and recyclability. Photoelectrochemical tests were employed to examine the behavior of photogenerated charge carriers in photo-illumination system. The control experiments provide further insights into the nature of photocatalysis. In addition, the current research also provided a valuable approach for developing photofunctional COFs to meet challenge in achieving the great potential of COFs materials in organic conversion.
Collapse
Affiliation(s)
- Wen Wang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Fanyu Meng
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Yuhongxu Bai
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Yongchao Lu
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Qingru Yang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Jing Feng
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Qing Su
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Hao Ren
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Qiaolin Wu
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
9
|
Yang J, Xu H, Li J, Gong K, Yue F, Han X, Wu K, Shao P, Fu Q, Zhu Y, Xu W, Huang X, Xie J, Wang F, Yang W, Zhang T, Xu Z, Feng X, Wang B. Oxygen- and proton-transporting open framework ionomer for medium-temperature fuel cells. Science 2024; 385:1115-1120. [PMID: 39236188 DOI: 10.1126/science.adq2259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024]
Abstract
Medium-temperature proton exchange membrane fuel cells (MT PEMFCs) operating at 100° to 120°C have improved kinetics, simplified thermal and water management, and broadened fuel tolerance compared with low-temperature PEMFCs. However, high temperatures lead to Nafion ionomer dehydration and exacerbate gas transportation limitations. Inspired by osmolytes found in hyperthermophiles, we developed α-aminoketone-linked covalent organic framework (COF) ionomers, interwoven with Nafion, to act as "breathable" proton conductors. This approach leverages synergistic hydrogen bonding to retain water, enhancing hydration and proton transport while reducing oxygen transport resistance. For commercial Pt/C, the MT PEMFCs achieved peak and rated power densities of 18.1 and 9.5 Watts per milligram of Pt at the cathode at 105°C fueled with H2 and air, marking increases of 101 and 187%, respectively, compared with cells lacking the COF.
Collapse
Affiliation(s)
- Jianwei Yang
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Hengyu Xu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230022, P. R. China
| | - Jie Li
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Ke Gong
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Feiyu Yue
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xianghao Han
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Ke Wu
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Pengpeng Shao
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Qingling Fu
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yuhao Zhu
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Wenli Xu
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xin Huang
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jing Xie
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Fengchao Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230022, P. R. China
| | - Wenxiu Yang
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Teng Zhang
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zengshi Xu
- Wuhan Institute of Marine Electric Propulsion, Wuhan Hydrogen Fuel Cell Engineering Research Center, Wuhan 430064, P. R. China
| | - Xiao Feng
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Bo Wang
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
10
|
Bai X, Tian Z, Dong H, Xia N, Zhao J, Sun P, Gong G, Wang J, Wang L, Li H, Chen S. Halogen-Bonded Organic Frameworks (XOFs) Based on N⋅⋅⋅Br +⋅⋅⋅N Bonds: Robust Organic Networks Constructed by Fragile Bonds. Angew Chem Int Ed Engl 2024; 63:e202408428. [PMID: 38847190 DOI: 10.1002/anie.202408428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Indexed: 07/23/2024]
Abstract
Organic frameworks face a trade-off between the framework stability and the bond dynamics, which necessitates the development of innovative linkages that can generate stable frameworks without hindering efficient synthesis. Although iodine(I)-based halogen-bonded organic frameworks (XOFs) have been developed, constructing XOFs based on bromine(I) is desirable yet challenging due to the high sensitivity of bromine(I) species. In this work, we present the inaugural construction of stable bromine(I)-bridged two-dimensional (2D) halogen-bonded organic frameworks, XOF(Br)-TPy-BF4/OTf, based on sensitive [N⋅⋅⋅Br⋅⋅⋅N]+ halogen bonds. The formation of XOF(Br)-TPy-BF4/OTf was monitored by 1H NMR, XPS, IR, SEM, TEM, HR-TEM, SEAD. Their framework structures were established by the results from PXRD, theoretical simulations and SAXS. More importantly, XOF(Br) displayed excellent chemical and thermal stabilities. They exhibited stable two-dimensional framework structures in various organic solvents and aqueous media, even over a wide pH range (pH 3-12), while the corresponding model compounds BrPy2BF4/OTf decomposed quickly even in the presence of minimal water. Furthermore, the influence of the counterions were investigated by replacing BF4 with OTf, which improved the stability of XOF(Br). This characteristic enabled XOF(Br) to serve as an efficient oxidizing reagent in aqueous environments, in contrast with the sensitivity of BrPy2BF4/OTf, which performed well only in organic media. This study not only deepens our fundamental understanding of organic frameworks but also opens new avenues for the development and application of multifunctional XOFs.
Collapse
Affiliation(s)
- Xuguan Bai
- The Institute for Advanced Studies, Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
| | - Zhennan Tian
- The Institute for Advanced Studies, Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
| | - Hongqiang Dong
- The Institute for Advanced Studies, Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
| | - Ning Xia
- The Institute for Advanced Studies, Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
- School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan, Hubei, 442002, China
| | - Jiahao Zhao
- The Institute for Advanced Studies, Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
| | - Penghao Sun
- The Institute for Advanced Studies, Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
| | - Guanfei Gong
- The Institute for Advanced Studies, Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
| | - Jike Wang
- The Institute for Advanced Studies, Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
| | - Lu Wang
- The Institute for Advanced Studies, Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
| | - Haohu Li
- The Institute for Advanced Studies, Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
| | - Shigui Chen
- The Institute for Advanced Studies, Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
| |
Collapse
|
11
|
Yang J, Chen Z, Zhang L, Zhang Q. Covalent Organic Frameworks for Photocatalytic Reduction of Carbon Dioxide: A Review. ACS NANO 2024; 18:21804-21835. [PMID: 39116003 DOI: 10.1021/acsnano.4c06783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Covalent organic frameworks (COFs) are crystalline networks with extended backbones cross-linked by covalent bonds. Due to the semiconductive properties and variable metal coordinating sites, along with the rapid development in linkage chemistry, the utilization of COFs in photocatalytic CO2RR has attracted many scientists' interests. In this Review, we summarize the latest research progress on variable COFs for photocatalytic CO2 reduction. In the first part, we present the development of COF linkages that have been used in CO2RR, and we discuss four mechanisms including COFs as intrinsic photocatalysts, COFs with photosensitive motifs as photocatalysts, metalated COF photocatalysts, and COFs with semiconductors as heterojunction photocatalysts. Then, we summarize the principles of structural designs including functional building units and stacking mode exchange. Finally, the outlook and challenges have been provided. This Review is intended to give some guidance on the design and synthesis of diverse COFs with different linkages, various structures, and divergent stacking modes for the efficient photoreduction of CO2.
Collapse
Affiliation(s)
- Jinglun Yang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Zihao Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Lei Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
- Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF) & Hong Kong Institute of Clean Energy (HKICE), City University of Hong Kong, Hong Kong, SAR 999077, China
| |
Collapse
|
12
|
Xue J, Sun Z, Sun B, Zhao C, Yang Y, Huo F, Cabot A, Liu HK, Dou S. Covalent Organic Framework-Based Materials for Advanced Lithium Metal Batteries. ACS NANO 2024; 18:17439-17468. [PMID: 38934250 DOI: 10.1021/acsnano.4c05040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Lithium metal batteries (LMBs), with high energy densities, are strong contenders for the next generation of energy storage systems. Nevertheless, the unregulated growth of lithium dendrites and the unstable solid electrolyte interphase (SEI) significantly hamper their cycling efficiency and raise serious safety concerns, rendering LMBs unfeasible for real-world implementation. Covalent organic frameworks (COFs) and their derivatives have emerged as multifunctional materials with significant potential for addressing the inherent problems of the anode electrode of the lithium metal. This potential stems from their abundant metal-affine functional groups, internal channels, and widely tunable architecture. The original COFs, their derivatives, and COF-based composites can effectively guide the uniform deposition of lithium ions by enhancing conductivity, transport efficiency, and mechanical strength, thereby mitigating the issue of lithium dendrite growth. This review provides a comprehensive analysis of COF-based and derived materials employed for mitigating the challenges posed by lithium dendrites in LMB. Additionally, we present prospects and recommendations for the design and engineering of materials and architectures that can render LMBs feasible for practical applications.
Collapse
Affiliation(s)
- Jiaojiao Xue
- Key Lab for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, China
| | - Zixu Sun
- Key Lab for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, China
| | - Bowen Sun
- Key Lab for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, China
| | - Chongchong Zhao
- Henan Key Laboratory of Energy Storage Materials and Processes, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450003, China
| | - Yi Yang
- Key Lab for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, China
- Henan Key Laboratory of Energy Storage Materials and Processes, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450003, China
| | - Feng Huo
- Henan Key Laboratory of Energy Storage Materials and Processes, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450003, China
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Longzihu New Energy Laboratory, Henan University, Zhengzhou 450046, China
| | - Andreu Cabot
- Catalonia Institute for Energy Research - IRECSant Adrià de Besòs, Barcelona 08930, Spain
- Catalan Institution for Research and Advanced Studies - ICREAPg, Lluís Companys 23, Barcelona 08010, Spain
| | - Hua Kun Liu
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - ShiXue Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
13
|
Shahmirzaee M, Nagai A. An Appraisal for Providing Charge Transfer (CT) Through Synthetic Porous Frameworks for their Semiconductor Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307828. [PMID: 38368249 DOI: 10.1002/smll.202307828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/08/2024] [Indexed: 02/19/2024]
Abstract
In recent years, there has been considerable focus on the development of charge transfer (CT) complex formation as a means to modify the band gaps of organic materials. In particular, CT complexes alternate layers of aromatic molecules with donor (D) and acceptor (A) properties to provide inherent electrical conductivity. In particular, the synthetic porous frameworks as attractive D-A components have been extensively studied in recent years in comparison to existing D-A materials. Therefore, in this work, the synthetic porous frameworks are classified into conjugated microporous polymers (CMPs), covalent organic frameworks (COFs), and metal-organic frameworks (MOFs) and compare high-quality materials for CT in semiconductors. This work updates the overview of the above porous frameworks for CT, starting with their early history regarding their semiconductor applications, and lists CT concepts and selected key developments in their CT complexes and CT composites. In addition, the network formation methods and their functionalization are discussed to provide access to a variety of potential applications. Furthermore, several theoretical investigations, efficiency improvement techniques, and a discussion of the electrical conductivity of the porous frameworks are also highlighted. Finally, a perspective of synthetic porous framework studies on CT performance is provided along with some comparisons.
Collapse
Affiliation(s)
| | - Atsushi Nagai
- ENSEMBLE 3 - Centre of Excellence, Warsaw, 01-919, Poland
| |
Collapse
|
14
|
Zhou PK, Li Y, Zeng T, Chee MY, Huang Y, Yu Z, Yu H, Yu H, Huang W, Chen X. One-Dimensional Covalent Organic Framework-Based Multilevel Memristors for Neuromorphic Computing. Angew Chem Int Ed Engl 2024; 63:e202402911. [PMID: 38511343 DOI: 10.1002/anie.202402911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 03/22/2024]
Abstract
Memristors are essential components of neuromorphic systems that mimic the synaptic plasticity observed in biological neurons. In this study, a novel approach employing one-dimensional covalent organic framework (1D COF) films was explored to enhance the performance of memristors. The unique structural and electronic properties of two 1D COF films (COF-4,4'-methylenedianiline (MDA) and COF-4,4'-oxydianiline (ODA)) offer advantages for multilevel resistive switching, which is a key feature in neuromorphic computing applications. By further introducing a TiO2 layer on the COF-ODA film, a built-in electric field between the COF-TiO2 interfaces could be generated, demonstrating the feasibility of utilizing COFs as a platform for constructing memristors with tunable resistive states. The 1D nanochannels of these COF structures contributed to the efficient modulation of electrical conductance, enabling precise control over synaptic weights in neuromorphic circuits. This study also investigated the potential of these COF-based memristors to achieve energy-efficient and high-density memory devices.
Collapse
Affiliation(s)
- Pan-Ke Zhou
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Yiping Li
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Tao Zeng
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Mun Yin Chee
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yuxing Huang
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Ziyue Yu
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Hongling Yu
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Hong Yu
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, China
| | - Xiong Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fujian, 350108, China
| |
Collapse
|
15
|
Yang C, Wang K, Lyu W, Liu H, Li J, Wang Y, Jiang R, Yuan J, Liao Y. Nanofibrous Porous Organic Polymers and Their Derivatives: From Synthesis to Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400626. [PMID: 38476058 PMCID: PMC11109660 DOI: 10.1002/advs.202400626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/06/2024] [Indexed: 03/14/2024]
Abstract
Engineering porous organic polymers (POPs) into 1D morphology holds significant promise for diverse applications due to their exceptional processability and increased surface contact for enhanced interactions with guest molecules. This article reviews the latest developments in nanofibrous POPs and their derivatives, encompassing porous organic polymer nanofibers, their composites, and POPs-derived carbon nanofibers. The review delves into the design and fabrication strategies, elucidates the formation mechanisms, explores their functional attributes, and highlights promising applications. The first section systematically outlines two primary fabrication approaches of nanofibrous POPs, i.e., direct bulk synthesis and electrospinning technology. Both routes are discussed and compared in terms of template utilization and post-treatments. Next, performance of nanofibrous POPs and their derivatives are reviewed for applications including water treatment, water/oil separation, gas adsorption, energy storage, heterogeneous catalysis, microwave absorption, and biomedical systems. Finally, highlighting existent challenges and offering future prospects of nanofibrous POPs and their derivatives are concluded.
Collapse
Affiliation(s)
- Chen Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
- Department of Materials and Environmental ChemistryStockholm UniversityStockholm10691Sweden
| | - Kexiang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Wei Lyu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - He Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Jiaqiang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Yue Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Ruyu Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Jiayin Yuan
- Department of Materials and Environmental ChemistryStockholm UniversityStockholm10691Sweden
| | - Yaozu Liao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| |
Collapse
|
16
|
Kirchner P, Schramm L, Ivanova S, Shoyama K, Würthner F, Beuerle F. A Water-Stable Boronate Ester Cage. J Am Chem Soc 2024; 146:5305-5315. [PMID: 38325811 PMCID: PMC10910528 DOI: 10.1021/jacs.3c12002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/09/2024]
Abstract
The reversible condensation of catechols and boronic acids to boronate esters is a paradigm reaction in dynamic covalent chemistry. However, facile backward hydrolysis is detrimental for stability and has so far prevented applications for boronate-based materials. Here, we introduce cubic boronate ester cages 6 derived from hexahydroxy tribenzotriquinacenes and phenylene diboronic acids with ortho-t-butyl substituents. Due to steric shielding, dynamic exchange at the Lewis acidic boron sites is feasible only under acid or base catalysis but fully prevented at neutral conditions. For the first time, boronate ester cages 6 tolerate substantial amounts of water or alcohols both in solution and solid state. The unprecedented applicability of these materials under ambient and aqueous conditions is showcased by efficient encapsulation and on-demand release of β-carotene dyes and heterogeneous water oxidation catalysis after the encapsulation of ruthenium catalysts.
Collapse
Affiliation(s)
- Philipp
H. Kirchner
- Institut
für Organische Chemie, Julius-Maximilians-Universität
Würzburg, Am Hubland, Würzburg 97074, Germany
- Center
for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität
Würzburg, Theodor-Boveri-Weg, Würzburg 97074, Germany
| | - Louis Schramm
- Institut
für Organische Chemie, Julius-Maximilians-Universität
Würzburg, Am Hubland, Würzburg 97074, Germany
- Center
for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität
Würzburg, Theodor-Boveri-Weg, Würzburg 97074, Germany
| | - Svetlana Ivanova
- Institut
für Organische Chemie, Julius-Maximilians-Universität
Würzburg, Am Hubland, Würzburg 97074, Germany
- Center
for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität
Würzburg, Theodor-Boveri-Weg, Würzburg 97074, Germany
| | - Kazutaka Shoyama
- Institut
für Organische Chemie, Julius-Maximilians-Universität
Würzburg, Am Hubland, Würzburg 97074, Germany
- Center
for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität
Würzburg, Theodor-Boveri-Weg, Würzburg 97074, Germany
| | - Frank Würthner
- Institut
für Organische Chemie, Julius-Maximilians-Universität
Würzburg, Am Hubland, Würzburg 97074, Germany
- Center
for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität
Würzburg, Theodor-Boveri-Weg, Würzburg 97074, Germany
| | - Florian Beuerle
- Institut
für Organische Chemie, Julius-Maximilians-Universität
Würzburg, Am Hubland, Würzburg 97074, Germany
- Center
for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität
Würzburg, Theodor-Boveri-Weg, Würzburg 97074, Germany
- Institut
für Organische Chemie, Eberhard Karls
Universität Tübingen, Auf der Morgenstelle 18, Tübingen 72076, Germany
| |
Collapse
|
17
|
Guo W, Tao H, Tao H, Shuai Q, Huang L. Recent progress of covalent organic frameworks as attractive materials for solid-phase microextraction: A review. Anal Chim Acta 2024; 1287:341953. [PMID: 38182358 DOI: 10.1016/j.aca.2023.341953] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 01/07/2024]
Abstract
Solid-phase microextraction (SPME) is a green, environmentally friendly, and efficient technique for sample pre-treatment. Covalent organic frameworks (COFs), a class of porous materials formed by covalent bonds, have gained prominence owing to their remarkable attributes, including large specific surface area, tunable pore size, and robust thermal/chemical stability. These characteristics have made COFs highly appealing as potential coatings for SPME fiber over the past decades. In this review, various methods used to prepare SPME coatings based on COFs are presented. These methods encompass physical adhesion, sol-gel processes, in situ growth, and chemical cross-linking strategies. In addition, the applications of COF-based SPME coating fibers for the preconcentration of various targets in environmental, food, and biological samples are summarized. Moreover, not only their advantages but also the challenges they pose in practical applications are highlighted. By shedding light on these aspects, this review aims to contribute to the continued development and utilization of COF materials in the field of sample pretreatment.
Collapse
Affiliation(s)
- Weikang Guo
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, PR China
| | - Hui Tao
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, PR China
| | - Haijuan Tao
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, PR China
| | - Qin Shuai
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, PR China
| | - Lijin Huang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, PR China.
| |
Collapse
|
18
|
Zhu Z, Zhu Y, Ren Z, Liu D, Yue F, Sheng D, Shao P, Huang X, Feng X, Yin AX, Xie J, Wang B. Covalent Organic Framework Ionomer Steering the CO 2 Electroreduction Pathway on Cu at Industrial-Grade Current Density. J Am Chem Soc 2024; 146:1572-1579. [PMID: 38170986 DOI: 10.1021/jacs.3c11709] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
CO2 electroreduction holds great promise for addressing global energy and sustainability challenges. Copper (Cu) shows great potential for effective conversion of CO2 toward specific value-added and/or high-energy-density products. However, its limitation lies in relatively low product selectivity. Herein, we present that the CO2 reduction reaction (CO2RR) pathway on commercially available Cu can be rationally steered by modulating the microenvironment in the vicinity of the Cu surface with two-dimensional sulfonated covalent organic framework nanosheet (COF-NS)-based ionomers. Specifically, the selectivity toward methane (CH4) can be enhanced to more than 60% with the total current density up to 500 mA cm-2 in flow cells in both acidic (pH = 2) and alkaline (pH = 14) electrolytes. The COF-NS, characterized by abundant apertures, can promote the accumulation of CO2 and K+ near the catalyst surface, alter the adsorption energy and surface coverage of *CO, facilitate the dissociation of H2O, and finally modulate the reaction pathway for the CO2RR. Our approach demonstrates the rational modulation of reaction interfaces for the CO2RR utilizing porous open framework ionomers, showcasing their potential practical applications.
Collapse
Affiliation(s)
- Zhejiaji Zhu
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yuhao Zhu
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zhixin Ren
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Di Liu
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Feiyu Yue
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Dafei Sheng
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Pengpeng Shao
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiuying Huang
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiao Feng
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - An-Xiang Yin
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jing Xie
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Bo Wang
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
19
|
Wang T, Zhang Y, Wang Z, Chen Y, Cheng P, Zhang Z. Olefin-linked covalent organic frameworks: synthesis and applications. Dalton Trans 2023; 52:15178-15192. [PMID: 37461388 DOI: 10.1039/d3dt01684f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Covalent organic frameworks (COFs) with high specific porosity, easy functionalization, and tailored structure are an emerging class of crystalline porous polymers that have been extensively exploited as ideal materials in various fields. Among them, sp2-carbon linked COFs with high chemical stability, porous backbone, and unique π-electron conjugated architectures structure have raised widespread attention. Specifically, the porous channels of olefin-linked COFs could be packed with active sites for catalysis and guest molecules, while π-π stacking interactions and conjugation systems pave the way for electron transfer. In recent years, many efforts have been devoted to the development of sp2-carbon linked COFs for applications in catalysis, energy storage, gas adsorption, and separation. In this review, we highlight the design principles, synthesis strategies, and impactful applications of olefin-linked COFs. We are looking forward to this review to deepen the understanding of the synthesis of olefin-linked COFs and motivate the further development of these novel conjugated organic materials with distinctive physicochemical properties, as well as their applications in a variety of fields.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
| | - Yushu Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
| | - Zhifang Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
- College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
| | - Peng Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Cente, Nankai University, Tianjin, 300071, P. R. China
| | - Zhenjie Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Cente, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
20
|
Ji W, Zhang P, Feng G, Cheng YZ, Wang TX, Yuan D, Cha R, Ding X, Lei S, Han BH. Synthesis of a covalent organic framework with hetero-environmental pores and its medicine co-delivery application. Nat Commun 2023; 14:6049. [PMID: 37770448 PMCID: PMC10539374 DOI: 10.1038/s41467-023-41622-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023] Open
Abstract
The topology type and the functionalization of pores play an important role in regulating the performance of covalent organic frameworks. Herein, we designed and synthesized the covalent organic framework with hetero-environmental pores using predesigned asymmetrical dialdehyde monomer. According to the results of structural characterization, crystallinity investigation, and theoretical calculation, the hetero-environmental pores of the obtained framework are regarded as the alternant arrangement. The distinctive hetero pore structure leads the designed material to show more advantages as compared with control materials in loading both hydrophobic and hydrophilic antibiotics for wound healing. This dual-antibiotic strategy can expand the antibacterial range as compared with the single antibiotic one, and reduce the generation of drug resistance. In summary, this strategy for designing covalent organic frameworks with hetero-environmental pores can extend the structural variety and provide a pathway for improving the practical application performance of these materials.
Collapse
Affiliation(s)
- Wenyan Ji
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Pai Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Guangyuan Feng
- Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Yuan-Zhe Cheng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tian-Xiong Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Daqiang Yuan
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou, 350002, China
| | - Ruitao Cha
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Xuesong Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Shengbin Lei
- Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China.
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, China.
| | - Bao-Hang Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
21
|
Li H, Dilipkumar A, Abubakar S, Zhao D. Covalent organic frameworks for CO 2 capture: from laboratory curiosity to industry implementation. Chem Soc Rev 2023; 52:6294-6329. [PMID: 37591809 DOI: 10.1039/d2cs00465h] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
CO2 concentration in the atmosphere has increased by about 40% since the 1960s. Among various technologies available for carbon capture, adsorption and membrane processes have been receiving tremendous attention due to their potential to capture CO2 at low costs. The kernel for such processes is the sorbent and membrane materials, and tremendous progress has been made in designing and fabricating novel porous materials for carbon capture. Covalent organic frameworks (COFs), a class of porous crystalline materials, are promising sorbents for CO2 capture due to their high surface area, low density, controllable pore size and structure, and preferable stabilities. However, the absence of synergistic developments between materials and engineering processes hinders achieving the qualitative leap for net-zero emissions. Considering the lack of a timely review on the combination of state-of-the-art COFs and engineering processes, in this Tutorial Review, we emphasize the developments of COFs for meeting the challenges of carbon capture and disclose the strategies of fabricating COFs for realizing industrial implementation. Moreover, this review presents a detailed and basic description of the engineering processes and industrial status of carbon capture. It highlights the importance of machine learning in integrating simulations of molecular and engineering levels. We aim to stimulate both academia and industry communities for joined efforts in bringing COFs to practical carbon capture.
Collapse
Affiliation(s)
- He Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Akhil Dilipkumar
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Saifudin Abubakar
- ExxonMobil Asia Pacific Pte. Ltd., 1 HarbourFront Place, #06-00 HarbourFront Tower 1, 098633, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
22
|
Fabiani T, Ricci E, Boi C, Dimartino S, De Angelis MG. In silico screening of nanoporous materials for urea removal in hemodialysis applications. Phys Chem Chem Phys 2023; 25:24069-24080. [PMID: 37655458 DOI: 10.1039/d3cp01510f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The design of miniaturized hemodialysis devices, such as wearable artificial kidneys, requires regeneration of the dialysate stream to remove uremic toxins from water. Adsorption has the potential to capture such molecules, but conventional adsorbents have low urea/water selectivity. In this work, we performed a comprehensive computational study of 560 porous crystalline adsorbents comprising mainly covalent organic frameworks (COFs), as well as some siliceous zeolites, metal organic frameworks (MOFs) and graphitic materials. An initial screening using Widom insertion method assessed the excess chemical potential at infinite dilution for water and urea at 310 K, providing information on the strength and selectivity of urea adsorption. From such analysis it was observed that urea adsorption and urea/water selectivity increased strongly with fluorine content in COFs, while other compositional or structural parameters did not correlate with material performance. Two COFs, namely COF-F6 and Tf-DHzDPr were explored further through Molecular Dynamics simulations. The results agree with those of the Widom method and allow to identify the urea binding sites, the contribution of electrostatic and van der Waals interactions, and the position of preferential urea-urea and urea-framework interactions. This study paves the way for a well-informed experimental campaign and accelerates the development of novel sorbents for urea removal, ultimately advancing on the path to achieve wearable artificial kidneys.
Collapse
Affiliation(s)
- Thomas Fabiani
- Institute for Materials and Processes, School of Engineering, University of Edinburgh, Sanderson Building, Robert Stevenson Road, EH9 3FB, Edinburgh, Scotland, UK.
| | - Eleonora Ricci
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna (BO), Italy
| | - Cristiana Boi
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna (BO), Italy
| | - Simone Dimartino
- Institute for Bioengineering, School of Engineering, University of Edinburgh, King's Buildings Colin Maclaurin Road, EH9 3DW, Edinburgh, Scotland, UK
| | - Maria Grazia De Angelis
- Institute for Materials and Processes, School of Engineering, University of Edinburgh, Sanderson Building, Robert Stevenson Road, EH9 3FB, Edinburgh, Scotland, UK.
| |
Collapse
|
23
|
Li M, Xu W, Wu X, Zhang X, Fang Q, Cai T, Yang J, Hua Y. Enhanced mechanism of calcium towards uranium incorporation and stability in magnetite during electromineralization. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131641. [PMID: 37329595 DOI: 10.1016/j.jhazmat.2023.131641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 06/19/2023]
Abstract
Doping uranium into a room-temperature stable Fe3O4 lattice structure effectively reduces its migration. However, the synergistic or competitive effects of coexisting ions in an aqueous solution directly affect the uranium mineralization efficiency and the structural stability of uranium-bearing Fe3O4. The effects of calcium, carbonate, and phosphate on uranium electromineralization were investigated via batch experiments and theoretical calculations. Calcium incorporated into the Fe3O4 lattice increased the level and stability of doped uranium in Fe3O4. Uranium and calcium occupied the octahedral and tetrahedral sites of Fe3O4, respectively; the formation energy was only -10.23 eV due to strong hybridization effects between Fe1s, U4f, O2p, and Ca3d orbitals. Compared to the uranium-doped Fe3O4, uranium leaching ratios decreased by 19.2 % and 48.9 % under strongly acidic and alkaline conditions after 120 days. However, high concentrations of phosphate inhibited Fe3O4 crystallization. These results should provide new avenues for the development of multi-metal co-doping technologies and mineralization optimization to treat uranium-containing complex wastewater.
Collapse
Affiliation(s)
- Mi Li
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Wanqin Xu
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Xiaoyan Wu
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Xiaowen Zhang
- Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang 421001, China
| | - Qi Fang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Tao Cai
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Jianping Yang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yilong Hua
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
24
|
Han Y, Wang S, Cao Y, Singh GP, Loh SI, Cheerlavancha R, Ang MCY, Khong DT, Chua PWL, Ho P, Strano MS, Marelli B. Design of Biodegradable, Climate-Specific Packaging Materials That Sense Food Spoilage and Extend Shelf Life. ACS NANO 2023; 17:8333-8344. [PMID: 37104566 DOI: 10.1021/acsnano.2c12747] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The AgriFood systems in tropical climates are under strain due to a rapid increase in human population and extreme environmental conditions that limit the efficacy of packaging technologies to extend food shelf life and guarantee food safety. To address these challenges, we rationally designed biodegradable packaging materials that sense spoilage and prevent molding. We nanofabricated the interface of 2D covalent organic frameworks (COFs) to reinforce silk fibroin (SF) and obtain biodegradable membranes with augmented mechanical properties and that displayed an immediate colorimetric response (within 1 s) to food spoilage, using packaged poultry as an example. Loading COF with antimicrobial hexanal also mitigated biotic spoilage in high-temperature and -humidity conditions, resulting in a four-order of magnitude decrease in the total amount of mold growth in soybeans packaged in silk-COF, when compared to cling film (i.e., polyethylene). Together, the integration of sensing, structural reinforcement, and antimicrobial agent delivery within a biodegradable nanocomposite framework defines climate-specific packaging materials that can decrease food waste and enhance food safety.
Collapse
Affiliation(s)
- Yangyang Han
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Song Wang
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Yunteng Cao
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gajendra Pratap Singh
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Suh In Loh
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Raju Cheerlavancha
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Mervin Chun-Yi Ang
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Duc Thinh Khong
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Patrina Wei Lin Chua
- Antimicrobial Resistance Interdisciplinary Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Peiying Ho
- Antimicrobial Resistance Interdisciplinary Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Michael S Strano
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Benedetto Marelli
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
25
|
Zanganeh AR, Tayebani M. Nanocrystals of COF-300 as physical and chemical recognition elements in silver(I) voltammetric sensor: experimental condition optimization by central composite design. MONATSHEFTE FUR CHEMIE 2023. [DOI: 10.1007/s00706-023-03047-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
26
|
Sun R, Tan B. Covalent Triazine Frameworks (CTFs): Synthesis, Crystallization, and Photocatalytic Water Splitting. Chemistry 2023; 29:e202203077. [PMID: 36504463 DOI: 10.1002/chem.202203077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Covalent Triazine Frameworks (CTFs) have received great attention from academia owing to their unique structure characteristics such as nitrogen-rich structure, chemical stability, fully conjugated skeleton and high surface area; all these unique properties make CTFs attractive for widespread applications, especially for photocatalytic applications. In this review, we aim to provide recent advances in the CTFs preparation, and mainly focus on their photocatalytic applications. This review provides a comprehensive and systematic overview of the CTFs' synthetic methods, crystallinity lifting strategies, and their applications for photocatalytic water splitting. Firstly, a brief background including the photocatalytic water splitting and crystallinity are provided. Then, synthetic methods related to CTFs and the strategies for enhancing the crystallinity are summarized and compared. After that, the general photocatalytic mechanism and the strategies to improve the photocatalytic performance of CTFs are discussed. Finally, the perspectives and challenges of fabricating high crystalline CTFs and designing CTFs with excellent photocatalytic performance are discussed, inspiring the development of CTF materials in photocatalytic applications.
Collapse
Affiliation(s)
- Ruixue Sun
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| |
Collapse
|
27
|
Zhou Z, Wen X, Shi C, Wu L, Long Z, He J, Hou X. Multi-color fluorescence sensing platform for visual determination of norfloxacin based on a terbium (Ш) functionalized covalent organic framework. Food Chem 2023; 417:135883. [PMID: 36921364 DOI: 10.1016/j.foodchem.2023.135883] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/10/2023]
Abstract
Sensitive and visual determination of fluoroquinolone antibiotics (FQs) is of great significance since their abuse and inappropriate handling can be problematic. Herein, we propose a lanthanide covalent organic framework fluorescence sensing system (Tb@COF-Ru) with visualization capability to determine the FQs level, where Tb@COF was employed as the sensing probe, while the red-emitting Ru(bpy)32+ serves as a constant red fluorescent background. With increasing norfloxacin concentration, the green fluorescence of Tb3+ is gradually enhanced, finally realizing the multicolor fluorescence change from red to green. With a smartphone for RGB analysis, visual monitoring and quantitative analysis were realized without any sophisticated instrument. Limits of detection for the fluorescence quantitative and visual mode for norfloxacin were 0.33 nM and 7.3 μM, respectively. This method was rapid (1 min) and visualized, providing a simple analysis of various food matrices (honey, milk, egg and beef) and water samples for trace FQs.
Collapse
Affiliation(s)
- Zexi Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiaohui Wen
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Chaoting Shi
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Lan Wu
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Zhou Long
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Juan He
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Xiandeng Hou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China; Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China.
| |
Collapse
|
28
|
Sun C, Zhu Y, Shao P, Chen L, Huang X, Zhao S, Ma D, Jing X, Wang B, Feng X. 2D Covalent Organic Framework for Water Harvesting with Fast Kinetics and Low Regeneration Temperature. Angew Chem Int Ed Engl 2023; 62:e202217103. [PMID: 36640156 DOI: 10.1002/anie.202217103] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Atmospheric water harvesting represents a promising technique to address water stress. Advanced adsorbents have been rationally designed to achieve high water uptake, yet their water sorption kinetics and regeneration temperature greatly limit water production efficiency. Herein, we demonstrated that 2D covalent organic frameworks (COFs), featuring hydrophobic skeleton, proper hydrophilic site density, and 1D open channels significantly lowered the water diffusion and desorption energy barrier. DHTA-Pa COF showed a high water uptake of 0.48 g/g at 30 % R.H. with a remarkable adsorption rate of 0.72 L/Kg/h (298 K) and a desorption rate of 2.58 L/Kg/h (333 K). Moreover, more than 90 % adsorbed water could be released within 20 min at 313 K. This kinetic performance surpassed the reported porous materials and boosted the efficiency for multiple water extraction cycles. It may shed light on the material design strategy to achieve high daily water production with low-energy input.
Collapse
Affiliation(s)
- Chao Sun
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yuhao Zhu
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Pengpeng Shao
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Liwei Chen
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xin Huang
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Shuang Zhao
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Dou Ma
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xuechun Jing
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Bo Wang
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xiao Feng
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
29
|
Tao Y, Wang T, Ding X, Han B. Porous polycarbazole materials prepared by ionothermal synthesis method for carbon dioxide adsorption and electrochemical capacitors. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- You Tao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Tian‐Xiong Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Xuesong Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing China
| | - Bao‐Hang Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
30
|
Single transition metal atoms anchored on a two-dimensional polyimide covalent-organic framework as single-atom catalysts for photocatalytic CO2 reduction: A first-principles study. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
31
|
Kouhdareh J, Keypour H, Alavinia S, Maryamabadi A. Immobilization of Ag and Pd over a novel amide based covalent organic framework (COF-BASU2) as a heterogeneous reusable catalyst to reduce nitroarenes. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2022.121251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Gong YN, Guan X, Jiang HL. Covalent organic frameworks for photocatalysis: Synthesis, structural features, fundamentals and performance. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Zanganeh AR. COF-42 as sensory material for voltammetric determination of Cu(II) ion: optimizing experimental condition via central composite design. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01798-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
34
|
Wang Z, Zhu Q, Wang J, Jin F, Zhang P, Yan D, Cheng P, Chen Y, Zhang Z. Industry-compatible covalent organic frameworks for green chemical engineering. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1391-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Zhang Q, Dong S, Shao P, Zhu Y, Mu Z, Sheng D, Zhang T, Jiang X, Shao R, Ren Z, Xie J, Feng X, Wang B. Covalent organic framework-based porous ionomers for high-performance fuel cells. Science 2022; 378:181-186. [PMID: 36228000 DOI: 10.1126/science.abm6304] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Lowering platinum (Pt) loadings without sacrificing power density and durability in fuel cells is highly desired yet challenging because of the high mass transport resistance near the catalyst surfaces. We tailored the three-phase microenvironment by optimizing the ionomer by incorporating ionic covalent organic framework (COF) nanosheets into Nafion. The mesoporous apertures of 2.8 to 4.1 nanometers and appendant sulfonate groups enabled the proton transfer and promoted oxygen permeation. The mass activity of Pt and the peak power density of the fuel cell with Pt/Vulcan (0.07 mg of Pt per square centimeter in the cathode) both reached 1.6 times those values without the COF. This strategy was applied to catalyst layers with various Pt loadings and different commercial catalysts.
Collapse
Affiliation(s)
- Qingnuan Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Shuda Dong
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Pengpeng Shao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yuhao Zhu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zhenjie Mu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Dafei Sheng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Teng Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xin Jiang
- Orthopaedics Department, China-Japan Friendship Hospital, Beijing 100081, P. R. China
| | - Ruiwen Shao
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zhixin Ren
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jing Xie
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiao Feng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Bo Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
36
|
Shi J, Su M, Li H, Lai D, Gao F, Lu Q. Two-Dimensional Imide-Based Covalent Organic Frameworks with Tailored Pore Functionality as Separators for High-Performance Li-S Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42018-42029. [PMID: 36097371 DOI: 10.1021/acsami.2c10917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Modifying the separator of lithium-sulfur batteries (LSBs) is considered to be one of the most effective strategies for relieving the notorious polysulfide shuttle effect. Constructing a stable, lightweight, and effective LSB separator is still a big challenge but highly desirable. Herein, a stable and lightweight imide-based covalent organic framework (COF-TpPa) is facilely fabricated on reduced graphene oxide (rGO) through an oxygen-free solvothermal technique. With the directing effect of rGO and changing the side functional group of the monomer, the morphology and the pore tailoring of COF-TpPa can be simultaneously achieved and two-dimensional (2D) COF nanosheets with different functionalities (such as -SO3H and -Cl) are successfully constructed on rGO films. The specific functional groups inside the COF's pore channels and the narrowed pore size result in efficient absorption and restriction of Li2Sn for weakening the "shuttle effect". Meanwhile, the 2D COF nanosheets on the rGO is a favorable morphology for better exploiting pores inside the COF materials. As a result, the COF-SO3H-modified separator, consisting of rGO and COF-TpPa-SO3H, exhibits a high specific capacity (1163.4 mA h/g at 0.2 C) and a desirable cyclic performance (60.2% retention rate after 1000 cycles at 2.0 C) for LSBs. Our study provides a feasible strategy to rationally design functional COFs and boosts their applications in various energy storage systems.
Collapse
Affiliation(s)
- Jiangwei Shi
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Mengfei Su
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Hang Li
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Dawei Lai
- Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Feng Gao
- Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Qingyi Lu
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
37
|
Tao Y, Wang TX, Ding X, Han BH. Synthesis of Porous Organic Polymers Via Catalytic Vapor-Assisted Solvent-Free Method. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- You Tao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian-Xiong Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuesong Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Bao-Hang Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
38
|
Wang L, Tao Y, Wang J, Tian M, Liu S, Quan T, Yang L, Wang D, Li X, Gao D. A novel hydroxyl-riched covalent organic framework as an advanced adsorbent for the adsorption of anionic azo dyes. Anal Chim Acta 2022; 1227:340329. [DOI: 10.1016/j.aca.2022.340329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022]
|
39
|
Han XH, Gong K, Huang X, Yang JW, Feng X, Xie J, Wang B. Syntheses of Covalent Organic Frameworks via a One-Pot Suzuki Coupling and Schiff's Base Reaction for C 2 H 4 /C 3 H 6 Separation. Angew Chem Int Ed Engl 2022; 61:e202202912. [PMID: 35384234 DOI: 10.1002/anie.202202912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Indexed: 11/08/2022]
Abstract
Covalent organic frameworks (COFs) featuring permanent porosity, designable topologies, and tailorable functionalities have attracted great interest in the past two decades. Developing efficient modular approaches to rationally constructing COFs from a set of molecules via covalent linking has been long pursued. Herein, we report a facile one-pot strategy to prepare COFs via an irreversible Suzuki coupling reaction followed by a reversible Schiff's base reaction without the need for intermediate isolation. Gram-scale ordered frameworks with kgm topology and rich porosities can be obtained by using diamino-aryl halide and dialdehyde aryl-borate compounds as monomers. The resultant microporous CR-COFs were used for efficient C2 H4 /C3 H6 separation. This strategy reduces the waste generated and efforts consumed by stepwise reactions and relative purification processes, making the large-scale syntheses of stable COFs feasible. Moreover, it offers a novel modular approach to designing COF materials.
Collapse
Affiliation(s)
- Xiang-Hao Han
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Ke Gong
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Xin Huang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Jian-Wei Yang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Xiao Feng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Jing Xie
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Bo Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| |
Collapse
|
40
|
Bu XH. Removable urea solves the COF dilemma. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1260-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Weng C, Li X, Yang Z, Long H, Lu C, Dong L, Zhao S, Tan L. A directly linked COF-like conjugated microporous polymer based on naphthalene diimides for high performance supercapacitors. Chem Commun (Camb) 2022; 58:6809-6812. [PMID: 35612549 DOI: 10.1039/d2cc02097a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this work, single bond directly linked COF-like conjugated microporous polymer NDTT is constructed via Stille coupling with thiophene-substituted naphthalene diimides and triazine, showing fair crystallinity. NDTT is utilized as an electrode for supercapacitor applications, exhibiting promising performance with excellent capacitance reaching 425.3 F g-1 under a current of 0.2 A g-1.
Collapse
Affiliation(s)
- Changyu Weng
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China.
| | - Xianglan Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China.
| | - Zhiwei Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, No. 266 Fangzheng Avenue, Beibei, Chongqing, 400714, China
| | - Haijun Long
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, No. 266 Fangzheng Avenue, Beibei, Chongqing, 400714, China
| | - Chenyang Lu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China.
| | - Lichun Dong
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China.
| | - Shuo Zhao
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China.
| | - Luxi Tan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China.
| |
Collapse
|
42
|
Glutathione-functionalized highly crystalline fluorescent covalent organic framework as a fluorescence-sensing and adsorption double platform for cationic dyes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Wang Y, Zhao Y, Li Z. Two-Dimensional Covalent Organic Frameworks as Photocatalysts for Solar Energy Utilization. Macromol Rapid Commun 2022; 43:e2200108. [PMID: 35477941 DOI: 10.1002/marc.202200108] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/02/2022] [Indexed: 11/07/2022]
Abstract
In the context of energy crisis and global warming, developing clean and sustainable energy is receiving increasing attention. Photocatalytic process including water splitting, CO2 reduction, coenzyme regeneration, etc., provides an ideal way to utilize renewable solar resources. The photocatalyst plays a central role in photocatalytic processes. Organic porous polymers have recently gained extensive attention in photocatalysis. Covalent organic frameworks (COFs), as one of the organic porous polymers, have the characteristics of high crystallinity, porosity and structural designability that make them perfect platforms for photocatalysis. In this minireview, the recent progresses of 2D COFs as photocatalysts were summarized including our recent work. The synthesis of the diversified structures of the COFs including the different linkages was first introduced. Then, the photocatalytic applications of the 2D COFs including photocatalytic hydrogen evolution, CO2 conversion, coenzyme regeneration and other traditional organic reaction were then discussed. Finally, conclusions and prospects were provided in the last section. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yuancheng Wang
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yingjie Zhao
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
44
|
Han X, Gong K, Huang X, Yang J, Feng X, Xie J, Wang B. Syntheses of Covalent Organic Frameworks via a One‐Pot Suzuki Coupling and Schiff's Base Reaction for C
2
H
4
/C
3
H
6
Separation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiang‐Hao Han
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science Ministry of Education Advanced Technology Research Institute (Jinan) Frontiers Science Center for High Energy Material School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District Beijing 100081 China
| | - Ke Gong
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science Ministry of Education Advanced Technology Research Institute (Jinan) Frontiers Science Center for High Energy Material School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District Beijing 100081 China
| | - Xin Huang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science Ministry of Education Advanced Technology Research Institute (Jinan) Frontiers Science Center for High Energy Material School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District Beijing 100081 China
| | - Jian‐Wei Yang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science Ministry of Education Advanced Technology Research Institute (Jinan) Frontiers Science Center for High Energy Material School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District Beijing 100081 China
| | - Xiao Feng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science Ministry of Education Advanced Technology Research Institute (Jinan) Frontiers Science Center for High Energy Material School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District Beijing 100081 China
| | - Jing Xie
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science Ministry of Education Advanced Technology Research Institute (Jinan) Frontiers Science Center for High Energy Material School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District Beijing 100081 China
| | - Bo Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science Ministry of Education Advanced Technology Research Institute (Jinan) Frontiers Science Center for High Energy Material School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District Beijing 100081 China
| |
Collapse
|
45
|
Shen X, Zhang J, Jiang H, Du Y, Chen R. Hierarchical Pd@PC-COFs as Efficient Catalysts for Phenol Hydrogenation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c05009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xinhui Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jiuxuan Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Hong Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yan Du
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Rizhi Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
46
|
Sun R, Wang X, Wang X, Tan B. Three-Dimensional Crystalline Covalent Triazine Frameworks via a Polycondensation Approach. Angew Chem Int Ed Engl 2022; 61:e202117668. [PMID: 35038216 DOI: 10.1002/anie.202117668] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 11/09/2022]
Abstract
The growth of crystalline covalent triazine frameworks (CTFs) is still considered as a great challenge due to the less reversible covalent bonds of triazine linkages. The research studies of crystalline CTFs to date have been limited to two-dimensional (2D) structures, and the three-dimensional (3D) crystalline CTFs have never been reported before. Herein we report the design and synthesis of two 3D crystalline CTFs, termed 3D CTF-TPM and 3D CTF-TPA through a reversible/irreversible polycondensation approach. The targeted 3D CTFs adopt ctn topology, and show moderate crystallinity, relatively large surface area (ca. 2000 m2 g-1 ), and high CO2 uptake capacity (23.61 wt.%). Moreover, these 3D CTFs exhibit ultrastability in the presence of boiling water, strong acid (1 M HCl) and strong base (1 M NaOH). This contribution represents the first report of 3D crystalline CTFs, which not only extends their structural diversity but also offers a synthetic strategy and structural basis for expanding practical applications of CTF materials.
Collapse
Affiliation(s)
- Ruixue Sun
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| | - Xiaoyan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| | - Xuepeng Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| |
Collapse
|
47
|
Li Q, Sun JD, Yang B, Wang H, Zhang DW, Ma D, Li ZT. Cucurbit[7]uril-threaded flexible organic frameworks: Quantitative polycatenation through dynamic covalent chemistry. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
48
|
Hanqi B, Xu J, Zhu X, Kan C. Gold nanobipyramids doped with Au/Pd alloyed nanoclusters for high efficiency ethanol electrooxidation. NANOSCALE ADVANCES 2022; 4:1827-1834. [PMID: 36132164 PMCID: PMC9417086 DOI: 10.1039/d1na00878a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/03/2022] [Indexed: 06/15/2023]
Abstract
Plasmonic metal nanostructures are of great interest due to their excellent physicochemical properties and promising applications in a wide range of technical fields. Among metal nanostructures, bimetallic nanostructures with desired morphologies, such as core-shell, uniform alloy and surface decoration, are of great interest due to their improved properties and superior synergetic effects. In this paper, Au/Pd nanoclusters were deposited on the surface of gold nanobipyramids (AuBPs) into a core-shell nanostructure (AuBP@Au x Pd1-x ) through a reductive co-precipitation method. The AuBP@Au x Pd1-x nanostructure integrates effectively the advantages of plasmonic AuBPs and catalytic Pd ultrafine nanoclusters, as well as the stable Au/Pd alloy shell. The AuBP@Au x Pd1-x nanostructure exhibits superior electrocatalytic activity and durability for oxygen reduction in alkaline media owing to the synergistic effect between the AuBP core and Au/Pd shell. Furthermore, the shell thickness of AuBP@Au x Pd1-x nanostructures can be adjusted by varying the amount of precursor. Overall, the catalytic activity of bimetallic Au/Pd catalysts is likely to be governed by a complex interplay of contributions from the particle size and shape.
Collapse
Affiliation(s)
- Baihe Hanqi
- College of Science, Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Juan Xu
- College of Science, Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Xingzhong Zhu
- College of Science, Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
- MIIT Key Laboratory of Aerospace Information Materials and Physics, Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Caixia Kan
- College of Science, Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
- MIIT Key Laboratory of Aerospace Information Materials and Physics, Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| |
Collapse
|
49
|
Mu Z, Zhu Y, Li B, Dong A, Wang B, Feng X. Covalent Organic Frameworks with Record Pore Apertures. J Am Chem Soc 2022; 144:5145-5154. [PMID: 35258975 DOI: 10.1021/jacs.2c00584] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The pore apertures dictate the guest accessibilities of the pores, imparting diverse functions to porous materials. It is highly desired to construct crystalline porous polymers with predesignable and uniform mesopores that can allow large organic, inorganic, and biological molecules to enter. However, due to the ease of the formation of interpenetrated and/or fragile structures, the largest pore aperture reported in the metal-organic frameworks is 8.5 nm, and the value for covalent organic frameworks (COFs) is only 5.8 nm. Herein, we construct a series of COFs with record pore aperture values from 7.7 to 10.0 nm by designing building blocks with large conformational rigidness, planarity, and suitable local polarity. All of the obtained COFs possess eclipsed stacking structures, high crystallinity, permanent porosity, and high stability. As a proof of concept, we successfully employed these COFs to separate pepsin that is ∼7 nm in size from its crudes and to protect tyrosinase from heat-induced deactivation.
Collapse
Affiliation(s)
- Zhenjie Mu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yuhao Zhu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Bixiao Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Anwang Dong
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Bo Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiao Feng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
50
|
|