1
|
Shi JY, Wang ZL, Wang KA, Zhu HB. Synergistic effects of CuS/TiO 2 heterointerfaces: Enhanced cathodic CO 2 reduction and anodic CH 3OH oxidation for paired electrosynthesis of formate. J Colloid Interface Sci 2024; 659:248-256. [PMID: 38176234 DOI: 10.1016/j.jcis.2023.12.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
The electrochemical reduction of carbon dioxide into energy-carrying compounds or value-added chemicals is of great significance for diminishing the greenhouse effect. However, it is still imperative to replace the less-value anodic oxygen evolution reaction (OER) to improve the technical economy. Herein, we firstly reported a bifunctional CuS/TiO2 catalyst for both anodic methanol oxidation reaction (MOR) and cathodic carbon dioxide reduction (CO2R). The in-built abundant CuS/TiO2 heterointerfaces are found to boost the CO2R and MOR to produce formate. Based on the unique bifunctionality of CuS/TiO2, a paired electrosynthesis of formate was performed with a total Faradaic efficiency (FE) of about 170 %, in which the cathodic CO2R achieved a formate FE of about 70 %, and the anodic MOR exhibited an almost 100 % formate FE.
Collapse
Affiliation(s)
- Jia-Yi Shi
- School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China
| | - Zhen-Long Wang
- School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China
| | - Ke-An Wang
- School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China
| | - Hai-Bin Zhu
- School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China.
| |
Collapse
|
2
|
Zhao Y, Chen R, Luo J, Zhu J, Wu Y, Qiao P, Yan W, Pan Y, Zhu J, Zu X, Sun Y. Selective CO 2 Photoreduction Enabled by Water-stable Cu-based Metal-organic Framework Nanoribbons. Chemphyschem 2024; 25:e202300368. [PMID: 38193665 DOI: 10.1002/cphc.202300368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
The goal of photocatalytic CO2 reduction system is to achieve near 100 % selectivity for the desirable product with reasonably high yield and stability. Here, two-dimensional metal-organic frameworks are constructed with abundant and uniform monometallic active sites, aiming to be an emerged platform for efficient and selective CO2 reduction. As an example, water-stable Cu-based metal-organic framework nanoribbons with coordinatively unsaturated single CuII sites are first fabricated, evidenced by X-ray diffraction patterns and X-ray absorption spectroscopy. In situ Fourier-transform infrared spectra and Gibbs free energy calculations unravel the formation of the key intermediate COOH* and CO* is an exothermic and spontaneous process, whereas the competitive hydrogen evolution reaction is endothermic and non-spontaneous, which accounts for the selective CO2 reduction. As a result, in an aqueous solution containing 1 mol L-1 KHCO3 and without any sacrifice reagent, the water-stable Cu-based metal-organic framework nanoribbons exhibited an average CO yield of 82 μmol g-1 h-1 with the selectivity up to 97 % during 72 h cycling test, which is comparable to other reported photocatalysts under similar conditions.
Collapse
Affiliation(s)
- Yuan Zhao
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Runhua Chen
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jingchen Luo
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Juncheng Zhu
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yang Wu
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Panzhe Qiao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
| | - Wensheng Yan
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yang Pan
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Junfa Zhu
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaolong Zu
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yongfu Sun
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
3
|
Yin Y, Peng Y, Zhou M, Zhang P, Cheng Y, Chen P, Xing X, Ma X, Zhu Q, Sun X, Qian Q, Kang X, Han B. Highly efficient zinc electrode prepared by electro-deposition in a salt-induced pre-phase separation region solution. Sci Bull (Beijing) 2023; 68:2362-2369. [PMID: 37657973 DOI: 10.1016/j.scib.2023.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/04/2023] [Accepted: 08/10/2023] [Indexed: 09/03/2023]
Abstract
Efficient electrode design is crucial for the electrochemical reduction of CO2 to produce valuable chemicals. The solution used for the preparation of electrodes can affect their overall properties, which in turn determine the reaction efficiency. In this work, we report that transition metal salts could induce the change of two-phase ionic liquid/ethanol mixture into miscible one phase. Pre-phase separation region near the phase boundary of the ternary system was observed. Zinc nanoparticles were electro-deposited along the fibres of carbon paper (CP) substrate uniformly in the salt-induced pre-phase separation region solution. The as-prepared Zn(1)/CP electrode exhibits super-wettability to the electrolyte, rendering very high catalytic performance for CO2 electro-reduction, and the Faradaic efficiency towards CO is 97.6% with a current density of 340 mA cm-2, which is the best result to date in an H-type cell.
Collapse
Affiliation(s)
- Yaoyu Yin
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaguang Peng
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Meng Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Pei Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yingying Cheng
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Peng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueqing Xing
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxue Ma
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingli Qian
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinchen Kang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
4
|
Wu Y, Hu Q, Chen Q, Jiao X, Xie Y. Fundamentals and Challenges of Engineering Charge Polarized Active Sites for CO 2 Photoreduction toward C 2 Products. Acc Chem Res 2023; 56:2500-2513. [PMID: 37658473 DOI: 10.1021/acs.accounts.3c00373] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
ConspectusGlobal warming and climatic deterioration are partly caused by carbon dioxide (CO2) emission. Given this, CO2 reduction into valuable carbonaceous fuels is a win-win route to simultaneously alleviate the greenhouse effect and the energy crisis, where CO2 reduction into hydrocarbon fuels by solar energy may be a potential strategy. Up to now, most of the current photocatalysts photoconvert CO2 to C1 products. It is extremely difficult to achieve production of C2 products, which have higher economic value and energy density, due to the kinetic challenge of C-C coupling of the C1 intermediates. Therefore, to realize CO2 photoreduction to C2 fuels, design of high-activity photocatalysts to expedite the C-C coupling is significant. Besides, the current mechanism for CO2 photoreduction toward C2 fuels is usually uncertain, which is possibly attributed to the following two reasons: (1) It is arduous to determine the actual catalytic sites for the C-C coupling step. (2) It is hard to monitor the low-concentration active intermediates during the multielectron transfer step.Most traditional metal-based photocatalysts usually possess charge balanced active sites that have the same charge density. In this aspect, the neighboring C1 intermediates may also show the same charge distribution, which would lead to dipole-dipole repulsion, thus preventing C-C coupling for producing C2 fuels. By contrast, photocatalysts with charge polarized active sites possess obviously different charge distributions in the adjacent C1 intermediates, which can effectively suppress the electrostatic repulsion to steer the C-C coupling. Based on this analysis, higher asymmetric charge density on the active sites would be more beneficial to anchoring between the adjacent intermediates and active atoms in catalysts, which can boost C-C coupling.In this Account, we summarize various strategies, including vacancy engineering, doping engineering, loading engineering, and heterojunction engineering, for tailoring charge polarized active sites to boost the C-C coupling for the first time. Also, we overview diverse in situ characterization technologies, such as in situ X-ray photoelectron spectroscopy, in situ Raman spectroscopy, and in situ Fourier transform infrared spectroscopy, for determining charge polarized active sites and monitoring reaction intermediates, helping to reveal the internal catalytic mechanism of CO2 photoreduction toward C2 products. We hope this Account may help readers to understand the crucial function of charge polarized active sites during CO2 photoreduction toward C2 products and provide guidance for designing and preparing highly active catalysts for photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Yang Wu
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Qinyuan Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Qingxia Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xingchen Jiao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yi Xie
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Bi J, Li P, Liu J, Wang Y, Song X, Kang X, Sun X, Zhu Q, Han B. High-Rate CO 2 Electrolysis to Formic Acid over a Wide Potential Window: An Electrocatalyst Comprised of Indium Nanoparticles on Chitosan-Derived Graphene. Angew Chem Int Ed Engl 2023; 62:e202307612. [PMID: 37469100 DOI: 10.1002/anie.202307612] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/27/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
Realizing industrial-scale production of HCOOH from the CO2 reduction reaction (CO2 RR) is very important, but the current density as well as the electrochemical potential window are still limited to date. Herein, we achieved this by integration of chemical adsorption and electrocatalytic capabilities for the CO2 RR via anchoring In nanoparticles (NPs) on biomass-derived substrates to create In/X-C (X=N, P, B) bifunctional active centers. The In NPs/chitosan-derived N-doped defective graphene (In/N-dG) catalyst had outstanding performance for the CO2 RR with a nearly 100 % Faradaic efficiency (FE) of HCOOH across a wide potential window. Particularly, at 1.2 A ⋅ cm-2 high current density, the FE of HCOOH was as high as 96.0 %, and the reduction potential was as low as -1.17 V vs RHE. When using a membrane electrode assembly (MEA), a pure HCOOH solution could be obtained at the cathode without further separation and purification. The FE of HCOOH was still up to 93.3 % at 0.52 A ⋅ cm-2 , and the HCOOH production rate could reach 9.051 mmol ⋅ h-1 ⋅ cm-2 . Our results suggested that the defects and multilayer structure in In/N-dG could not only enhance CO2 chemical adsorption capability, but also trigger the formation of an electron-rich catalytic environment around In sites to promote the generation of HCOOH.
Collapse
Affiliation(s)
- Jiahui Bi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Pengsong Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiyuan Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xinning Song
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xinchen Kang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, China
| |
Collapse
|
6
|
Zhang J, Chen Y, Xu F, Zhang Y, Tian J, Guo Y, Chen G, Wang X, Yang L, Wu Q, Hu Z. High-Dispersive Pd Nanoparticles on Hierarchical N-Doped Carbon Nanocages to Boost Electrochemical CO 2 Reduction to Formate at Low Potential. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301577. [PMID: 37140077 DOI: 10.1002/smll.202301577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/03/2023] [Indexed: 05/05/2023]
Abstract
Electrochemical CO2 reduction reaction (CO2 RR) to value-added chemicals/fuels is an effective strategy to achieve the carbon neutral. Palladium is the only metal to selectively produce formate via CO2 RR at near-zero potentials. To reduce cost and improve activity, the high-dispersive Pd nanoparticles on hierarchical N-doped carbon nanocages (Pd/hNCNCs) are constructed by regulating pH in microwave-assisted ethylene glycol reduction. The optimal catalyst exhibits high formate Faradaic efficiency of >95% within -0.05-0.30 V and delivers an ultrahigh formate partial current density of 10.3 mA cm-2 at the low potential of -0.25 V. The high performance of Pd/hNCNCs is attributed to the small size of uniform Pd nanoparticles, the optimized intermediates adsorption/desorption on modified Pd by N-doped support, and the promoted mass/charge transfer kinetics arising from the hierarchical structure of hNCNCs. This study sheds light on the rational design of high-efficient electrocatalysts for advanced energy conversion.
Collapse
Affiliation(s)
- Junru Zhang
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yiqun Chen
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Fengfei Xu
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yan Zhang
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jingyi Tian
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yue Guo
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Guanghai Chen
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xizhang Wang
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Lijun Yang
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qiang Wu
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zheng Hu
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
7
|
Chen S, Li X, Li H, Chen K, Luo T, Fu J, Liu K, Wang Q, Zhu M, Liu M. Proton Transfer Dynamics-Mediated CO 2 Electroreduction. CHEMSUSCHEM 2023:e202202251. [PMID: 36820747 DOI: 10.1002/cssc.202202251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Electrochemical CO2 reduction reaction (CO2 RR) is crucial to addressing environmental crises and producing chemicals. Proton activation and transfer are essential in CO2 RR. To date, few research reviews have focused on this process and its effect on catalytic performance. Recent studies have demonstrated ways to improve CO2 RR by regulating proton transfer dynamics. This Concept highlights the use of regulating proton transfer dynamics to enhance CO2 RR for the target product and discusses modulation strategies for proton transfer dynamics and operative mechanisms in typical systems, including single-atom catalysts, molecular catalysts, metal heterointerfaces, and organic-ligand modified metal catalysts. Characterization methods for proton transfer dynamics during CO2 RR are also discussed, providing powerful tools for the hydrogen-involving electrochemical study. This Concept offers new insights into the CO2 RR mechanism and guides the design of efficient CO2 RR systems.
Collapse
Affiliation(s)
- Shanyong Chen
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 511443, Guangzhou, P. R. China
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, P. R. China
| | - Xiaoqing Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Hongmei Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Kejun Chen
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Tao Luo
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Junwei Fu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Kang Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Qiyou Wang
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 511443, Guangzhou, P. R. China
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| |
Collapse
|
8
|
Wu Y, Chen Q, Zhu J, Zheng K, Wu M, Fan M, Yan W, Hu J, Zhu J, Pan Y, Jiao X, Sun Y, Xie Y. Selective CO 2 -to-C 2 H 4 Photoconversion Enabled by Oxygen-Mediated Triatomic Sites in Partially Oxidized Bimetallic Sulfide. Angew Chem Int Ed Engl 2023; 62:e202301075. [PMID: 36792533 DOI: 10.1002/anie.202301075] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/17/2023]
Abstract
Selective CO2 photoreduction into C2 fuels under mild conditions suffers from low product yield and poor selectivity owing to the kinetic challenge of C-C coupling. Here, triatomic sites are introduced into bimetallic sulfide to promote C-C coupling for selectively forming C2 products. As an example, FeCoS2 atomic layers with different oxidation degrees are first synthesized, demonstrated by X-ray photoelectron spectroscopy and X-ray absorption near edge spectroscopy spectra. Both experiment and theoretical calculation verify more charges aggregate around the introduced oxygen atom, which enables the original Co-Fe dual sites to turn into Co-O-Fe triatomic sites, thus promoting C-C coupling of double *COOH intermediates. Accordingly, the mildly oxidized FeCoS2 atomic layers exhibit C2 H4 formation rate of 20.1 μmol g-1 h-1 , with the product selectivity and electron selectivity of 82.9 % and 96.7 %, outperforming most previously reported photocatalysts under similar conditions.
Collapse
Affiliation(s)
- Yang Wu
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
| | - Qingxia Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China
| | - Juncheng Zhu
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
| | - Kai Zheng
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
| | - Mingyu Wu
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
| | - Minghui Fan
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
| | - Wensheng Yan
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
| | - Jun Hu
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
| | - Junfa Zhu
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
| | - Yang Pan
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
| | - Xingchen Jiao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China
| | - Yongfu Sun
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
| | - Yi Xie
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
| |
Collapse
|
9
|
In situ/operando characterization techniques for electrochemical CO2 reduction. Sci China Chem 2023. [DOI: 10.1007/s11426-021-1463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
Zhang Q, Wang J, Guo F, Zhou Y, He G, Xu J. Steric effects of CN vacancies for boosting CO 2 electroreduction to CO with ultrahigh selectivity. Chem Commun (Camb) 2023; 59:203-206. [DOI: 10.1039/d2cc05764f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have reported that the CN vacancies was obtained by H2 cold plasma bombardment. The steric effect of VCN can decrease the free energy barrier of *COOH and further crack into CO under low overpotential.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Chemistry & Chemical Engineering, Chongqing University of Technology, Chongqing 400054, P. R. China
| | - Jianlin Wang
- School of Chemistry & Chemical Engineering, Chongqing University of Technology, Chongqing 400054, P. R. China
| | - Fang Guo
- School of Chemistry & Chemical Engineering, Chongqing University of Technology, Chongqing 400054, P. R. China
| | - Yang Zhou
- The Analytical and Testing Center, Chongqing University, Chongqing 400044, P. R. China
| | - Ge He
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Junqiang Xu
- School of Chemistry & Chemical Engineering, Chongqing University of Technology, Chongqing 400054, P. R. China
| |
Collapse
|
11
|
Deng B, Zhao X, Li Y, Huang M, Zhang S, Dong F. Active site identification and engineering during the dynamic evolution of copper-based catalysts for electrocatalytic CO2 reduction. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1412-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Revealing the Doping Effect of Cu
2+
on SrSnO
3
Perovskite Oxides for CO
2
Electroreduction. ChemElectroChem 2022. [DOI: 10.1002/celc.202200635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|